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Abstract

We introduce the maximum agreement phylogenetic subnetwork problem (MASN) for finding
branching structure shared by a set of phylogenetic networks. We prove that the problem is NP-
hard even if restricted to three phylogenetic networks and give @9)@ime algorithm for the
special case of two level-1 phylogenetic networks, wheiie the number of leaves in the input
networks and wher# is called a levelf phylogenetic network if every biconnected component in
the underlying undirected graph induces a subgrapk obntaining at mosy nodes with indegree
2. We also show how to extend our technique to yield a polynomial-time algorithm for any two
level-f phylogenetic network®/1, N» satisfying f = O(log n); more precisely, its running time is
O(IV(N1)| - [V(N2)| - 2/11/2) whereV (N;) and f; denote the set of nodes iv; and the level of
N;, respectively, fo¥ € {1, 2}.
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1. Introduction

Phylogenetic trees have been used in many fields of science to describe how a set of ob-
jects (e.g., biological species, proteins, nucleic acids, languages, chain letters, or medieval
manuscripts) produced by an evolutionary process are believed to be {8|4t6¢22,28]. In
a phylogenetic tree, the objects are represented by leaves and common ancestors by internal
nodes so that the branching structure of the tree reflects the assumed evolutionary rela-
tionships. However, certain evolutionary events such as horizontal gene transfer or hybrid
speciation cannot be adequately represented in a single tree structure [15,16,23,25-27,30].
Phylogenetic networks were introduced in order to solve this shortcoming by allowing
internal nodes to have more than one parent.

Recently, various algorithms for constructing and comparing phylogenetic networks have
beenproposed (see, e.g.,[15,18,19,23,25-27,30]). Here, we consider the following scenario.
Suppose a humber of phylogenetic networks, each one describing the possible evolution
of a fixed set of objects, have been obtained by applying different construction methods or
different clustering criteria to some available data. Furthermore, suppose that these networks
do not completely agree because of distortions due to assumptions inherent to the methods
used or because of measurement errors. It would then be informative to find a subnetwork
contained in every one of the input networks with as many labeled leaves as possible since
such a subnetwork more likely represents genuine evolutionary structure in the data. In
this way, one would get an indication of which ancestral relationships can be regarded as
resolved and which objects need to be subjected to further experiments.

We formalize the above as a computational problem cétiechaximum agreement phylo-
genetic subnetwork problefilASN). Since the number of leaves in the input phylogenetic
networks may be very large, we investigate the computational complexity of MASN and
some of its restrictions to determine when the problem can be solved by efficient algorithms.

Further motivation for MASN comes from its relation to a well-studied problem known
asthe maximum agreement subtree prob{@MST).1 Phylogenetic networks are a natu-
ral generalization of rooted binary phylogenetic trees; similarly, MASN generalizes MAST
restricted to rooted binary trees. Hence, our results in this paper complement those pre-
viously established for MAST. The computational complexity of MAST has been closely
studied (see Section 1.2), motivated by the practical usefulness of maximum agreement
subtrees. For example, maximum agreement subtrees can be used not only to identify small
problematic subsets of species during phylogenetic reconstruction, but also to measure the
similarity of a given set of trees [9,12,21] or to estimate a classification’s stability to small
changes in the data [12]. Moreover, MAST-based algorithms have been used to prepare and
improve bilingual context-using dictionaries for automated language translation systems
[7,24].

1in MAST, the input is a set of leaf-labeled trees and the goal is to compute a tree contained in all of the input
trees with as many labeled leaves as possible; see[#.9r,[29] for a formal definition. MAST is also referred
to asthe maximum homeomorphic subtree prob{&HR T) by some researchers.
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Fig. 1. LetN be the phylogenetic network on the left. Th&1 {c, d} is the phylogenetic network on the right.

1.1. Problem definition

Let L be a finite set. Aphylogenetic network for L is a connected, rooted, simple,
directed acyclic graph in which: (1) each node has outdegree at most 2; (2) each node has
indegree 1 or 2, except the root node which has indegree 0; (3) no node has both indegree 1
and outdegree 1; and (4) all nodes with outdegree 0 are labeled by elemenfsifiguch
a way that no two nodes are assigned the same label. From here on, nodes of outdegree 0
are referred to akavesand identified with their corresponding elementd.in

Given a phylogenetic network for L and a subsdt’ of L, the topological restrictiormf
NtoL’,denoted by | L', is defined as the phylogenetic network obtained by first deleting
all nodes which are not on any directed path from the root to one of the lea¥éslong
with their incident edges, and then, for every node with outdegree 1 and indegree less than
2, contracting its outgoing edge (any resulting set of multiple edges between two nodes is
replaced by a single edge). See Fig. 1 for an example.

