
Migration from a
Real-Time Operating System

to Embedded Linux

Håkan Kvist and Maria Larsson

October 24, 2005

ii

Abstract

Many embedded systems today are built around off-the-shelf components which are both
fast and inexpensive. With every new generation of components, performance increases and
the price/performance ratio decreases. The extra amount of resources available in new sys-
tems opens up a door for more general operating systems for embedded devices, Linux being
one popular alternative. But replacing a real-time operating system specially developed for
use in embedded devices with a general purpose operating system comes at some costs.

This thesis investigates the considerations that have to be made when porting to Linux,
and some of the improvements and drawbacks that come with a migration. The investiga-
tion was carried out by partly migrating an embedded software product currently running
on a real-time operating system (RTOS), and by evaluating the ported system. It could be
concluded that the porting difficulties are solvable, and that a total migration to Linux is
feasible.

Measurements showed both positive and negative effects of the migration, and it was
found that a decrease in real-time performance had taken place. Most notable were the con-
text switching times, which were at least 14 times lower when performed by the RTOS. Net-
work communication was on the other hand 76% faster under Linux. Although a decrease
in real-time performance was observed, it could be concluded that Linux is able to provide
sufficient real-time properties to satisfy the requirements of the application.

iii

iv

Preface

This master’s thesis was performed at TAC in Malmö, in collaboration with the Department
of Computer Science at Lund Institute of Technology. The work was carried out between
April and September in 2005.

We would like to thank TAC for providing us with an interesting master’s thesis pro-
posal and giving us the opportunity to carry out the project with the help and support of
many skilful and experienced employees. We greatly appreciate the people at TAC for their
encouragement and for making our stay at the company enjoyable. Special thanks goes to
our supervisor, Sven Björck, for his practical guidance and endless support, and to Andreas
Håkansson, Marcus Skälstad, Anders Davidsson and Allan Björck for answering our ques-
tions and helping us out with our problems. We are also grateful to Mårten Berggren from
ENEA, for sharing his knowledge with us.

We also wish to acknowledge the Department of Computer Science and especially our
supervisor Dr Jonas Skeppstedt, for his valuable input and useful suggestions during our
work.

Finally, we would like to express our gratitude to Bo Kvist and Eskil Jakobsson, who have
read and corrected this report.

October 24, 2005

Håkan Kvist
Maria Larsson

v

vi

Contents

Abstract iii

Preface v

Contents vii

List of Figures xi

List of Tables xiii

I Background 1

1 Introduction 3
1.1 Background . 3
1.2 Purpose . 3
1.3 Methodology . 4
1.4 Report Outline . 5

2 The GNU/Linux Operating System 7
2.1 History . 7

2.1.1 Linux . 7
2.1.2 GNU . 7
2.1.3 GNU/Linux . 8

2.2 POSIX . 8
2.2.1 The Shell . 8
2.2.2 User Management . 8
2.2.3 The File System . 9
2.2.4 The Process Model . 9

2.3 Processes and Threads . 9
2.4 Memory Management . 9
2.5 Interprocess Communication . 10

2.5.1 Synchronization . 10
2.5.2 Data communication . 11

2.6 I/O System . 11

3 Embedded Linux 13
3.1 History . 13
3.2 Embedded Linux Distributions . 14
3.3 Real-Time Properties . 14
3.4 uClinux . 15

vii

viii CONTENTS

3.4.1 Programming for uClinux . 15
3.4.2 uClinux/ARM . 15

4 The Domino System 17
4.1 Introduction . 17
4.2 Hardware . 17
4.3 The Etnoteam Operating System . 18

4.3.1 Task Management . 18
4.3.2 Memory Management . 18
4.3.3 Interprocess Communication . 19
4.3.4 I/O System . 19

4.4 The Generic OS Interface . 20
4.5 The C Library . 20
4.6 The Application Software . 20

4.6.1 Architecture . 20
4.6.2 Variable Server . 20
4.6.3 Web Server . 21
4.6.4 Trend Logging . 21
4.6.5 Alarm Handling . 21
4.6.6 Command Line Interface . 21

5 RTOS to Linux Porting Considerations 23
5.1 Architecture . 23

5.1.1 The RTOS Model . 23
5.1.2 The Linux Model . 23
5.1.3 Processes and Threads . 23
5.1.4 Application Properties . 25

5.2 Application Programming Interfaces (APIs) . 25
5.2.1 Accommodation Strategies . 25
5.2.2 Linux APIs . 26
5.2.3 Interprocess Communication (IPC) and Synchronization 26

5.3 The Benefits of Porting to Linux . 27
5.3.1 An Open Source System . 27
5.3.2 Important Features . 28
5.3.3 Development Advantages . 28

II Migration 29

6 Development Environment 31
6.1 Background . 31
6.2 Operating System . 31
6.3 Integrated Development Environment . 31

6.3.1 Eclipse . 32
6.4 Configuration Management . 32
6.5 Compilation . 33
6.6 Debugging . 33
6.7 Cross Compilation . 33
6.8 Remote Debugging . 34

CONTENTS ix

7 API Implementation 35
7.1 Domino Generic OS Interface . 35
7.2 Tasks . 35

7.2.1 Processes or Threads . 35
7.2.2 A POSIX Thread Based Implementation 36

7.3 Semaphores . 36
7.4 Message Queues . 37
7.5 Time Management . 37
7.6 Memory Management . 37
7.7 File System . 38
7.8 System Tracing . 38
7.9 Power Failure Handling . 38

8 Porting to Linux running on a PC 39
8.1 The Planning Phase . 39
8.2 The Porting Process . 39

8.2.1 Header Files . 40
8.2.2 Application Rewriting . 40
8.2.3 Stub Functions . 41
8.2.4 Debugging . 41

8.3 Module Porting . 41
8.3.1 Makefile . 41
8.3.2 Web Server . 42
8.3.3 Variable Server . 42
8.3.4 Trend Logging and Alarm Handling . 43
8.3.5 The Domino Shell . 43

8.4 Porting Issues . 44
8.4.1 CPU Scheduling . 44
8.4.2 Root Privileges . 44
8.4.3 C Library Functions . 44
8.4.4 The Socket API . 45
8.4.5 Case Sensitivity . 45
8.4.6 File System Placement . 45
8.4.7 Assembly Routines . 46
8.4.8 Hardware Dependencies . 46

9 Moving to uClinux running on the Target Hardware 47
9.1 C Language Libraries for Embedded Linux . 47
9.2 Porting uClinux . 47

9.2.1 The Serial Port . 47
9.2.2 Memory Alignment . 48
9.2.3 Flash Memory . 48
9.2.4 NFS . 48

9.3 Running Domino on uClinux . 48

III Evaluation 51

10 Real-Time Performance Measurements 53
10.1 Benchmarks . 53

10.1.1 System Performance . 53

x CONTENTS

10.1.2 gOS Performance . 54
10.2 Results . 55

10.2.1 System Performance . 55
10.2.2 gOS Performance . 57

11 Discussion 61
11.1 Development Environment . 61
11.2 API Implementation . 62
11.3 Porting to Linux running on a PC . 62
11.4 Moving to uClinux running on the Target Hardware 63
11.5 Real-Time Performance Measurements . 63

12 Conclusions and Further Development 65
12.1 Conclusions . 65

12.1.1 Recommendations for Future Linux Ports 65
12.2 Further Development . 66

Appendices 69

A Abbreviations 69

B Nomenclature 71

C The Generic OS API 75
C.1 Process Management . 75
C.2 Semaphores . 75
C.3 Message Queues . 76
C.4 Memory Management . 76
C.5 Time Management . 76
C.6 File System . 76
C.7 System Tracing . 76
C.8 Power Failure Handling . 77

Bibliography 79

List of Figures

1.1 The work flow towards an embedded Linux solution. 4

3.1 Embedded Linux market growth . 13

4.1 The Domino platform architecture . 17
4.2 TAC Xenta 511 . 18

5.1 Concurrent executions models . 24

8.1 Replacement header file for socket.h . 40

9.1 Memory usage . 49

10.1 EOS context switch overhead . 55
10.2 uClinux context switch overhead . 55
10.3 Memory allocation . 56
10.4 Network communication speed . 56
10.5 Task creation and termination . 57
10.6 Task operations . 57
10.7 Semaphore operations . 58
10.8 Obtaining the current time . 58
10.9 Timer delay with no load . 59
10.10Timer delay while Domino is running . 59

xi

xii LIST OF FIGURES

List of Tables

5.1 RTOS and Linux IPC . 26
5.2 An open source license overview . 27

6.1 A version control system comparison . 32

xiii

xiv LIST OF TABLES

Part I

Background

1

Chapter 1

Introduction

I’m doing a (free) operating system (just a hobby, won’t be big and professional like
gnu) for 386(486) AT clones. This has been brewing since April, and is starting to
get ready.

