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Abstract

We introduce the maximum agreement phylogenetic subnetwork problem (MASN) for finding
branching structure shared by a set of phylogenetic networks. We prove that the problem is NP-
hard even if restricted to three phylogenetic networks and give an O(n2)-time algorithm for the
special case of two level-1 phylogenetic networks, wheren is the number of leaves in the input
networks and whereN is called a level-f phylogenetic network if every biconnected component in
the underlying undirected graph induces a subgraph ofN containing at mostf nodes with indegree
2. We also show how to extend our technique to yield a polynomial-time algorithm for any two
level-f phylogenetic networksN1, N2 satisfyingf = O(log n); more precisely, its running time is
O(|V (N1)| · |V (N2)| · 2f1+f2), whereV (Ni) andfi denote the set of nodes inNi and the level of
Ni , respectively, fori ∈ {1,2}.
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1. Introduction

Phylogenetic trees have been used in many fields of science to describe how a set of ob-
jects (e.g., biological species, proteins, nucleic acids, languages, chain letters, or medieval
manuscripts) produced by an evolutionary process are believed to be related[3,4,6,22,28]. In
a phylogenetic tree, the objects are represented by leaves and common ancestors by internal
nodes so that the branching structure of the tree reflects the assumed evolutionary rela-
tionships. However, certain evolutionary events such as horizontal gene transfer or hybrid
speciation cannot be adequately represented in a single tree structure [15,16,23,25–27,30].
Phylogenetic networks were introduced in order to solve this shortcoming by allowing
internal nodes to have more than one parent.

Recently, various algorithms for constructing and comparing phylogenetic networks have
been proposed (see, e.g., [15,18,19,23,25–27,30]). Here, we consider the following scenario.
Suppose a number of phylogenetic networks, each one describing the possible evolution
of a fixed set of objects, have been obtained by applying different construction methods or
different clustering criteria to some available data. Furthermore, suppose that these networks
do not completely agree because of distortions due to assumptions inherent to the methods
used or because of measurement errors. It would then be informative to find a subnetwork
contained in every one of the input networks with as many labeled leaves as possible since
such a subnetwork more likely represents genuine evolutionary structure in the data. In
this way, one would get an indication of which ancestral relationships can be regarded as
resolved and which objects need to be subjected to further experiments.

We formalize the above as a computational problem calledthe maximum agreement phylo-
genetic subnetwork problem(MASN). Since the number of leaves in the input phylogenetic
networks may be very large, we investigate the computational complexity of MASN and
some of its restrictions to determine when the problem can be solved by efficient algorithms.

Further motivation for MASN comes from its relation to a well-studied problem known
asthe maximum agreement subtree problem(MAST). 1 Phylogenetic networks are a natu-
ral generalization of rooted binary phylogenetic trees; similarly, MASN generalizes MAST
restricted to rooted binary trees. Hence, our results in this paper complement those pre-
viously established for MAST. The computational complexity of MAST has been closely
studied (see Section 1.2), motivated by the practical usefulness of maximum agreement
subtrees. For example, maximum agreement subtrees can be used not only to identify small
problematic subsets of species during phylogenetic reconstruction, but also to measure the
similarity of a given set of trees [9,12,21] or to estimate a classification’s stability to small
changes in the data [12]. Moreover, MAST-based algorithms have been used to prepare and
improve bilingual context-using dictionaries for automated language translation systems
[7,24].

1 In MAST, the input is a set of leaf-labeled trees and the goal is to compute a tree contained in all of the input
trees with as many labeled leaves as possible; see, e.g.,[2] or [29] for a formal definition. MAST is also referred
to asthe maximum homeomorphic subtree problem(MHT) by some researchers.
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Fig. 1. LetN be the phylogenetic network on the left. ThenN | {c, d} is the phylogenetic network on the right.