Given a sef\V' = {N1, Na, ..., Ni} of phylogenetic networks fok, anagreement sub-
network ofA\/ is a phylogenetic networld such that for somé&’ C L it holds thatA is a
subgraph of each a¥1 | L/, N2 | L', ..., and N | L’. A maximum agreement subnetwork
of A/ is an agreement subnetwork &t with the maximum possible number of leav&he
MASN is: Given a finite sel. and a set\ of phylogenetic networks fok., find a maxi-
mum agreement subnetwork &f. See Fig. 2. Throughout this paperndk represent the
cardinalities ofL and A/, respectively, in the problem definition above.

2The existing methods for phylogenetic network reconstruction (see SecBpmake various assumptions
on the available data and on the structure of the phylogenetic network that is to be constructed. In addition, the
exact definition of a phylogenetic network varies somewhat from paper to paper. Therefore, to be able to compare
phylogenetic networks produced by different construction methods, the definition that we use here is more general,
in the sense that it focuses on the topology of the given networks and does not, for example, require internal nodes
to be labeled as ifiL5,30] or that certain temporal constraints are satisfied §23;26] (also note that when
some species are missing from a data set, e.g., due to extinction, some construction methods might not produce a
phylogenetic network for the observed species which satisfies the temporal constraints §28e6n
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Fig. 2. One of the maximum agreement subnetworks of two given phylogenetic netMpakel No. This solution
is not unique; another maximum agreement subnetwor¥;cdnd N, has leaf seta, b, ¢, d}.

1.2. Previous results

Several methods faonstructingphylogenetic networks have been proposed previously;
for a survey, refer t423,27]. See also [15,18,19,26,30] for some recent related results
not described in the surveys. In particular, [15,19,26,30] consider problems involving con-
structing a phylogenetic network with an additional structural constraint which we in this
paper refer to as kevel-1phylogenetic network, to be defined in Section 2. A method for
comparingtwo given phylogenetic networks (more precisely, measuring their similarity
in order to assess the topological accuracy of different phylogenetic network construction
methods) based on the Robinson—Foulds (RF) measure for phylogenetic trees was proposed
by Nakhleh et al. [25].

No results for MASN in its general form have appeared in the literature before. On the
other hand, the special case of MASN known as the MAST has received a lot of attention
in the last ten years. Below, we summarize some of the most important results known for
MAST.

Finden and Gordon [12] presented a polynomial-time heuristic (not guaranteed to find
an optimal solution) for MAST restricted to instances consisting of two binary trees. A
few years later, Steel and Warnow [29] gave the first exact polynomial-time algorithm to
solve MAST for two trees with unbounded degrees. Since then, a great number of improve-
ments have been published (e.qg., [7,10,11,20,21]). The fastest currently known algorithm
for MAST for two trees, invented by Kao et al. [21], runs ifD n log(2n/D)) time,
wheren is the number of leaves anfl is the maximum degree of the two input trees.
Note that this is @ log ») for two trees with maximum degree bounded by a constant and
O(n1-°) for two trees with unbounded degrees.

Amir and Keselman [2] considered the casé of3 input trees. They proved that MAST
is NP-hard for three trees with unbounded degrees, but solvable in polynomial time for
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three or more trees if the degree of at least one of the input trees is bounded by a constant.
For the latter case, Farach et[@] gave an algorithm with improved efficiency running in
O(kn® + n?) time, whered is an upper bound on at least one of the input trees’ degrees;
Bryant [5] proposed a conceptually different algorithm with the same running time. Bryant’s
approach led to a recent result in the field of parameterized complexity theory stating that
it is possible to determine whether an instance of MAST has an agreement subtree with at
leastn — u leaves for any integerQ u<n in O(kn® + 2.270%) time? (see [1]).