- Linus Torvalds, 26 Aug 1991

1.1 Background

Linus Torvalds did most likely not realize the impact that Linux would have on the market,
when he began writing on his own hobby operating system, as a student at Helsinki Univer-
sity. Linux has got the interest of companies like IBM, Sun and HP, which are now shipping
Linux as an alternative operating system to Microsoft Windows on smaller servers and their
own UNIX implementations on mainframes.

However, Linux is not only being improved for use in large scale 64 bits mainframes. It
is also evolving for smaller applications where memory and resources are limited.

Hardware is getting faster, smaller and cheaper. The days when embedded applications
were written largely in assembly language for systems with very small memory footprints
are definitely over. Currently most embedded applications are using real-time embedded
operating systems with small overhead, but as performance and resources improve in the
embedded market, general purpose operating systems like Linux look more and more at-
tractive for actors in the embedded market.

1.2 Purpose

The goal of the thesis is to port an embedded application developed at TAC from an existing
real-time operating system to an embedded version of Linux. During this work, the following
questions are to be answered.

• What are the benefits and drawbacks of Linux compared to a traditional RTOS?

• How can an appropriate development environment be set up?

• What problems are to be expected when porting to Linux?

• Which important design choices must be made during API implementation?

• Does Linux provide sufficient real-time properties?

3

4 CHAPTER 1. INTRODUCTION

Though the thesis deals with a specific porting process, it can be expected that similar diffi-
culties and dilemmas will be encountered in other ports. Hopefully, this report can be helpful
to anyone interested in porting an embedded application from an RTOS to Linux.

1.3 Methodology

The migration to Linux is performed by first porting the software to a desktop computer
running standard Linux. After that an embedded Linux distribution is ported to the target
platform, in order to move the ported software to the embedded system. The methodology
for the thesis was outlined as follows:

• Create a development environment suitable for embedded Linux development.

• Port parts of the software to Linux running on a PC.

• Submit general improvements back to the original software.

• Port uClinux, an embedded Linux distribution, to the embedded system.

• Verify that the ported software also runs on the original hardware, using uClinux.

• Evaluate the performance of the embedded Linux system compared to the original sys-
tem.

Moving to uClinux

Bug fixes

Porting to Linux

Code cleanup
Bug fixes

RTOS

Figure 1.1: The work flow towards an embedded Linux solution.

The reason for this procedure is that it is much easier to port the software to a PC, where
you have access to a large set of good debugging tools. Once the system runs on the PC,
the process of moving the software to another Linux environment should not be very diffi-
cult. By delaying the move to the specific target system, this method is also more hardware
independent and thus simplifies the process of moving the system to another hardware plat-
form. This argument is specially important in this project, because the current hardware of
the embedded system is likely to be replaced in the near future.

1.4. REPORT OUTLINE 5

1.4 Report Outline

The report consists of twelve chapters, divided into three distinct parts: Background, Migration
and Evaluation. The first part lays the foundation by presenting the thesis and describing the
GNU/Linux operating system as well as the system to be ported. The motivation behind the
porting is also presented. The second part describes the different steps of the migration and
explains the problems that occurred and how they were solved. The third part of the report
consists of an evaluation of the migration work and of the ported system.

Part I: Background

• Chapter 1: Introduction
A presentation of the master thesis.

• Chapter 2: The GNU/Linux Operating System
A description of the GNU/Linux operating system.

• Chapter 3: Embedded Linux
A survey of the use of Linux in embedded systems.

• Chapter 4: The Domino System
A description of the system that is to be ported to Linux.

• Chapter 5: RTOS to Linux Porting Considerations
A comparison between Linux and a traditional RTOS, pointing out issues that need to
be considered before migrating to Linux.

Part II: Migration

• Chapter 6: Development Environment
A presentation of the different tools that were used to create the development environ-
ment and the motivation behind these choices.

• Chapter 7: API Implementation
A description of the OS interface and our implementation of it.

• Chapter 8: Porting to Linux running on a PC
A description of the process of porting a portion of the software to Linux running on a
standard PC.

• Chapter 9: Moving to uClinux running on the Target Hardware
A description of the process of moving the product to the embedded platform running
uClinux.

Part III: Evaluation

• Chapter 10: Real-Time Performance Measurements
A comparison of the real-time properties of the system running on Linux and the orig-
inal system.

• Chapter 11: Discussion
A discussion of the difficulties of porting to Linux and the advantages and disadvan-
tages of the proposed solution.

• Chapter 12: Conclusions and Further Development
A final presentation of our conclusions and proposals for further developments.

6 CHAPTER 1. INTRODUCTION

Chapter 2

The GNU/Linux Operating System

2.1 History

2.1.1 Linux

The first version of the Linux kernel was created in 1991, as the hobby project of a young
Finnish student named Linus Torvalds. The project started as a terminal emulator, which got
more and more functionality until it evolved into an operating system. Linus’s work soon
got attention from other developers around the world, of which some began to contribute
improvements to the Linux software, in about the same way as the users of UNIX in the
beginning distributed patches between each other1.

The amount of contributors to the Linux kernel still increases, but Linus remains as the
project coordinator. This means he has the final word when it comes to deciding what con-
tributions should become part of the kernel.

2.1.2 GNU

Richard M. Stallman decided to quit his job at MIT Artificial Intelligence Lab in 1984, in order
to implement a free operating system with the name GNU (GNU’s Not UNIX). Free in this
context means that you were allowed to modify the source for your own needs, but your
changes had to be made public.

The first project was GNU Emacs, a free version of the popular Emacs editor. It was
distributed on the Internet through FTP servers, and sold on tape for those without Internet
access. In 1985 Stallman founded the Free Software Foundation (FSF) in order to promote
free software. FSF employees have written a lot of software packages, of which two of the
most well known are the GNU Compiler Collection (a set of compilers targeting multiple
operating systems), and GNU Coreutils, which features replacement versions for all the usual
UNIX tools (e.g. cp, ls and [). While the FSF has successfully created a lot of popular tools,
their own UNIX replacement kernel, GNU HURD, is not widely used.

In 1989, the FSF created the GNU General Public License (GPL) for its own software and
for others who want to use it. The GPL is a license which grants the end user the following
rights2.

1In the beginning of UNIX, AT&T offered UNIX for free for universities but without support or bug fixes. This
immediately forced users to exchange information, ideas and fixes with one another [Sal94].

2The list is taken from the Wikipedia page about the GPL, http://en.wikipedia.org/wiki/GPL , August
2005.

7

http://en.wikipedia.org/wiki/GPL

8 CHAPTER 2. THE GNU/LINUX OPERATING SYSTEM

• The freedom to run the program, for any purpose.

• The freedom to study how the program works, and modify it. (Access to the source
code is a precondition for this.)

• The freedom to redistribute copies.

• The freedom to improve the program, and release the improvements to the public. (Ac-
cess to the source code is a precondition for this.)

The GPL seeks to ensure that the above freedoms are preserved in copies and in derivative
works. This means that if you link GNU-licensed software into your own software, the whole
project will automatically get licensed under the GPL. This quite controversial side of the GPL
has led to statements like “Linux is cancer” from closed source company leaders. Despite
this, the GNU GPL is probably the most used license for free and open source software today.
A less “aggressive” license is GNU LGPL, Lesser Gnu Public License, which allows linking of
LGPL software to software with any license. The C library shipped with GCC is licensed
with LGPL in order to allow GCC to be used for non-open software.