1.1. Problem definition

Let L be a finite set. Aphylogenetic network2 for L is a connected, rooted, simple,
directed acyclic graph in which: (1) each node has outdegree at most 2; (2) each node has
indegree 1 or 2, except the root node which has indegree 0; (3) no node has both indegree 1
and outdegree 1; and (4) all nodes with outdegree 0 are labeled by elements fromL in such
a way that no two nodes are assigned the same label. From here on, nodes of outdegree 0
are referred to asleavesand identified with their corresponding elements inL.

Given a phylogenetic networkN for L and a subsetL′ of L, the topological restrictionof
N toL′, denoted byN |L′, is defined as the phylogenetic network obtained by first deleting
all nodes which are not on any directed path from the root to one of the leaves inL′ along
with their incident edges, and then, for every node with outdegree 1 and indegree less than
2, contracting its outgoing edge (any resulting set of multiple edges between two nodes is
replaced by a single edge). See Fig. 1 for an example.

Given a setN = {N1, N2, . . . , Nk} of phylogenetic networks forL, anagreement sub-
network ofN is a phylogenetic networkA such that for someL′ ⊆ L it holds thatA is a
subgraph of each ofN1 |L′, N2 |L′, . . . , andNk |L′. A maximum agreement subnetwork
of N is an agreement subnetwork ofN with the maximum possible number of leaves.The
MASN is: Given a finite setL and a setN of phylogenetic networks forL, find a maxi-
mum agreement subnetwork ofN . See Fig. 2. Throughout this paper,n andk represent the
cardinalities ofL andN , respectively, in the problem definition above.

2 The existing methods for phylogenetic network reconstruction (see Section1.2) make various assumptions
on the available data and on the structure of the phylogenetic network that is to be constructed. In addition, the
exact definition of a phylogenetic network varies somewhat from paper to paper. Therefore, to be able to compare
phylogenetic networks produced by different construction methods, the definition that we use here is more general,
in the sense that it focuses on the topology of the given networks and does not, for example, require internal nodes
to be labeled as in[15,30] or that certain temporal constraints are satisfied as in[23,26] (also note that when
some species are missing from a data set, e.g., due to extinction, some construction methods might not produce a
phylogenetic network for the observed species which satisfies the temporal constraints stated in[23,26]).
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Fig. 2. One of the maximum agreement subnetworks of two given phylogenetic networksN1 andN2. This solution
is not unique; another maximum agreement subnetwork ofN1 andN2 has leaf set{a, b, c, d}.

1.2. Previous results

Several methods forconstructingphylogenetic networks have been proposed previously;
for a survey, refer to[23,27]. See also [15,18,19,26,30] for some recent related results
not described in the surveys. In particular, [15,19,26,30] consider problems involving con-
structing a phylogenetic network with an additional structural constraint which we in this
paper refer to as alevel-1phylogenetic network, to be defined in Section 2. A method for
comparingtwo given phylogenetic networks (more precisely, measuring their similarity
in order to assess the topological accuracy of different phylogenetic network construction
methods) based on the Robinson–Foulds (RF) measure for phylogenetic trees was proposed
by Nakhleh et al. [25].

No results for MASN in its general form have appeared in the literature before. On the
other hand, the special case of MASN known as the MAST has received a lot of attention
in the last ten years. Below, we summarize some of the most important results known for
MAST.

Finden and Gordon [12] presented a polynomial-time heuristic (not guaranteed to find
an optimal solution) for MAST restricted to instances consisting of two binary trees. A
few years later, Steel and Warnow [29] gave the first exact polynomial-time algorithm to
solve MAST for two trees with unbounded degrees. Since then, a great number of improve-
ments have been published (e.g., [7,10,11,20,21]). The fastest currently known algorithm
for MAST for two trees, invented by Kao et al. [21], runs in O(

√
D n log(2n/D)) time,

wheren is the number of leaves andD is the maximum degree of the two input trees.
Note that this is O(n log n) for two trees with maximum degree bounded by a constant and
O(n1.5) for two trees with unbounded degrees.