Hein et al. [17] proved the following inapproximability result: MAST with three trees
with unbounded degrees cannot be approximated within a factdPoi an polynomial
time for any constani < 1, unless NRC DTIME[2P°Y109"], Gasieniec et al. [14] proved
that MAST is hard to approximate in polynomial time even for instances containing only
trees of height 2, and showed that if the number of trees is bounded by a constant and all
the input trees’ heights are bounded by a constant then MAST can be approximated within
a constant factor in @ log n) time.

1.3. Our results and organization of paper

We define the concept of a levglphylogenetic network in Section 2. Then, in Section 3,
we present an algorithm for computing a maximum agreement subnetwork between two
level-1 phylogenetic networks in(@?) time. We also describe how our algorithm can be
extended to solve MASN for a levgh phylogenetic networkv, and a levelf, phyloge-
netic networkV» in O(|V (N1)|-|V (N2)|-2/1+/2) time (whereV (N;) denotes the set of nodes
of N;), which is polynomial in the input size when mg¥, f2} = O(log n). Next,
in Section 4, we prove that in the general case (i.e., for l¢gvphylogenetic networks
where f is unbounded), the MASN is NP-hard even if restricted to just three networks.
Finally, we state some open problems in Section 5.

2. Preliminaries

Let N be a phylogenetic network for a finite detRecall that nodes with outdegree O are
calledleaves We refer to nodes with indegree 2 fagbrid nodes(Observe that a leaf can
also be a hybrid node.) For any hybrid naden N, its two incoming edges are calldioe
hybrid edges of: and its two parentthe hybrid parents of. To distinguish between the
hybrid edges ofi, we call one of thenthe left hybrid edge di (lhe(h)) and the other one
the right hybrid edge df (rhe(h)). The left hybrid parent of ({2p(h)) andthe right hybrid
parent ofk (rhp(h)) are defined accordingly. Every ancestor:dfom whichl/hp(h) and
rhp(h) can be reached using two disjoint paths is callegld node of:. If s is a split node
of h then any path starting at a child efand ending at a parent éfis called aclipped
merge path of.. If 4 only has one split node, we denote itoyh). See Fig. 3.

LetZ/(N) be the undirected graph obtained fravnby replacing each directed edge by
an undirected edge. For every biconnected compoBént/(N), thelevel of B is defined

3 Note that @kn3 +2.270%) running time might be preferable tai@:3 + ) if d is unbounded and the number
of leaves we are willing to exclude is small.
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Fig. 3. Here is a hybrid node with a unique split node. The figure shew@), [hp(h), rhp(h), lhe(h), rhe(h),
and as dashed lines, two clipped merge pathis of

as the number of nodes with indegree 2 in the subgraphiofluced by the set of nodes in
B. N is said to be devel-f phylogenetic network if the maximum level of all biconnected
components i/ (N) is equal tof. (For exampleN; and N2 in Fig. 2 are a level-2 and
a level-1 phylogenetic network, respectively.) Note tNais a tree if and only iff = 0.

If £ =1 then every node itV belongs to at most one clipped merge pAtMoreover, if

f = 1 then every hybrid node iV has only one split node and any nodeNncan be a
split node for at most one hybrid node.

3. An algorithm for MASN for two phylogenetic networks

Given two level-0 phylogenetic networks (i.e., trees), MASN can be solvedin@ »)
time by using the algorithm in [7] or [21]. In this section, we consider how to compute
a maximum agreement subnetwork of two leyephylogenetic networks foy > 0.

4The biological relevance of level-1 phylogenetic networks (there referred galkesi-treed is discussed in
[15].
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N[u,] : N[ug] :

Fig. 4. N is a level-1 phylogenetic network amds a split node inV. N[« ] andN[uR]’ are the subgraphs of
shown on the right.

We presentan @2)-time algorithm for the casg = 1 and then show how it can be extended
to solve MASN in polynomial time for any f which is upper-bounded
by O(log n).

We first introduce some notation. L&tbe a level-1 phylogenetic network.(N) stands
for the set of nodes a¥ and A (N) for the set of leaf labels iv. From this point onward,
we assume that some arbitrary left-to-right ordering of the children of every node has been
fixed. If u € V(N) has two children then andugr denote the left and right child of,
respectively, and ift only has one child: then we setyy = ¢ andur = . For any
u € V(N), N[u]is the subnetwork o rooted ats, i.e., the minimal subgraph &f which
includes all nodes and directed edgeshofeachable from:. N[/] refers to the empty
network with no nodes or edges.