2.1.3 GNU/Linux

Torvalds created the Linux kernel, which alone was unusable, but together with tools from
the GNU project you have a working operating system. Since version 0.12 the Linux kernel
is licensed under the GPL, and therefore the combination of GNU software and the Linux
kernel makes up the base for a free GNU-licensed operating system. For this reason it is
argued that you should refer to this combination as the GNU/Linux operating system.

Today GNU/Linux is widely used all over the world, by big companies and individuals.
It is being actively developed with contributions from both individuals and large corpora-
tions, for use in many different systems, among others: large mainframes, desktops and
embedded systems.

2.2 POSIX

POSIX stands for “Portable Operating System Interface for UNIX” and is a collection of stan-
dards defining the API of a UNIX operating system [Wal04]. The standard was developed
by IEEE and is formally named IEEE 1003.1. UNIX is a registered trademark of The Open
Group, and to put the UNIX name on a system, it must be certified by the Open Group. Since
this is a costly process, the GNU/Linux operating system is formally not a UNIX system,
although it conforms to the POSIX standard.

2.2.1 The Shell

A shell is an interactive text-based program, from within all system management can be done
through a set of commands. Although Linux nowadays offers a well-developed graphical
user interface, the shell continues to be an important part of any POSIX system.

2.2.2 User Management

POSIX systems are generally multiuser systems, and hence they provide means to distinguish
between different users in the system. A user mainly consists of a username and a password
associated with a user ID. A user has a set of privileges or rights, which determines his or her

2.3. PROCESSES AND THREADS 9

permissions to access system resources and files. To be able to share privileges, users can be
members of one or several groups.

2.2.3 The File System

An important design property of POSIX systems is the fact that everything is represented by
files. This includes for example regular files, directories, sockets and physical devices. Each
file has a set of attributes specifying which users and groups can read, write or execute the
file.

The file system on a POSIX system is a single hierarchal directory structure. Everything
originates from the root directory, represented by ‘/’, and then expands into sub-directories.
All partitions are logically connected to the structure under the root directory by “mounting”
them under specific directories.

2.2.4 The Process Model

A process is basically a program in execution. The identity of a process consists mainly of
a process ID and an associated user ID, which determines permissions of the process. The
environment of a process is composed of the command line arguments (the argument vector),
and a set of name value pairs (the environment vector).

The POSIX systems are multitasking and the scheduling is preemptive. POSIX supports
three different scheduling policies: SCHEDFIFO , SCHEDRRand SCHEDOTHER. SCHEDFIFO
represents rate-monotonic scheduling, which is a strict priority-based scheme. The term FIFO
refers to the fact that processes with the same priority are served in a first-in first-out fashion.
Using the round robin policy (SCHEDRR), the processes are time-sliced within a priority level
[Wol01]. Processes that do not require real-time scheduling should use the SCHEDOTHER
policy, which uses the standard Linux time-sharing scheduler.

2.3 Processes and Threads

Being a POSIX system, the GNU/Linux operating system conforms to the POSIX process
model. Like most modern operating systems, Linux supports both processes and threads. An
attempt to define these two concepts would be to declare that a process is an execution of a
program, while a thread is separate, concurrent execution context within a process [SGG00].
The most important difference between processes and threads is that processes execute in
separate address spaces, while threads belonging to the same process share address space
with each other.

However, the Linux kernel handles threads similarly to how it handles processes. Pro-
cesses and threads are for example scheduled in the same way. Threads can be created by
the clone system call, which creates a new process and allows for total control of properties
which are to be shared between the parent and the child. The system call for creating new
processes, fork , is actually just a special case of clone . Although clone can be used di-
rectly in application programs, it is much more preferable to use the POSIX thread (pthread)
library, which provides mechanisms for creating, terminating and synchronizing threads.

2.4 Memory Management

Linux supports virtual memory, which is a technique to allow a large logical address space
to be mapped to a smaller physical address space [SGG00]. To satisfy this equation, a portion

10 CHAPTER 2. THE GNU/LINUX OPERATING SYSTEM

of the memory must reside in secondary storage and be brought into memory on demand.
Virtual memory makes it possible for Linux processes to execute in their own address

spaces, and prevents them from overwriting each other’s memory as well as kernel code and
data. Processes are also prevented from overwriting their own code.

When running uClinux (Linux without MMU support), the convenience of memory pro-
tection is lost. It is no longer possible to use virtual memory, since the translation from logical
to physical addresses is done by the MMU.

2.5 Interprocess Communication

Linux provides an environment with powerful mechanisms for allowing processes and threads
to communicate with each other. Interprocess communication (IPC) is any kind of data ex-
change between processes, and may involve anything from extensive data transfer to merely
letting another process know that some event has occurred. The IPC facilities provide two
major services: synchronization and data communication.

2.5.1 Synchronization

Synchronization is a very important aspect of concurrent programming and can be defined
as coordination with respect to time. The need for synchronization exists for example in
a producer-consumer relationship or when simultaneous access to resources must be pre-
vented.

Semaphores

The most frequently used synchronization mechanism is the semaphore. Linux provides both
binary and counting semaphores through a UNIX System V conforming API. The semaphores
are uniquely identified by integer keys, and can be accessed from any process. The semaphores
are arranged in arrays of up to 64 semaphores [Jon05] and operations can be performed on
individual semaphores or on the whole array.

An alternative is the POSIX semaphores, which are much lighter weight than the System
V semaphores. A POSIX semaphore structure defines a single semaphore and not a whole ar-
ray. Currently the Linux implementation of POSIX threads does not support process-shared
semaphores, and hence they can only be used between threads.

Mutexes and Conditions

The POSIX thread library offers several additional facilities for synchronization between
threads. Mutual exclusion is commonly accomplished by a mutex, which is similar to a
binary semaphore. There are three types of mutexes, which differ in the way they handle
the situation where a thread tries to lock a mutex it already owns. A “fast” mutex causes a
deadlock when simply suspending the calling thread, while an “error checking” mutex re-
turns with a deadlock error. A “recursive” mutex records the number of times the thread
has locked the mutex, and doesn’t return to the unlocked state until it has been unlocked the
same number of times.

A condition variable is a synchronization device that allows threads to suspend their ex-
ecution until some predicate on shared data is satisfied. A condition variable must always be
associated with a mutex, to avoid a race condition when a thread prepares to wait for a con-
dition variable and another thread signals the condition just before the first thread actually
waits for it.

2.6. I/O SYSTEM 11

Signals

Signals are primarily used to inform processes of the occurrence of asynchronous events. A
process can register to handle a particular type of signal and provide a signal handler to be
executed when the signal is received. A process with appropriate permissions can send a
signal to another process or to a whole process group.

2.5.2 Data communication

Pipes

A pipe is a one-way communication facility, often used to connect the output of one process
to the input of another process. The feature is widely used on the command line, but it can
also be utilized within programs. The common practice is to let the parent process create a
pipe and then pass it to two child processes so that they can communicate. Technically a pipe
is a pair of file descriptors, of which one is open for writing and one is open for reading.

There are two types of pipes: anonymous and named pipes. The anonymous type is the
most common and it is usually the one intended when simply referring to a pipe. A named
pipe, which also can be called a FIFO, works like a regular pipe except that it exists in the file
system so that any process can find it.

Sockets

The BSD conforming socket API allows for communication over a network, but sockets can
just as well be used between separate processes on the same machine. Unlike pipes, sock-
ets provide full-duplex communication. The communication is accomplished with the TCP
or the UDP protocol, with IP addresses and port numbers identifying the communicating
parties.

Message Queues

Linux message queues, which conform to the System V UNIX model, provide means for
sending messages between processes. A message queue is identified with an integer value
and can be created and destroyed by a process. The message structure can be arbitrarily
defined.

Shared Memory

The fastest type of interprocess communication is based on shared memory. Since Linux
processes exist in different address spaces, special facilities are needed to accomplish the
shared memory.