Amir and Keselman [2] considered the case ofk�3 input trees. They proved that MAST
is NP-hard for three trees with unbounded degrees, but solvable in polynomial time for
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three or more trees if the degree of at least one of the input trees is bounded by a constant.
For the latter case, Farach et al.[9] gave an algorithm with improved efficiency running in
O(kn3 + nd) time, whered is an upper bound on at least one of the input trees’ degrees;
Bryant [5] proposed a conceptually different algorithm with the same running time. Bryant’s
approach led to a recent result in the field of parameterized complexity theory stating that
it is possible to determine whether an instance of MAST has an agreement subtree with at
leastn − � leaves for any integer 0���n in O(kn3 + 2.270�) time3 (see [1]).

Hein et al. [17] proved the following inapproximability result: MAST with three trees
with unbounded degrees cannot be approximated within a factor of 2log� n in polynomial
time for any constant� < 1, unless NP⊆ DTIME[2polylogn]. Ga̧sieniec et al. [14] proved
that MAST is hard to approximate in polynomial time even for instances containing only
trees of height 2, and showed that if the number of trees is bounded by a constant and all
the input trees’ heights are bounded by a constant then MAST can be approximated within
a constant factor in O(n log n) time.

1.3. Our results and organization of paper

We define the concept of a level-f phylogenetic network in Section 2. Then, in Section 3,
we present an algorithm for computing a maximum agreement subnetwork between two
level-1 phylogenetic networks in O(n2) time. We also describe how our algorithm can be
extended to solve MASN for a level-f1 phylogenetic networkN1 and a level-f2 phyloge-
netic networkN2 in O(|V (N1)|·|V (N2)|·2f1+f2) time (whereV (Ni)denotes the set of nodes
of Ni), which is polynomial in the input size when max{f1, f2} = O(log n). Next,
in Section 4, we prove that in the general case (i.e., for level-f phylogenetic networks
wheref is unbounded), the MASN is NP-hard even if restricted to just three networks.
Finally, we state some open problems in Section 5.

2. Preliminaries

LetN be a phylogenetic network for a finite setL. Recall that nodes with outdegree 0 are
calledleaves. We refer to nodes with indegree 2 ashybrid nodes. (Observe that a leaf can
also be a hybrid node.) For any hybrid nodeh in N , its two incoming edges are calledthe
hybrid edges ofh and its two parentsthe hybrid parents ofh. To distinguish between the
hybrid edges ofh, we call one of themthe left hybrid edge ofh (lhe(h)) and the other one
the right hybrid edge ofh (rhe(h)). The left hybrid parent ofh (lhp(h)) andthe right hybrid
parent ofh (rhp(h)) are defined accordingly. Every ancestor ofh from which lhp(h) and
rhp(h) can be reached using two disjoint paths is called asplit node ofh. If s is a split node
of h then any path starting at a child ofs and ending at a parent ofh is called aclipped
merge path ofh. If h only has one split node, we denote it bysn(h). See Fig. 3.

Let U(N) be the undirected graph obtained fromN by replacing each directed edge by
an undirected edge. For every biconnected componentB in U(N), thelevel ofB is defined

3 Note that O(kn3+2.270�) running time might be preferable to O(kn3+nd) if d is unbounded and the number
of leaves we are willing to exclude is small.
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Fig. 3. Here,h is a hybrid node with a unique split node. The figure showssn(h), lhp(h), rhp(h), lhe(h), rhe(h),
and as dashed lines, two clipped merge paths ofh.

as the number of nodes with indegree 2 in the subgraph ofN induced by the set of nodes in
B. N is said to be alevel-f phylogenetic network if the maximum level of all biconnected
components inU(N) is equal tof . (For example,N1 andN2 in Fig. 2 are a level-2 and
a level-1 phylogenetic network, respectively.) Note thatN is a tree if and only iff = 0.
If f = 1 then every node inN belongs to at most one clipped merge path.4 Moreover, if
f = 1 then every hybrid node inN has only one split node and any node inN can be a
split node for at most one hybrid node.