Next, for everyu € V(N), we define a subgraphi[u]" of N[u] as follows. Ifu belongs
to a clipped merge path of some hybrid nddthen N[u]’ is the subgraph oi[u] where
N[h]andh’s incoming edge have been removed (sincis a level-1 phylogenetic network,
eachu € V(N) can belong to at most one clipped merge path). Otherwige]’ is defined
asN[u] if u is not a hybrid node iV, and asN[¢] if u is a hybrid node inv. See Fig4
for an example.

For any two level-1 phylogenetic networké and N2, defineMasn N1, N2) as the
number of leaves in a maximum agreement subnetworkiodnd Na. If N1 or N> is an
empty network theMasn( N1, No) is equalto 0. Otherwisd&lasn N1, N2) can be expressed
recursively using the following lemma which is a straightforward generalization of the
main lemma in [29] for MAST (the only difference is the cadatch(N1[u], N2[v]); here,
when trying to match the two subnetworks rootedigtandugr to the two subnetworks
rooted atv. andvgr, we ensure that the set of nodes in the intersectio® @¥1[u 1)
and V (N1[ur]) is matched to only one of the two subnetworks rooted _adndvg, and
conversely).
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Algorithm ~ ComputeMasn
Input:  Two level-1 phylogenetic networki; andNo.
Output: The number of leaves in a maximum agreement subnetwofNQfNo}.
1 Let O be the lexicographic ordering &f(N1) x V(N2), where the nodes in eadh(N;) are ordered
according to postorder.
2 for each(u, v) € V(N1) x V(N») inincreasing order i© do
ComputeMasn N1 [u], No[v]), Masn(N1[u]’, No[v]),
Masn(N1[u], No[v]), andMasn(N1[u]’, No[v]’) by using the expression in Lemnia
endfor
3 return MasnN1[r1l, N2[rz]), wherer; is the root ofN; fori € {1, 2}.
End ComputeMasn

Fig. 5. A dynamic programming algorithm for computing all value$/afsn

Lemma 1. Let N3 and N2 be two levell phylogenetic networksor every (u, v) €
V(N1) x V(N2),

|A(N1[u]) N A(N2[v])], if at least one of u and
is a leaf,

max{Diag(N1[u], N2[v]), Match(N1[u], N2[v])},
otherwise

MasnNi[u], No[v]) =

where

Diag(N1[ul, N2[v]) = max{Masn(Ni[u], N2[vL]), Masn(Ni[u], N2[vr]).
Masn(Ni[up], N2[v]), Masn(Ni[ur], N2[v])}

and

Match(Nq[u], N2[v])
= max{Masn(N1[ur], N2[v_]) + MasnNi[ur]', N2[vr]).
MasnN1[up], No[vL]) + Masn(Ni[ur]’, Na[vr]),
Masn(N1[uL], N2[vr]) +Masn(N1[ur]’, N2[v 1),
Masn(N1[up], N2[vr]) + MasnN1[ur]’, Na[vL]),
Masn(Ni[ur], Nz2[vL]) + Masn(Ni[ur], N2[vr]),
Masn(N1[ur]’, Na[v 1) + MasnNi[ur], N2[vr]),
Masn(Ni[ur], N2[vr]) + Masn(Ni[ur], Na[vL]),
Masn(Ni[ur]’, Na[vr]) + Masn(N1i[ur], Nao[vL])}.

Lemmal implies that we can computdasnN1[u], N»[v]) for all (i, v) in V(N1) x
V (N2) by employing dynamic programming in a bottom-up manner, e.g., by evaluating all
pairs inV (N1) x V(N2) in increasing order in the lexicographic orderi@gof V (N1) x
V (N2) where the nodes in eadh(N;) are postordered. The resulting algorithm (Algorithm
ComputeMashis displayed in Fig. 5.

Next, we analyze the time complexity of Algorith@omputeMasn
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Lemma 2. If N is a levell phylogenetic network then the number of hybrid node¥ ia
at mostn — 1.

Proof. DefineTy as the rooted directed graph obtained fidras follows: For every hybrid
nodeh in N, removelhe(h) andrhe(h), contractsn (k) and all nodes on the two clipped
merge paths of to a single node, and then add a directed edge franto 4. Clearly,
every node with indegree 2 i§ has indegree equal to 11, and none of the contractions
increase the indegree of any node7s0is a tree. Furthermoré}, contains: leaves. Thus,
the number of internal nodes iy with outdegree- 1 is at most: — 1.