An efficient way to share memory between two processes is to use the mmapsystem call,
which maps the contents of a file into user program space. Another way to let multiple
processes attach a segment of physical memory to their virtual address spaces is to use the
System V shared memory API.

2.6 I/O System

As previously mentioned, physical devices appear as normal files and hence they are pro-
tected by file permissions. Devices are either block devices, character devices or network
devices. Block devices include all devices that allow random access, such as hard disks and

12 CHAPTER 2. THE GNU/LINUX OPERATING SYSTEM

CD-ROMs, and can be accessed directly by applications. Most other devices, apart from net-
work devices which handle the network interface, are character devices. Character devices,
such as loudspeakers or mouses, do not need to support all the functionalities of regular files.

Chapter 3

Embedded Linux

3.1 History

The interest in getting Linux to run on embedded devices is not a phenomenon that has
popped up recently. An old project is ELKS (Embedded Linux Kernel Subset), started in
1995, which aims at getting a subset of the Linux kernel to run on 8086 processors.

Some embedded applications must operate in time critical real-time environments. In
order to get real-time properties with Linux, the RTLinux project was started in 1997. Here
the Linux kernel runs as a process under a real-time kernel which takes care of the real-time
threads together with scheduling of the applications and Linux itself.

In 1998 the uClinux project got on the Internet with a port of the Linux kernel for MMU-
less 68000 based systems with more architectures to follow, thereby opening a new world of
smaller1, simpler and thus cheaper processors for Linux.

Beginning in 1998-1999 companies like Lineo and Montavista have pushed for Linux in
the embedded market. In recent times embedded systems are used almost everywhere and
Linux is gaining popularity rapidly. Figure 3.1 shows the market growth of embedded Linux
in the past few years and a prediction of the near future2. The diagram shows the world wide
investments in embedded Linux, bundled products and related services.

0

20

40

60

80

100

120

140

2001 2002 2003 2004 2005 2006

M
ill

io
ns

 o
f D

ol
la

rs

Figure 3.1: Embedded Linux market growth

1The MMU usually occupies a large amount of the silicon on a CPU.
2The data has been obtained from the Venture Development Corporation (VDC) by Montavista.

13

14 CHAPTER 3. EMBEDDED LINUX

3.2 Embedded Linux Distributions

With suitable hardware, it is possible to use a general purpose Linux distribution, such as
SUSE or Red Hat, in a non real-time embedded system. However, it exists a variety of Linux
distributions customized for use in embedded systems.

When obtaining a distribution, there are basically three options. The easiest solution
is to use a commercial distribution, which gives you a thoroughly tested kernel and user
applications with continuous support and maintenance. A commercial distribution typically
comes with kernel, tools and utilities pre-configured for a specific host and target. A popular
choice today is Montavista Linux, which includes a complete embedded Linux operating
system and cross development environment.

In addition to the commercial distributions, there are a number of open source alterna-
tives freely available for download. For instance, the Embedded Debian Project provides a
Debian distribution customized for embedded systems. There also exist hard real-time al-
ternatives, such as RTLinux and RTAI (Real-Time Application Interface). The hard real-time
properties are accomplished by running Linux as the lowest priority task within a minimal-
istic real-time kernel.

The project behind the MMU-less Linux kernel also provides an open source distribution
under the same name as the kernel, uClinux. Although many open source distributions
are well maintained and supported, there are no guarantees. Also, it may be necessary to
make adjustments to fit the specific configuration. However, there are commercial companies
offering help with most open distributions.

The third option is to build your own distribution with your own selection of kernel
version, applications and libraries. This is of course the most difficult solution, but it can
result in an operating system completely customized to fit your needs. However, you have
to maintain the system yourself and you can not count on any support.

3.3 Real-Time Properties

Standard Linux does not guarantee any maximum response times, and hence it is not a hard
real-time system. Linux was originally designed to maximize throughput and not to mini-
mize response times. However, the real-time properties of Linux have improved significantly
during the past years. The 2.6 kernel contains a number of additions that increases the sup-
port for real-time applications, among which kernel preemption points are one of the most
important [Gup03]. In former kernel versions, system calls could not be interrupted and
hence other processes could be blocked for a long time. With kernel preemption points, a
system call can be interrupted at predefined places in the code.

Another important improvement is a more efficient scheduling algorithm. It now runs in
constant time, which means that the time it takes to schedule a task does not depend on the
number of tasks in the system [Raj04]. Further, the timer granularity has been increased and
the synchronization mechanisms have been improved. The older LinuxThreads implemen-
tation of the POSIX thread library has been replaced by the improved Native POSIX Thread
Library (NPTL).

Through a more modularized architecture, the 2.6 kernel also has better support for cus-
tom design. The most important changes made by the uClinux project has also been adopted
into the standard kernel, which means that standard Linux kernel can be built with or with-
out MMU support.

These improvements imply that Linux is rapidly approaching the performance of a proper
real-time operating system. It is therefore likely that even mainstream Linux already or in the

3.4. UCLINUX 15

near future will provide sufficient real-time support for many embedded applications.

3.4 uClinux

The embedded Linux distribution used in this project is uClinux, intended for small MMU-
less processors and developed in the Embedded Linux/Microcontroller project3. The first
uClinux version was released in 1998 and has since then grown to be one of the most widely
used embedded Linux distributions. While originally developed for the Motorola 68000 chip,
the number of available ports is increasing. Among the supported architectures are Motorola
ColdFire, ADI Blackfin, ETRAX, ARM7, ARM9 and Intel i960. Today the uClinux distribution
incorporates the 2.0, 2.4 and 2.6 kernel and includes a collection of libraries, utility programs
and tool chains.

3.4.1 Programming for uClinux

The most evident difference between uClinux and a standard Linux distribution is the ab-
sence of a virtual memory system. This means that all processes execute in a single physical
address space and there are no memory protection mechanisms. Any process is able to access
any memory location, without causing segmentation faults. This fact makes it more difficult
to develop applications for the uClinux platform.

With a few exceptions, uClinux offers a full Linux API. An important deviation is the lack
of the fork system call, which makes an exact copy of the original process and executes it
simultaneously. Virtual memory is used to map the memory from the parent process to the
child and only the memory modified by the child is actually copied. With no virtual memory,
uClinux can therefore not provide the fork system call. Instead applications need to use the
vfork system call, in which the parent is halted until the child exits or loads a new program
by a call to execve .

With a virtual memory system, each application seems to have a large memory all by
itself. If the physical memory becomes full, data can just be swapped in and out from disk.
This is not possible on uClinux, and hence developers must be prepared for the event that
the memory is full. Also, the problem of memory fragmentation becomes more important
on an MMU-less platform. When trying to allocate a piece of memory, it could easily arise a
situation where the total amount of free memory is sufficient, but the allocation fails because
memory must be allocated on contiguous addresses.

3.4.2 uClinux/ARM

Unlike many of the other uClinux architectures, the uClinux ARM code was not incorpo-
rated in the 2.6 kernel. The uClinux/ARM 2.6 project is a uClinux based project carried out
by Hyok S. Choi at Samsung, which aims to port the 2.6 kernel to MMU-less ARM architec-
tures4. Using an ARM7 based processor without MMU, this is the Linux port employed in
this project.

3http://www.uclinux.org
4http://opensrc.sec.samsung.com

http://www.uclinux.org
http://opensrc.sec.samsung.com

16 CHAPTER 3. EMBEDDED LINUX

Chapter 4

The Domino System

4.1 Introduction

TAC is a company focused on developing, manufacturing and marketing building control
solutions. One of the key products is the TAC Xenta series, which is a family of LonWorks
based controllers. This thesis focuses on the TAC Xenta 511, which is a controller with a web-
based presentation system. Using a standard web browser, the operator can view and control
the devices in the LonWorks network via the Internet or a local intranet. The embedded
software platform used in this device is called Domino.