3. An algorithm for MASN for two phylogenetic networks

Given two level-0 phylogenetic networks (i.e., trees), MASN can be solved in O(n log n)

time by using the algorithm in [7] or [21]. In this section, we consider how to compute
a maximum agreement subnetwork of two level-f phylogenetic networks forf > 0.

4 The biological relevance of level-1 phylogenetic networks (there referred to asgalled-trees) is discussed in
[15].
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Fig. 4.N is a level-1 phylogenetic network andu is a split node inN . N [uL ] andN [uR]′ are the subgraphs ofN
shown on the right.

We present an O(n2)-time algorithm for the casef = 1 and then show how it can be extended
to solve MASN in polynomial time for any f which is upper-bounded
by O(log n).

We first introduce some notation. LetN be a level-1 phylogenetic network.V (N) stands
for the set of nodes ofN and�(N) for the set of leaf labels inN . From this point onward,
we assume that some arbitrary left-to-right ordering of the children of every node has been
fixed. If u ∈ V (N) has two children thenuL anduR denote the left and right child ofu,
respectively, and ifu only has one childc then we setuL = c anduR = ∅. For any
u ∈ V (N), N [u] is the subnetwork ofN rooted atu, i.e., the minimal subgraph ofN which
includes all nodes and directed edges ofN reachable fromu. N [∅] refers to the empty
network with no nodes or edges.

Next, for everyu ∈ V (N), we define a subgraphN [u]′ of N [u] as follows. Ifu belongs
to a clipped merge path of some hybrid nodeh thenN [u]′ is the subgraph ofN [u] where
N [h] andh’s incoming edge have been removed (sinceN is a level-1 phylogenetic network,
eachu ∈ V (N) can belong to at most one clipped merge path). Otherwise,N [u]′ is defined
asN [u] if u is not a hybrid node inN , and asN [∅] if u is a hybrid node inN . See Fig.4
for an example.

For any two level-1 phylogenetic networksN1 andN2, defineMasn(N1, N2) as the
number of leaves in a maximum agreement subnetwork ofN1 andN2. If N1 or N2 is an
empty network thenMasn(N1, N2) is equal to 0. Otherwise,Masn(N1, N2) can be expressed
recursively using the following lemma which is a straightforward generalization of the
main lemma in [29] for MAST (the only difference is the caseMatch(N1[u], N2[v]); here,
when trying to match the two subnetworks rooted atuL anduR to the two subnetworks
rooted atvL and vR, we ensure that the set of nodes in the intersection ofV (N1[uL ])
andV (N1[uR]) is matched to only one of the two subnetworks rooted atvL andvR, and
conversely).
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Algorithm ComputeMasn
Input: Two level-1 phylogenetic networksN1 andN2.

Output: The number of leaves in a maximum agreement subnetwork of{N1, N2}.
1 Let O be the lexicographic ordering ofV (N1) × V (N2), where the nodes in eachV (Ni) are ordered

according to postorder.
2 for each(u, v) ∈ V (N1) × V (N2) in increasing order inO do

ComputeMasn(N1[u], N2[v]), Masn(N1[u]′, N2[v]),
Masn(N1[u], N2[v]′), andMasn(N1[u]′, N2[v]′) by using the expression in Lemma1.

endfor
3 return Masn(N1[r1], N2[r2]), whereri is the root ofNi for i ∈ {1,2}.
End ComputeMasn

Fig. 5. A dynamic programming algorithm for computing all values ofMasn.