Finally, observe that every split node M corresponds to a distinct internal nodefin
with outdegree- 1 and that the number of hybrid nodesNhequals the number of split
nodes inN sinceN is a level-1 phylogenetic network.lJ

Lemma 3. If N is a levell phylogenetic network then the total number of node¥ iis
On).

Proof. Let z;; denote the number of nodes ¥ which havei incoming edges and
outgoing edges. By the definition of a phylogenetic network, the total nundferodes in
N is zo2 + z10 + 212 + 220 + 221 + z22. For everyu € V(N), letin(u) andout(x) denote
the number of incoming and outgoing edges incident.t8ince

> in(u) =z02- 0+ (z10+ z12) - 1+ (220 + 221 + 222) - 2,
ueV(N)

> out(u) = (z10+220) - O+ 221+ 1+ (zo2 + 712 + 222) - 2

ueV(N)
and
> inw)= Y out(u), we have zi2 = z10+ 2220 + 221 — 2202.
ueV(N) ueV(N)

Next, z2o + z21 + z22 (the number of hybrid nodes) is at most- 1 by Lemma2 and
n = z10 + z20, Which gives ug12 < 2n. Hencey <1+n+2n+ (n—1) =0®m). O

Lemma 4. The running time oflgorithm ComputeMasn i©(n?).

Proof. By Lemma3, the algorithm evaluates(@”) pairs of nodes. For each such pair
(u, v), if neitheru norv is a leaf then it takes constant time to computeMusnvalues
from previously computed values. ifis a leaf then the value afA(N1[u]) N A(N2[v])|
can be obtained in constant time by associating a binary végtoy of lengthn to each

w € V(N1) U V(N2), where theith bit of L(w) is set to 1 if and only if leaf is a
descendant ofv (note that allL (w)-vectors can be computed in advance ia®) time
by using a postorder traversal technique), and checking if itL (v) equals 1. The case
wherev is a leaf is analogous.

Algorithm ComputeMasrtan be modified to compute the set of leaves in a maximum
agreement subnetwork without increasing the asymptotic running time by also recording
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information about how eacMasnvalue is obtained as it is computed, e.g., by saving
pointers. To obtain an actual maximum agreement subnetwork from such a set of leaves,
we may use a standard traceback technique.

Theorem 5. Given two levell phylogenetic networks withleavesa maximum agreement
subnetwork can be computed@in?) time.

By extending this technique, we get the following.

Corollary 6. Given a levelfi phylogenetic networkv; and a level f> phylogenetic net-
work N2, a maximum agreement subnetworkVafand N> can be computed i@(|V (N1)| -
|V (N>)| - 2/11/2) timeg, whereV (N;) denotes the set of nodesnf for i € {1, 2}.

Proof. Amaximum agreement subnetwork®@f andN, can be computed by modifying the
dynamic programming algorithm for two level-1 phylogenetic networks described above.
For any levelf phylogenetic networkV, u € V(N), and binary string = bibs--- by

of length £, defineN[u]” as the subnetwork a¥ rooted atu in which for each hybrid
nodeh; in the same maximal biconnected component asither its left or right hybrid
edge has been deleted according to whetheequals 0 or 1. (Note that the maximal
biconnected component &f containingu is a tree inN[u]? because every one of its
nodes has exactly one parent. Henge(N [u1?)[u]) and V ((N[u]?)[ur]) are disjoint.)
Now, we defineMasn N1[u], N2[v]) andDiag(N1[u], N2[v]) like in Lemmal, but change
Match(N1[u], No[v]) to be the maximum value dflasn((N1[u]?2)[ur ], (N2[v]?2)[v ]) +
Masr(N1[u]")[ur], (N2[v]*2)[vr]) and Masn(N1[u]")[ut ], (N2[v]*)[vr]) + Masn
((N1[ul*H)[ur], (N2[v]?2)[v,]) taken over all binary strings; and b, of length f1 and
f2, respectively.

As before, using dynamic programming in a bottom-up manner, we corviase N1 [u«],
No[v]) forall (u, v) € V(N1) x V(N2). We also compute and stavasn(N1[u]%, No[v]),
Masn(N1[u], No[v]?2), andMasn(N1[u]?t, No[v]?2) for every binary stringy; of length
f1 and every binary string, of length f». The algorithm’s total running time becomes
O(V(NDI| - [V(N)| - 21+, [

Hence, MASN withk = 2 and f upper-bounded by @bg »n) is solvable in polynomial
time.