The two most important components of the Domino system are the operating system and
and the application, which is implemented as a number of software modules. Between these
components is a generic OS interface, introduced to facilitate porting to another operating
system, a limited implementation of the C language library and a socket interface. The appli-
cation code is not supposed to use any operating system specific system calls, but only use
functions from these three interfaces.

Software Modules

gOS ANSI C Library BSD Sockets

Operating System

Figure 4.1: The Domino platform architecture

4.2 Hardware

The hardware used during this thesis is based on an ARM processor. ARM uses a RISC
architecture with low power consumption and is thus popular on the embedded market. The
specific chip used is a SoC from Samsung, based on the ARM7TDMI core, which lacks MMU
and FPU. In our configuration the processor runs at 50 MHz. The platform is equipped with
16 MiB of RAM and 16 MiB of flash for storing the Domino application and associated data.
The communication ports include two RS 232 ports and one 10 Mbps Ethernet interface. In
addition to these common standard ports, there are ports for LonWorks network and RS 485.
If extra storage is required, a MMC1 flash memory can be installed.

1Multi Media Card, a flash memory card standard.

17

18 CHAPTER 4. THE DOMINO SYSTEM

Figure 4.2: TAC Xenta 511

4.3 The Etnoteam Operating System

The operating system that is part of the Domino platform is called the Etnoteam Operating
System (EOS). It is a scalable, multi-tasking RTOS designed for real-time embedded applica-
tions [eos99]. The architecture is modular, which makes it possible to simply remove features
that are not required and hence reducing the size and complexity of the system. The sys-
tem was developed with special focus on portability, and it supports a number of hardware
architectures.

EOS was the product of the Italian company Etnoteam, which no longer maintains the
system. Any maintenance must therefore be made by TAC, which is one of the reasons why
it is highly desirable to move to another operating system.

4.3.1 Task Management

In EOS, as in a typical RTOS, the units of work are referred to as tasks. A task is an execution
unit with its own stack and register content, identified with a globally unique task ID. All
system resources and global variables are shared by all tasks. At any time, a task is either ex-
ecuting, ready for execution, suspended by another thread, waiting for a resource to become
available or asleep. Any running task can change its own state and suspend any other task.

Each task is assigned a priority, which is used by the CPU scheduler to decide which
task is allowed to execute. There are two ranges of priorities that divide the tasks into high
priority tasks and normal priority tasks. If there are high priority tasks ready to execute, the
scheduler gives the control of the CPU to the task with the highest priority. If all ready tasks
have normal priority, the scheduling is based on the round robin policy and the tasks are
assigned time slices based on their priorities.

4.3.2 Memory Management

Traditional RTOSs seldom make use of virtual memory, since page faults (occurring when a
desired memory item is not currently resident in main memory) can introduce unexpected
delays. Accordingly, the EOS operating system has no support for virtual memory, and hence

4.3. THE ETNOTEAM OPERATING SYSTEM 19

all tasks execute in a single physical address space. With the current hardware this is actually
a necessity, since the lack of a MMU makes it impossible to utilize virtual memory. EOS does
not provide any mechanism to protect the tasks from overwriting each others memory areas.
It is also possible for tasks to overwrite their own code as well as kernel memory.

The memory management in EOS is fairly straightforward. There is a global memory
pool, which is used to allocate stacks and system resources. Tasks are able to allocate memory
blocks from the global memory, which they are responsible to return when no longer needed.
EOS also provides a mean to handle local storage for each task.

4.3.3 Interprocess Communication

Synchronization

EOS offers three types of synchronization mechanisms: semaphores, conditions and events.
The mechanisms can for example be used to implement mutual exclusion. EOS makes no
attempt to prevent deadlocks.

A semaphore consists of an integer value that can be seen as the number of free units of a
resource. A task grabs a resource by decrementing the semaphore and releases the resource
by incrementing the semaphore. If there are no free resources when a task tries to decrement
the semaphore, it must wait until a resource is released.

A condition is a simple boolean value managed by the operating system, that can be used
instead of semaphores to implement simple synchronization. A task can wait for a condition
or a combination of conditions.

Events are simple messages that can be sent between tasks. As with conditions, task can
wait for a specific combination of events.

Data Communication

Since all tasks can access each other’s memory, the fastest and easiest communication be-
tween tasks is done through shared memory. However, in accordance with good program-
ming practices, EOS provides mechanisms to make the communication more explicit and
abstract the synchronization work.

In addition to events, which are used mainly for synchronization, EOS provides message
passing through ports. The ports are global mailboxes and the messages simply consist of
memory addresses. To transfer data between a producer and a consumer task, EOS offers
buffer pools. A pool is a set of equally sized buffers, which can be allocated by the tasks.
Asynchronous communication can be achieved by the signal mechanism, which provides a
way to make a task execute a particular action upon receipt of a particular signal.

4.3.4 I/O System

File I/O is handled by the EOS Portable File System, which provides tasks with a file system
API independent of actual physical media. The media dependent part of the file system is
implemented by installable modules in a lower level.

Management of a particular type of peripheral is handled by a driver, which consists of
a set of routines with a device independent interface that can be dynamically activated and
deactivated. The drivers define interrupt handlers that are executed when an interrupt is
received.

Network communication is made available to application programs by means of the EOS
socket API, which apart from a few deviations is compatible with the BSD socket API.

20 CHAPTER 4. THE DOMINO SYSTEM

4.4 The Generic OS Interface

The Domino Generic OS (gOS) interface was developed by TAC to minimize the operat-
ing system dependencies, in order to facilitate a future porting to another operating sys-
tem [gos00]. The interface functions can be divided into eight categories: task management,
semaphore handling, message queue handling, time management, memory management,
file system handling, system tracing and power failure handling. The complete API can be
found in appendix C.

The interface functions were chosen to represent the smallest subset of functions that the
Domino software demands from an operating system. A portion of the EOS system calls
were considered unnecessary and therefore have no equivalent in the generic interface. Ac-
cordingly, semaphores are the only type of synchronization mechanism and message queues
is, apart from shared memory, the only type of interprocess communication.

However, gOS does not only contain renamed versions of a subset of EOS system calls. A
number of additional features have been added to the interface, such as support for system
tracing and power failure handling. Most notable are the additions to the task concept, which
has developed towards a UNIX style process. Each task has its own set of open files and en-
vironment variables and its privileges are determined by a user id. The arguments passed to
a newly created task have the same form as for a C main function: an integer value repre-
senting the number of arguments and an argument vector. Some of these additions impact
the behaviour of functions in the C library, which have been implemented accordingly.

4.5 The C Library

Some functions of the ANSI C library are heavily OS dependent, and these functions must be
adapted in order to work with the underlying kernel. These include file handling functions
such as fopen and printf , the memory management functions malloc and free and the
time functions time and clock . Some of the functions in the ANSI C library are heavily
interconnected to the gOS functions, especially with respect to user authentication and file
permissions.

4.6 The Application Software

The main purpose of the application software is to present data through a web-based inter-
face, which is also used to configure the device.

4.6.1 Architecture

The software has a modularized architecture, which allows the same source code to be used
in the generation of a number of different products. Through a simple configuration step,
system features can be selected and deselected. The modules described here are considered
the most important, and they are also included in the portion of the software chosen for
porting.

4.6.2 Variable Server

The most important module is probably the variable server, which is the central component
around which the other modules are situated. The variable server basically provides a unified
way of accessing different variables in the system, while hiding the actual access operations.

4.6. THE APPLICATION SOFTWARE 21

The variables can be read or modified independently or in groups. It is also possible to
be notified whenever a particular variable changes and to define the time interval between
notifications.

The variable server acts as the spider in the web, with a number of modules registered
to maintain certain variables and a number of modules registered to access certain variables.
The variables are declared and sent through the network according to the Abstract Syntax
Notation 1 (ASN.1) standard. The variables can be accessed directly through the variable
server interface or through an IP interface provided by a daemon process. Apart from the
variables handled by the different modules, there is a set of general system variables like
date and time.

4.6.3 Web Server

The web server used in Domino was originally part of the EOS operating system, but it has
been extracted and turned into an application module. It makes use of the SSL module, which
is another extracted part of EOS. The web interface first asks the user to log in to the system,
and then presents the available choices depending on the configuration of the device.