Lemma 1. Let N1 and N2 be two level-1 phylogenetic networks. For every (u, v) ∈
V (N1) × V (N2),

Masn(N1[u], N2[v]) =




|�(N1[u]) ∩ �(N2[v])|, if at least one of u andv
is a leaf,

max{Diag(N1[u], N2[v]), Match(N1[u], N2[v])},
otherwise,

where

Diag(N1[u], N2[v]) = max{Masn(N1[u], N2[vL ]), Masn(N1[u], N2[vR]),
Masn(N1[uL ], N2[v]), Masn(N1[uR], N2[v])}

and

Match(N1[u], N2[v])
= max{Masn(N1[uL ], N2[vL ]) + Masn(N1[uR]′, N2[vR]′),

Masn(N1[uL ], N2[vL ]′) + Masn(N1[uR]′, N2[vR]),
Masn(N1[uL ], N2[vR]) + Masn(N1[uR]′, N2[vL ]′),
Masn(N1[uL ], N2[vR]′) + Masn(N1[uR]′, N2[vL ]),
Masn(N1[uL ]′, N2[vL ]) + Masn(N1[uR], N2[vR]′),
Masn(N1[uL ]′, N2[vL ]′) + Masn(N1[uR], N2[vR]),
Masn(N1[uL ]′, N2[vR]) + Masn(N1[uR], N2[vL ]′),
Masn(N1[uL ]′, N2[vR]′) + Masn(N1[uR], N2[vL ])}.

Lemma1 implies that we can computeMasn(N1[u], N2[v]) for all (u, v) in V (N1) ×
V (N2) by employing dynamic programming in a bottom-up manner, e.g., by evaluating all
pairs inV (N1) × V (N2) in increasing order in the lexicographic orderingO of V (N1) ×
V (N2) where the nodes in eachV (Ni) are postordered. The resulting algorithm (Algorithm
ComputeMasn) is displayed in Fig. 5.

Next, we analyze the time complexity of AlgorithmComputeMasn.
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Lemma 2. If N is a level-1 phylogenetic network then the number of hybrid nodes inN is
at mostn − 1.

Proof. DefineTN as the rooted directed graph obtained fromN as follows: For every hybrid
nodeh in N , removelhe(h) andrhe(h), contractsn(h) and all nodes on the two clipped
merge paths ofh to a single nodes, and then add a directed edge froms to h. Clearly,
every node with indegree 2 inN has indegree equal to 1 inTN , and none of the contractions
increase the indegree of any node, soTN is a tree. Furthermore,TN containsn leaves. Thus,
the number of internal nodes inTN with outdegree> 1 is at mostn − 1.

Finally, observe that every split node inN corresponds to a distinct internal node inTN

with outdegree> 1 and that the number of hybrid nodes inN equals the number of split
nodes inN sinceN is a level-1 phylogenetic network.�

Lemma 3. If N is a level-1 phylogenetic network then the total number of nodes inN is
O(n).

Proof. Let zij denote the number of nodes inN which havei incoming edges andj
outgoing edges. By the definition of a phylogenetic network, the total numbert of nodes in
N is z02 + z10 + z12 + z20 + z21 + z22. For everyu ∈ V (N), let in(u) andout(u) denote
the number of incoming and outgoing edges incident tou. Since

∑
u∈V (N)

in(u) = z02 · 0 + (z10 + z12) · 1 + (z20 + z21 + z22) · 2,

∑
u∈V (N)

out(u) = (z10 + z20) · 0 + z21 · 1 + (z02 + z12 + z22) · 2

and
∑

u∈V (N)

in(u) = ∑
u∈V (N)

out(u), we have z12 = z10 + 2z20 + z21 − 2z02.

Next, z20 + z21 + z22 (the number of hybrid nodes) is at mostn − 1 by Lemma2 and
n = z10 + z20, which gives usz12 < 2n. Hence,t < 1 + n + 2n + (n − 1) = O(n). �

Lemma 4. The running time ofAlgorithm ComputeMasn isO(n2).