4. NP-hardness of MASN fork = 3

In this section, we prove that MASN is NP-hard for every fixeel 3. Our reduction is
a non-trivial modification of the NP-hardness proof by Amir and Keselman [2] for MAST
restricted to three trees with unbounded degrees. Note that the definition of MASN requires
all nodes to have outdegree at most two, so the fact that MAST with unbounded degrees is
NP-hard does not immediately imply that MASN is NP-hard.



C. Choy et al. / Theoretical Computer Science 335 (2005) 93-107 103

(X Y1, Z)

(Xg V1, Z0)
(X1 Y3 )

(o ¥ 2) (X Yo 2) o Y1 %

VVl

W
Yok %Yok

Fig. 6. AssumeMyg = {(x8, y1,23), (x8, y1,29), (x8,¥3,23), (x8, 7, 22), (x8, Y7, 24)}. Rxg andSyg are the
subtrees offyg rooted at the nodes markedinds, respectively.

4.1. Three-dimensional matching (3DM)

Instance:AsetM C X xY x Z,whereX,Y,andZ are disjoint sets an¥l = {x1, ..., x4},
Y ={y1,...,yg1,andZ = {z1, ..., z4}.
Question: Is there a subse¥’ of M with |M’| = ¢ such thatM’ is a matching, i.e., such
that for every paieq, e; € M’ it holds thate; ande differ in all coordinates?
3DM is known to be NP-complete (see, e[@3]). To prove the NP-hardness of MASN,
we describe a polynomial-time reduction from 3DM. Given an arbitrary instance of 3DM,
construct aninstanad., A) of MASN with three phylogenetic networkg={N1, No, N3}
for L as follows.
TakeL = M UW U B, whereW is a set of 26 arbitrary elements not i/, andB is a set
of 2¢” arbitrary elements not iff or W. Let B; and B be two binary trees Witb7 leaves

each, distinctly labeled bg. For every(x;, yj,zx) € X x Y x Z, defineWw 13k and
sz Vjuz to be two binary trees with® leaves each, distinctly labeled By. Next for every

X; € X define (1)M,, as the subset g¥f containing all triples of the forni;, y, z) where
y € Y andz € Z; (2) Ry, as a binary caterpillar tree with leaves distinctly labeled/hy;
(3) S, as the tree obtained from the binary caterpillar tree wjthlgaves by replacing them
(in order of non-decreasing distance from the root) with the rootW)b 1200 sz oy

1 2
Wevnzr = Weiyaz ; (4) S}, as the tree obtained from the binary caterpillar tree with 2
leaves by replacmg them (m order of non-decreasing distance from the root) with the roots
of W2, Vorza! le,,yq 2 w2, Vgrtgo1t o Wi 1 (B) Ty, as abinary tree with a root node
connected to the roots &, ands,;; and (6)7, as a binary tree with a root node connected
to the roots ofR,, ands; . Define My,, M_,, Ry[, R, etc. for everyy; € Y andz; € Z

analogously. See Fig. 6 for an example.
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P Q: Q,,
1 I / Q1,2
: I Q1,3
3 I Qi 1 Q1,4
4 Qi;é / 0
L Qs .
q o
Stage 1 Stage Qprr1 Qi /
Q° !
pHL2 :
. Qi
Qv 3 a
Qp'+1 4
Q 0

p+l,q

Fig. 7. The sorting networl on the left yields a directed acyclic gragh

Fig. 8. The phylogenetic networké; andNo.

Next, letP be any sorting network (see, e [§]) for g elements with a polynomial number
p of comparator stages. Construct a directed acyclic géaflom P with (p +1) - ¢ nodes
{0 11<i<p+1, 1<j<q} such that there is a directed ed@®; j, Q;+1,;) for every
1<i<pand 1< j<gq, and two directed edg€®)i j, Qi+1.4) and(Qjk, Qi+1,;) forevery
comparatoxj, k) at stage in P for 1<i < p, asillustrated in Fig. 7.