Incoming HTTP requests are handled by installable web modules, which are activated
depending on the URL requested. Each request can be handled by one or several modules.
For instance, a simple file request first goes through the authentication module and if the
access was granted the file module returns the contents of the file.

4.6.4 Trend Logging

One of the most important features of the system is the possibility to log variables, and
present them in a web page either as data or in a graph. There is a special web module
responsible for displaying trend log data on the web. Towards the variable server, the log-
ging module acts both as a variable user and a variable provider, since it both fetches variable
data and provides the logging data.

4.6.5 Alarm Handling

The alarm module supervises a set of variables and issues an alarm if a variable has reached
a value satisfying a specified condition. As any other signal in the system, an alarm can be
logged and viewed as a graph on the web site, where the user also has the possibility to
acknowledge or block alarms.

4.6.6 Command Line Interface

The Domino system provides a command line interface, called the Domino Shell (DSH),
which can be accessed through the web site or through the serial interface. The DSH in-
terface makes it possible to monitor system data by listing information from the different
modules. It also includes commands to affect the behaviour of the program, e.g. by adding
a web user or even restarting the whole system. Through UNIX inspired commands like cd ,
rm and cat , users can browse and manipulate the file system.

22 CHAPTER 4. THE DOMINO SYSTEM

Chapter 5

RTOS to Linux Porting Considerations

5.1 Architecture

The architectural differences between Linux and a traditional RTOS are substantial. This
becomes most evident in a comparison between the task model of an RTOS and the process
model of a Linux system. The different execution models are illustrated in figure 5.1.

5.1.1 The RTOS Model

RTOS-based applications usually consist of a set of tasks executing in a single shared phys-
ical address space. The RTOS model is highly exposed to corruption, since every task can
overwrite the memory of any other task, including the operating system. Not only can er-
rors corrupt the whole system, they are also typically difficult to trace. The result of an error
might not show up until a later time, and then it can appear anywhere in the system.

5.1.2 The Linux Model

In the Linux programming model, applications execute in their own protected address spaces.
By the use of virtual memory implemented by an MMU, they are prevented from overwrit-
ing code or data of other processes as well as their own code. Attempts to access prohibited
memory results in a segmentation violation signal, which causes the process to terminate. A
failure is therefore discovered immediately, and it is easy to see when and where it occurred.

In addition to processes, Linux provides simultaneous execution also by using threads.
Threads, which are the Linux equivalence to RTOS tasks, execute in a single process and share
memory with each other. While threads belonging to the same process are free to access each
other’s memory, they still receive a segmentation violation signal if they try to access the
memory of other processes or to overwrite their own code.

5.1.3 Processes and Threads

Since RTOS tasks have a closer resemblance to threads than to processes, the natural choice
when porting an application from an RTOS to a Linux platform is to map each RTOS task to a
Linux thread. Although this is surely the easiest way, it is not necessarily the best. The choice
is highly dependent on the properties and demands of the application to port. Of course,
a solution could include a combination of processes and threads. To build a basis for this
decision, the properties of processes and threads will be further investigated.

23

24 CHAPTER 5. RTOS TO LINUX PORTING CONSIDERATIONS

RTOS Linux

Physical Address Space Physical Address Space

Tasks Threads

Virtual
Address Space

Virtual
Address Space

Process Process

RTOS Linux

Physical Address Space Physical Address Space

Tasks Threads

Virtual
Address Space

Virtual
Address Space

Process Process

Figure 5.1: Concurrent executions models

From a performance point of view, threads are better than processes. Unlike processes,
threads share code and data space and hence threads are faster to create and the context
switch overhead is smaller.

The second advantage with threads is the ease of communication. While threads can
communicate with each other through shared memory, processes need to make use of some
kind of IPC facility. Apart from the need to rewrite the application to use IPC instead of
shared memory, it also decreases performance.

In addition, threads are usually created in the same way as RTOS tasks. One simply gives
a pointer to the function defining the thread. In order to create a new process, a program file
must be loaded into memory. This means that one needs to create an executable for every
task in the system.

Threads also introduce some problems. The synchronization between threads is more
complicated than the synchronization between processes. Since the data space is shared
among threads, file descriptors for open files and sockets are shared. Therefore, a multi-
threaded application must protect resources against simultaneous access. Communication
between processes on the other hand must be explicitly defined, therefore it is easier to iden-
tify where synchronization is needed than when working with threads. The implicit com-
munication through shared memory makes thread synchronization a bit trickier. However,
synchronization should not be a problem during a port, since the tasks are hopefully already
properly synchronized.

A more alarming disadvantage of threads is the need to use thread-safe or reentrant func-
tions. In most C libraries many functions are not reentrant, since they make use of static
variables1. This is not a problem for processes, since they execute in separate address spaces
and cannot share variables.

Processes can also benefit from memory protection, which makes it easy to discover er-
rors. Threads are allowed to write in each other’s memory areas, and there is no way to
distinguish between correct and erroneous writes. Further, a thread that fails will terminate
all other threads belonging to the same process. When a process fails, it simply exits and does
not affect the execution of other processes.

1The only validated C99 library, Dinkum C library (http://www.dinkumware.com), can be configured as
thread-safe.

http://www.dinkumware.com

5.2. APPLICATION PROGRAMMING INTERFACES (APIS) 25

5.1.4 Application Properties

Eventually, the choice between threads and processes depends on the properties of the ap-
plication. For applications with hard real-time requirements, processes are likely to intro-
duce too much overhead and therefore threads are preferable. The choice also leans towards
threads if the application is imbued with use of shared memory. In this case the application
needs to be heavily rewritten to be able to use processes.

On the other hand, if the real-time requirements allow for the performance penalties intro-
duced by processes, there are a lot of benefits to gain in converting the tasks into processes.
This requires that the tasks are fairly independent and isolated with little or well-defined
communication.

It may often be possible to divide tasks into groups, sufficiently isolated from each other
to form processes. The tasks belonging to a group are more dependent on each other and
therefore suited to run as threads inside the process. A recommended porting method is to
first map tasks to threads. When everything is working as expected, tasks or groups of tasks
can be extracted to form isolated processes.

5.2 Application Programming Interfaces (APIs)

The interface between the applications and the operating system is made up by a set of func-
tions or system calls. The system calls can be accessed directly or through library functions.
All functions available for applications are defined by a set of Application Programming
Interfaces (APIs). The available APIs are specific to each operating system, and API accom-
modation is therefore a most vital task when porting applications from one operating system
to another.

5.2.1 Accommodation Strategies

There are three fundamentally different strategies when accommodating the API of one op-
erating system to the API of another:

• Equivalence

• Emulation

• Recoding

Equivalence

When facing a function unsupported by the new operating system, the most natural solution
is to find an equivalent function. Linux offers a rich set of APIs, and the possibility of finding
a suitable function is fairly high. In this case, the application may be slightly modified to use
the Linux supported function and it may also be necessary to include additional header files.
To avoid changing the application, simple wrapper functions can be implemented.

Emulation

When no equivalent function exists, the unsupported function may be implemented in an
emulation layer between the application and the operating system. For common RTOSs like
VxWorks and pSOS, it exist commercially available emulation kits [Wei01]. These kits emu-
late more or less the whole RTOS API and hence simplify the porting process significantly.

26 CHAPTER 5. RTOS TO LINUX PORTING CONSIDERATIONS

Recoding

The third strategy is to rewrite the application to avoid the need for the unsupported func-
tion. In cases where such a rewrite is impossible or very difficult, it may be necessary to
consider loosing some application functionality.

5.2.2 Linux APIs

In order to increase code portability, Linux and other open systems rely on the use of stan-
dard, common APIs. The most important standard is POSIX, which is a family of standards
defining the functionality of a UNIX system. The most interesting parts of the POSIX stan-
dard include POSIX.1, POSIX.1b and POSIX.1c. POSIX.1 defines the core of a POSIX system,
including key features like process management and the file system. POSIX.1b focuses on
IPC and synchronization, while POSIX.1c defines POSIX threads. The POSIX standard is
widely spread and it is not uncommon that an RTOS implements parts of the standard. In
that case, typically subsets of the IPC and thread API are implemented.