Proof. By Lemma3, the algorithm evaluates O(n2) pairs of nodes. For each such pair
(u, v), if neitheru nor v is a leaf then it takes constant time to compute theMasn-values
from previously computed values. Ifu is a leaf then the value of|�(N1[u]) ∩ �(N2[v])|
can be obtained in constant time by associating a binary vectorL(w) of lengthn to each
w ∈ V (N1) ∪ V (N2), where theith bit of L(w) is set to 1 if and only if leafi is a
descendant ofw (note that allL(w)-vectors can be computed in advance in O(n2) time
by using a postorder traversal technique), and checking if bitu in L(v) equals 1. The case
wherev is a leaf is analogous.�

Algorithm ComputeMasncan be modified to compute the set of leaves in a maximum
agreement subnetwork without increasing the asymptotic running time by also recording
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information about how eachMasn-value is obtained as it is computed, e.g., by saving
pointers. To obtain an actual maximum agreement subnetwork from such a set of leaves,
we may use a standard traceback technique.

Theorem 5. Given two level-1phylogenetic networks withn leaves, a maximum agreement
subnetwork can be computed inO(n2) time.

By extending this technique, we get the following.

Corollary 6. Given a level-f1 phylogenetic networkN1 and a level-f2 phylogenetic net-
workN2, a maximum agreement subnetwork ofN1 andN2 can be computed inO(|V (N1)| ·
|V (N2)| · 2f1+f2) time, whereV (Ni) denotes the set of nodes ofNi for i ∈ {1,2}.

Proof. A maximum agreement subnetwork ofN1 andN2 can be computed by modifying the
dynamic programming algorithm for two level-1 phylogenetic networks described above.
For any level-f phylogenetic networkN , u ∈ V (N), and binary stringb = b1b2 · · · bf
of lengthf , defineN [u]b as the subnetwork ofN rooted atu in which for each hybrid
nodehi in the same maximal biconnected component asu, either its left or right hybrid
edge has been deleted according to whetherbi equals 0 or 1. (Note that the maximal
biconnected component ofN containingu is a tree inN [u]b because every one of its
nodes has exactly one parent. Hence,V ((N [u]b)[uL ]) andV ((N [u]b)[uR]) are disjoint.)
Now, we defineMasn(N1[u], N2[v]) andDiag(N1[u], N2[v]) like in Lemma1, but change
Match(N1[u], N2[v]) to be the maximum value ofMasn((N1[u]b1)[uL ], (N2[v]b2)[vL ])+
Masn((N1[u]b1)[uR], (N2[v]b2)[vR]) and Masn((N1[u]b1)[uL ], (N2[v]b2)[vR]) + Masn
((N1[u]b1)[uR], (N2[v]b2)[vL ]) taken over all binary stringsb1 andb2 of lengthf1 and
f2, respectively.

As before, using dynamic programming in a bottom-up manner, we computeMasn(N1[u],
N2[v]) for all (u, v) ∈ V (N1)×V (N2). We also compute and storeMasn(N1[u]b1, N2[v]),
Masn(N1[u], N2[v]b2), andMasn(N1[u]b1, N2[v]b2) for every binary stringb1 of length
f1 and every binary stringb2 of lengthf2. The algorithm’s total running time becomes
O(|V (N1)| · |V (N2)| · 2f1+f2). �

Hence, MASN withk = 2 andf upper-bounded by O(log n) is solvable in polynomial
time.

4. NP-hardness of MASN fork = 3

In this section, we prove that MASN is NP-hard for every fixedk�3. Our reduction is
a non-trivial modification of the NP-hardness proof by Amir and Keselman [2] for MAST
restricted to three trees with unbounded degrees. Note that the definition of MASN requires
all nodes to have outdegree at most two, so the fact that MAST with unbounded degrees is
NP-hard does not immediately imply that MASN is NP-hard.
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Fig. 6. AssumeMx8 = {(x8, y1, z3), (x8, y1, z9), (x8, y3, z3), (x8, y7, z2), (x8, y7, z4)}. Rx8 andSx8 are the
subtrees ofTx8 rooted at the nodes markedr ands, respectively.

4.1. Three-dimensional matching (3DM)

Instance:A setM ⊆ X×Y ×Z, whereX,Y , andZ are disjoint sets andX = {x1, . . . , xq},
Y = {y1, . . . , yq}, andZ = {z1, . . . , zq}.