We now letN; be a phylogenetic network (in fact, a leaf-labeled binary tree) obtained by
attachingB1, Bp, andTy, ..., T, toa path(mo, m1, mo, ..., my) SO thatmo becomes the
root of N1 and the root o is a child ofmg, the root of eac, is a child ofm;, and the
root of B; is the second child of:,. See Fig. 8. The phylogenetic netwavk is obtained
by attachingBi, B2, O, andT/ .. T/ to a path(ng, n1, no, ..., ng) so thatg becomes
the root of N2 and the root ofBl isa ch|Id ofng, each nod&2 ; in Q is a child ofn; and
each nod&®) 1 ; in Q coincides with the root oT/_, and the root o3, is the second child

of n,. Next, N3 is defined in the same way a& but usmgT// instead ofT/ Finally, for
each node Vo or N3 having indegree 1 and outdegree 1, contract its outgomg edge.
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Lemma 7. There exists an agreement subnetwork®f, N>, N3) with 2¢7 + 2¢* + ¢
leaves if and only i has a matching of size.

Proof. SupposeM has a matching/’ of sizeq. Then for eachy;, there is precisely one
triple of the form(x;, y, z) in M’. For any(x;, y;, zx) € X x Y x Z, denote byV,, iz
the set of all leaves i} | andWZ , . LetC = M' U U, yem Vaiv.: @nd
let T be N1|(B U C). Now con5|der the structure a¥>| (B U Q) and N3| (B U C).
First, observe that for eadtx;, y;, zx) in M’, there exists an agreement subnetwork of
Ty, T’ and7;, containing the(1 + 24°) leaves in{(x;, ¥j» 2} U Vi, g, - Next, since
P is a sortlng network there aeg disjoint paths inQ from (Q11, Q12,..., Q1,4) tO
(Qp+1.11)s Qpi1a@- - --» Qp+in(g) fOr any given permutatiom of {1, 2, ...,q}; in
particular, this holds for the permutationg andn, defined by the relations, (i) = j and
n.(i) = k for all (x;, y;, zx) € M’. This means thal is a subgraph oV, | (B U C) and
N3 |(BUC). Thus,T is an agreement subnetwork@1, N2, N3) with |B|+¢ - (1+2¢°)
leaves.

Conversely, suppose there exists an agreement subnetwwitk leaf setL’ € L such
that|L'| = 2¢” +2¢* 4+ q. Write M’ = L'’ N M andW’ = L' N W. By the pigeonhole
principle,| M’ |+|W’| > 2¢*+q.Also, atleast one leafiB; and atleast one leéin B, must
be included inL’. It follows that the root off’ corresponds to the roots df;, N2, andNs,
and for any two triples = (x;,, yj;, 2iy) @andf = (xi,, ¥j,. 2k,) IN M, if e and f agree on at
least one coordinate then they cannot both belord.tfTo see this, if1 # i» andj1 = jo,
thene and f would appear in different subtrees of the fofimin N1 but in the same subtree
oftheformT}’,j in N2,s0,e.9.N1 | {e, f, £} andN2 | {e, f, ¢} would differ, which contradicts
that{e, f, ¢} are leavesifT. If iy = io andj; # j» then|W’| < (g —1) - 2¢° since otherwise
there would have to exist@a in W’ such thatw appears iriFy/j1 and thenVy | {e, f, w}and
No | {e, f, w}would differ; thus|M'| +|W'| < |M|+|W|<q3+ (g —1)-2¢3<2¢* — 45,
contradicting thatM'|+ | W’| 22q4+q. The cases{ # iz, k1 = ko) and (1 = i2, k1 # ko)
are analogous.) Thug/’ is a matching of\/. Next, assume thait/’| < ¢g. ThenW’ has
cardinality|L'| — [M'| — |L' N B| > 2¢*. This implies thatW’ contains leaves from at
least three different subtrees of the fobif!, _ for some fixedr € X, but at most two
such leaves can appear in the saS(]eand in the samé; foranyy; € Y andz; € Z.

Contradiction. HencgM'| >¢q. O
From the above, we obtain:

Theorem 8. MASN isNP-hard even if restricted té = 3.

5. Final remarks

An open problem is to determine the computational complexity of MASN restricted
to two level-f phylogenetic networks wherg is unbounded. If it is NP-hard, can it be
approximated efficiently in polynomial time? We would also like to know if it is possible
to improve the running time of our algorithm for two level-1 phylogenetic networks.
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