Linux also implements large subsets of the SVR4 (System V, Revision 4) UNIX standard
and versions of the BSD (Berkeley Software Distribution) UNIX interfaces. The System V
API for interprocess communication and the BSD socket API are de facto standards in Linux
systems.

Many of the API functions used in embedded applications are simply standard C lan-
guage routines. The C language libraries provided by Linux support the ANSI C standard
from 1989 as well as a large fraction of the most recent C standard, ISO C99 from 1999. Since
the RTOS implementations often are subsets of the complete C library, the C functions used
by an RTOS application will surely be supported on the Linux platform.

5.2.3 Interprocess Communication (IPC) and Synchronization

The selection of IPC and synchronization facilities may constitute a major difference between
two operating systems. Luckily, the Linux operating system supplies the users with a wide
range of mechanisms, and often it exists an equivalence for the RTOS construct used by the
application. However, even if a certain type of mechanism exists, it is not certain that both
operating systems support exactly the same operations. The accommodation of APIs can be
performed using one or a combination of the previously suggested strategies.

RTOS IPC Linux IPC
Semaphores System V or POSIX semaphores
Mutexes POSIX mutexes or condition variables
Message queues and mailboxes Pipes/FIFOs or System V message queues
Shared memory System V shared memory or mmap
Events and RTOS signals Signals
Timers and task delays POSIX timers (on some architectures),

System V timers or sleep / nanosleep
Watchdogs, task registers, partitions/buffers Emulation or recoding

Table 5.1: RTOS and Linux IPC

5.3. THE BENEFITS OF PORTING TO LINUX 27

Table 5.1 shows how different IPC and synchronization utilities of an RTOS can be mapped
to the Linux IPC API. Common mechanisms like semaphores and message queues can be
moved into the Linux world relatively easy, while RTOS specific facilities like watchdogs and
task registers introduce more difficulties. Since Linux does not offer any similar mechanisms,
these APIs must be emulated. Alternatively, the application may be rewritten.

5.3 The Benefits of Porting to Linux

Before migrating to another operating system, it is important to investigate the advantages
and disadvantages of such an action. Since Linux is a general purpose operating system,
it has a lot more features than an RTOS. Hence, in many aspects Linux is superior to any
RTOS. A conceivable disadvantage of Linux is a decrease in performance. Since an RTOS has
been designed to meet hard real-time requirements, it can be suspected that the performance
under Linux will be poorer. However, compared to other general purpose operating system,
Linux is considered to be a high performance OS. In the rest of this section some of the
advantages of moving from a traditional RTOS to embedded Linux are pointed out.

5.3.1 An Open Source System

Linux is a royalty-free, open source operating system. It is based on robust solutions which
anyone can view, criticize or improve on. This makes it possible to develop your own exten-
sions to suit special needs, which may often be the case in embedded development.

Because of the high number of developers, the GNU/Linux operating system goes through
a constant improvement. New functionality is added and bugs are fixed very quickly. In ad-
dition, the Linux community is very active and offers support through forums and mailing
lists.

The fact that Linux is free does not mean that it comes without a license. Linux is li-
censed under GPL, which contains some obligations regarding source distribution2. When
migrating to Linux, there is a good chance of finding other interesting open source software.
Importing code from an open source project into your own project must however be done
carefully, since there are a variety of licenses in the open source world. Some licenses might
be incompatible with each other and some might change the license of your own software.
An overview of the most common licenses is presented in table 5.23.

License Free Free Unrestricted Copyright
Linking Derivation Re-licensing Privileges

GPL No No No No
LGPL Yes No No No
BSD Yes Yes No No
NPL Yes Yes No Yes
MPL Yes Yes No No
Public Domain Yes Yes Yes No

Table 5.2: An open source license overview

2See Chapter 2 for more information on the GPL license.
3This compilation of open source licenses was presented by Claes Lundholm at the Nohau seminar about

Montavista Linux in Gothenburg, April 2005.

28 CHAPTER 5. RTOS TO LINUX PORTING CONSIDERATIONS

5.3.2 Important Features

The GNU/Linux operating systems is a full-fledged OS with support for a variety of network
and file handling protocols, which are very important features for an embedded system. The
operating system is modular, which makes it easy to slim down. This property makes the OS
very suitable for systems with limited resources.

Together with the operating system comes an abundance of utility programs. With Linux
running in an embedded system, you can easily perform a remote login using SSH. This will
give you access to a Linux shell and all the utility programs installed.

Linux also supports a variety of hardware platforms, which decreases the hardware de-
pendencies. With the Linux operating system, the task to move the system to another hard-
ware platform is relatively simple.

5.3.3 Development Advantages

Contrary to a traditional RTOS, Linux provides memory protection, an advantageous feature
primarily during development. Erroneous memory accesses can often be discovered imme-
diately, and do not corrupt the whole system. For processors without MMU, there is a Linux
version called uClinux. Because of the hardware limitations, this version does not support
memory protection. However, since an application can easily be moved between uClinux
and standard Linux, you have the possibility to test and debug the application on a standard
PC with memory protection.

Using Linux as the host operating system, you can benefit from the advantage of devel-
oping on the same platform as the application should run on. For time independent testing,
there is no need for cross-compilers and downloading the software to the target hardware.

Linux also provides a very good environment for software development, including a rich
set of development and debugging tools4.

4A comprehensive list of Linux development tools can be found at http://www.hotfeet.ch/˜gemi/LDT .

http://www.hotfeet.ch/~gemi/LDT

Part II

Migration

29

Chapter 6

Development Environment

6.1 Background

The selection of development tools is crucial, since it can have a huge impact on the efficiency
and success of software projects. Currently, the development work for the Domino system is
carried out using any personally chosen IDE under the Windows XP operating system. The
IDEs most frequently used are Borland CodeWright and Microsoft Visual Studio. Compi-
lation of the software is done using Borland Make with the Norcroft ARM C compiler and
configuration management is handled by Microsoft Visual SourceSafe. The software can be
debugged through a JTAG interface using the Lauterbach Trace32 debugger, which allows
for both high-level and assembler debugging.

The goal is to create a development environment for Linux which integrates all the differ-
ent aspects of development, such as code editing, configuration management, compiling and
debugging. To further integrate the different tasks of the developers, it is also desirable that
the chosen IDE supports a number of programming languages and not just the C language.

6.2 Operating System

The choice of host operating system naturally fell on Linux, which allows for development
and testing on the same platform. When selecting a Linux distribution it is mostly a matter
of personal taste, as all important tools are available on all the common distributions. In this
project SUSE Linux 9.2 has been used.

As access to software only available under Windows XP was a necessity, it was decided
to continue using the Windows XP operating system, and run Linux on top of it. This was
accomplished by the use of VMware Workstation, a software product for creating virtual
machines in which other operating systems can run. This solution provides the possibility to
run Linux, while still being able to use important Windows applications in a convenient way.

6.3 Integrated Development Environment

There are a variety of different Integrated Development Environments (IDEs) available for
the Linux operating system. As the chosen IDE eventually is to be adopted by developers
used to Windows, a self-explanatory graphical user interface was one of the main require-
ments. For this reason, text-based IDEs like Emacs was taken out of consideration.

Currently, the two most popular Linux IDEs for C/C++ development are KDevelop and

31

32 CHAPTER 6. DEVELOPMENT ENVIRONMENT

Eclipse1. KDevelop is a C/C++ focused IDE made primarily for the K Desktop Environment
(KDE), while Eclipse, written in Java, is more of a platform for building your own IDE using
plug-ins. Because of its portability and extensibility, Eclipse was determined to be the best
choice.

6.3.1 Eclipse

Eclipse is an open source, platform-independent framework, primarily used for building
IDEs. The functionality of Eclipse is controlled by the plug-ins that are added to the system.
Eclipse was originally an IBM project, but in 2001 the development was taken over by the
Eclipse Foundation, a non-profit software vendor consortium.