Question: Is there a subsetM ′ of M with |M ′| = q such thatM ′ is a matching, i.e., such
that for every paire1, e2 ∈ M ′ it holds thate1 ande2 differ in all coordinates?
3DM is known to be NP-complete (see, e.g.,[13]). To prove the NP-hardness of MASN,

we describe a polynomial-time reduction from 3DM. Given an arbitrary instance of 3DM,
construct an instance(L,N ) of MASN with three phylogenetic networksN={N1, N2, N3}
for L as follows.

TakeL = M ∪W ∪B, whereW is a set of 2q6 arbitrary elements not inM, andB is a set
of 2q7 arbitrary elements not inM or W . LetB1 andB2 be two binary trees withq7 leaves
each, distinctly labeled byB. For every(xi, yj , zk) ∈ X × Y × Z, defineW1

xi ,yj ,zk
and

W2
xi ,yj ,zk

to be two binary trees withq3 leaves each, distinctly labeled byW . Next, for every
xi ∈ X, define (1)Mxi as the subset ofM containing all triples of the form(xi, y, z) where
y ∈ Y andz ∈ Z; (2) Rxi as a binary caterpillar tree with leaves distinctly labeled byMxi ;
(3)Sxi as the tree obtained from the binary caterpillar tree with 2q2 leaves by replacing them
(in order of non-decreasing distance from the root) with the roots ofW1

xi ,y1,z1
, W2

xi ,y1,z1
,

W1
xi ,y1,z2

, …,W2
xi ,yq ,zq

; (4)S′
xi

as the tree obtained from the binary caterpillar tree with 2q2

leaves by replacing them (in order of non-decreasing distance from the root) with the roots
of W2

xi ,yq ,zq
, W1

xi ,yq ,zq
, W2

xi ,yq ,zq−1
, …, W1

xi ,y1,z1
; (5) Txi as a binary tree with a root node

connected to the roots ofRxi andSxi ; and (6)T ′
xi

as a binary tree with a root node connected
to the roots ofRxi andS′

xi
. DefineMyi , Mzi , Ryi , Rzi , etc. for everyyi ∈ Y andzi ∈ Z

analogously. See Fig. 6 for an example.
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Fig. 7. The sorting networkP on the left yields a directed acyclic graphQ.
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T ’

T ’yq
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Tx3

Tx2

Tx1

Txq

N1 : N2 :

Fig. 8. The phylogenetic networksN1 andN2.

Next, letP be any sorting network (see, e.g.,[8]) for q elements with a polynomial number
p of comparator stages. Construct a directed acyclic graphQ fromP with (p+1) ·q nodes
{Qi,j | 1� i�p + 1, 1�j �q} such that there is a directed edge(Qi,j , Qi+1,j ) for every
1� i�p and 1�j �q, and two directed edges(Qi,j , Qi+1,k) and(Qi,k, Qi+1,j ) for every
comparator(j, k) at stagei in P for 1� i�p, as illustrated in Fig. 7.

We now letN1 be a phylogenetic network (in fact, a leaf-labeled binary tree) obtained by
attachingB1, B2, andTx1, . . . , Txq to a path(m0,m1,m2, . . . , mq) so thatm0 becomes the
root ofN1 and the root ofB1 is a child ofm0, the root of eachTxi is a child ofmi , and the
root ofB2 is the second child ofmq . See Fig. 8. The phylogenetic networkN2 is obtained
by attachingB1, B2, Q, andT ′

y1
, . . . , T ′

yq
to a path(n0, n1, n2, . . . , nq) so thatn0 becomes

the root ofN2 and the root ofB1 is a child ofn0, each nodeQ1,j in Q is a child ofnj and
each nodeQp+1,j in Q coincides with the root ofT ′

yj
, and the root ofB2 is the second child

of nq . Next,N3 is defined in the same way asN2 but usingT ′
zj

instead ofT ′
yj

. Finally, for
each node inN2 or N3 having indegree 1 and outdegree 1, contract its outgoing edge.
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Lemma 7. There exists an agreement subnetwork of(N1, N2, N3) with 2q7 + 2q4 + q

leaves if and only ifM has a matching of sizeq.

Proof. SupposeM has a matchingM ′ of sizeq. Then for eachxi , there is precisely one
triple of the form(xi, y, z) in M ′. For any(xi, yj , zk) ∈ X × Y × Z, denote byVxi,yj ,zk

the set of all leaves inW1
xi ,yj ,zk

andW2
xi ,yj ,zk

. Let C = M ′ ∪ ⋃
(xi ,y,z)∈M ′ Vxi,y,z and

let T be N1 | (B ∪ C). Now consider the structure ofN2 | (B ∪ C) andN3 | (B ∪ C).
First, observe that for each(xi, yj , zk) in M ′, there exists an agreement subnetwork of
Txi , T

′
yj

, andT ′
zk

containing the(1 + 2q3) leaves in{(xi, yj , zk)} ∪ Vxi,yj ,zk . Next, since
P is a sorting network, there areq disjoint paths inQ from (Q1,1,Q1,2, . . . ,Q1,q) to
(Qp+1,�(1),Qp+1,�(2), . . . ,Qp+1,�(q)) for any given permutation� of {1,2, . . . , q}; in
particular, this holds for the permutations�y and�z defined by the relations�y(i) = j and
�z(i) = k for all (xi, yj , zk) ∈ M ′. This means thatT is a subgraph ofN2 | (B ∪ C) and
N3 | (B ∪C). Thus,T is an agreement subnetwork of(N1, N2, N3) with |B|+q · (1+2q3)

leaves.
Conversely, suppose there exists an agreement subnetworkT with leaf setL′ ⊆ L such

that |L′| = 2q7 + 2q4 + q. Write M ′ = L′ ∩ M andW ′ = L′ ∩ W . By the pigeonhole
principle,|M ′|+|W ′| � 2q4+q.Also, at least one leaf inB1 and at least one leaf1 inB2 must
be included inL′. It follows that the root ofT corresponds to the roots ofN1, N2, andN3,
and for any two triplese = (xi1, yj1, zk1) andf = (xi2, yj2, zk2) in M, if e andf agree on at
least one coordinate then they cannot both belong toL′. (To see this, ifi1 �= i2 andj1 = j2,
thene andf would appear in different subtrees of the formTxi in N1 but in the same subtree
of the formT ′

yj
inN2, so, e.g.,N1 | {e, f, 1} andN2 | {e, f, 1} would differ, which contradicts

that{e, f, 1} are leaves inT . If i1 = i2 andj1 �= j2 then|W ′|�(q−1) ·2q3 since otherwise
there would have to exist aw in W ′ such thatw appears inT ′

yj1
and thenN1 | {e, f,w} and

N2 | {e, f,w} would differ; thus,|M ′|+|W ′| � |M|+|W ′|�q3+ (q−1) ·2q3�2q4−q3,
contradicting that|M ′|+|W ′|�2q4+q. The cases (i1 �= i2, k1 = k2) and (i1 = i2, k1 �= k2)
are analogous.) Thus,M ′ is a matching ofM. Next, assume that|M ′| < q. ThenW ′ has
cardinality|L′| − |M ′| − |L′ ∩ B| > 2q4. This implies thatW ′ contains leaves from at
least three different subtrees of the formWm

x,yj ,zk
for some fixedx ∈ X, but at most two

such leaves can appear in the sameS′
yj

and in the sameS′
zk

for anyyj ∈ Y andzk ∈ Z.
Contradiction. Hence,|M ′|�q. �

From the above, we obtain:

Theorem 8. MASN isNP-hard even if restricted tok = 3.

5. Final remarks

An open problem is to determine the computational complexity of MASN restricted
to two level-f phylogenetic networks wheref is unbounded. If it is NP-hard, can it be
approximated efficiently in polynomial time? We would also like to know if it is possible
to improve the running time of our algorithm for two level-1 phylogenetic networks.
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