The plug-ins for Java development are the most widely used, but plug-ins for a large
number of other languages are available. The CDT (C/C++ Development Tools) project pro-
vides the Eclipse platform with a fully-functional C and C++ IDE. Since the project is rela-
tively young, the C/C++ support is not as developed as the Java support, but the maturity
level is currently quite sufficient and it is quickly improving.

6.4 Configuration Management

Configuration management (CM), including source code management and version control,
is the key to managing and controlling a large software project. Among companies working
in a Windows environment, one the most frequently used configuration management tools
is probably Visual SourceSafe from Microsoft. This product is notorious for its unpredictable
behaviour [Goo04]. In fact, Microsoft doesn’t even use it for its own internal development.

In the open source world, the Concurrent Versions System (CVS) has been the de facto
standard for a long time. It is a well-reputed and robust system, but over the years a num-
ber of problems have become noticeable. Designed explicitly to replace CVS, Subversion is
beginning to take over as the leading open source CM tool. Atomic commits and support for
moving and renaming files are a few of the features of Subversion, missing in both SourceSafe
and CVS [CSFP05]. The following table points out the most important differences between
these three systems2.

SourceSafe CVS Subversion
Atomic commits No No Yes
File/directory renaming No No Yes
File/directory copying Yes No Yes
Line-wise file history No Yes Yes
Documentation Medium Excellent Very good
Ease of deployment Very good Good Medium
Networking support Limited Good Very good
Portability Limited Good Excellent
Web interface No Yes Yes
License Proprietary Open source Open source

Table 6.1: A version control system comparison

1According to the “IDE of the year” poll, which was part of the “2004 LinuxQuestions.org Members Choice
Award”.

2The comparison was performed by the “Better SCM” project, http://better-scm.berlios.de .

http://better-scm.berlios.de

6.5. COMPILATION 33

Being the superior open source version control system, Subversion was chosen to be a
part of the development environment. The existence of a Subversion plug-in for the Eclipse
platform further motivated this decision. For the Windows platform there is a highly com-
mended Subversion client called TortoiseSVN, which is implemented as a Windows shell
(Explorer) extension.

6.5 Compilation

Working in a Linux environment, the GNU toolchain is the obvious choice when looking for
compiler tools. The key component is the GNU Compiler Collection (GCC), a set of compilers
for languages like C, C++ and Fortran. Written by Richard Stallman in 1987 as an open source
compiler for the GNU project, it was originally pronounced GNU C Compiler as it only
included support for the C language. GCC has now become the compiler supporting the
largest number of processors and operating systems, with developers all around the world.
Accompanying GCC in the GNU toolchain, GNU Binutils offer a collection of programming
tools such as a linker and an assembler.

The appurtenant tool for automating the compiling process is the GNU Make utility. It
basically keeps track of which files need recompiling after a source code modification, avoid-
ing recompilation of the whole project. Although not used in this project, GNU Make is often
used together with the GNU Autotools, which provide a convenient way to build software
for different platforms.

6.6 Debugging

It exists a large number of debugging tools for the Linux environment. Most famous is the
GNU Debugger (GDB), which is the last link of the GNU toolchain. GDB itself defaults to
a command line interface, but it exists a number of graphical GDB front-ends, such as the
Data Display Debugger (DDD) and the GNU Visual Debugger (GVD). In this project GDB
was used together with the front-end provided by the Eclipse C/C++ environment. Other
debugging and profiling tools found useful during the project were strace, Valgrind and
Ethereal.

The strace3 debugging tool prints out all the system calls made by a program. In this
project it has been particularly helpful for tracking file and socket operations.

Valgrind4 is an excellent tool for finding memory related errors. It works by emulating
the CPU and checking all memory references, in order to discover for example memory leaks,
use of uninitialized memory and inappropriate memory accesses. Valgrind can also perform
detailed profiling, aiming to speed up and reduce memory use.

When debugging the HTTP communication modules we had great help of Ethereal5, a
network protocol analyser. With help from Ethereal we could easily see what kind of data
had been sent, and use this information to draw conclusions about errors that occurred.

6.7 Cross Compilation

Problems were encountered when trying to use the toolchains provided by the uClinux/ARM
2.6 project, since those only include compilers with support for little endian processors. Us-

3http://www.liacs.nl/˜wichert/strace
4http://www.valgrind.org
5http://www.ethereal.com

http://www.liacs.nl/~wichert/strace
http://www.valgrind.org
http://www.ethereal.com

34 CHAPTER 6. DEVELOPMENT ENVIRONMENT

ing a target platform with big endian byte order, the solution was to build our own toolchain.
This was performed using Crosstool6, which is a set of scripts written by Dan Kegel to sim-
plify the building of cross-compiler suites.

In order to successfully build against the target, one must make sure that the compiler
uses the correct include files and not the build system’s include files or libraries. However,
this is handled by the uClinux build system and did not cause any worries.

6.8 Remote Debugging

In order to debug on the target hardware, a hardware debugger from Lauterbach (the Trace32
in-circuit debugger) was used. This debugger supports a lot of different operating systems,
among them Linux 2.4, Linux 2.6 and uClinux 2.4.

The Lauterbach debugger enables debugging from the first instruction of the boot se-
quence, which was most helpful when debugging the boot sequence of the Linux kernel.

On a running system, applications can be debugged remotely with GDB. In that case a
“GDB server” runs the application on the target, while being controlled by a “GDB client”
running on a workstation. The server/client GDB debugging has not been used during this
project.

6http://kegel.com/crosstool

http://kegel.com/crosstool

Chapter 7

API Implementation

7.1 Domino Generic OS Interface

Instead of using the raw system calls of the underlying operating system, the Domino soft-
ware calls functions specified in the generic OS (gOS) interface. A large part of the interface
was developed with the functions of EOS in mind, which resulted in a close resemblance
between the EOS system calls and the generic interface functions. Hence, implementing the
functions for another operating system is a more complex task.

During API implementation a combination of the three accommodation strategies pre-
sented in section 5.2.1 was used. Many of the gOS functions had equivalents in the Linux
APIs, while others had to be implemented from scratch.

Although there were situations when the easiest solution would have been to rewrite the
application code, this was not often done. An important requirement, which is not present
in all porting situations, was that it should be possible to generate executables for both EOS
and Linux from the same source code. Satisfying this requirement while avoiding to sully
the code with preprocessor directives, the source code could not easily be changed in order
to fit the Linux operating system.

During the implementation of the API, a few interface functions were found to be used
very infrequently. Since these functions were not easily implemented in Linux, it was decided
that the best solution was to remove them from the API. When removing the functions, parts
of the application code had to be rewritten.

7.2 Tasks

The Domino generic OS supports a number of task management functions, e.g. for creating,
deleting, suspending and resuming tasks. A task can also suspend its own execution by
sleeping for a specified number of milliseconds or by waiting on a child task to exit. The API
functions actually refer to the tasks as processes, but in order to distinguish them from Linux
processes, it was considered preferable to refer to them as tasks in this context. A task is
identified by a task ID, a name, a priority and a user ID, properties which can all be retrieved
using the API. Apart from the task ID, these properties can also be changed dynamically.

7.2.1 Processes or Threads

When implementing the task API, the most important design choice was whether to imple-
ment the tasks using Linux processes or threads. An investigation of the application structure

35

36 CHAPTER 7. API IMPLEMENTATION

and a survey of the communication between the different tasks concluded that a process so-
lution would require an enormous rewriting of the application. To a large extent, the tasks
rely on the fact that they are executing in the same address space, and almost all communi-
cation depends on shared memory. The whole structure of the variable server, a most signif-
icant part of the system, is based on the ability to send function pointers between tasks. The
variable forwarding is also performance critical, which further implies the need of shared
memory. With this taken into account, converting the tasks into processes would probably
not be the best solution, even if the conversion could be easily performed.

The chosen solution was consequently to map each task into a thread. However, the door
was left open for the possibility to extract isolated tasks and turn them into processes at a
later stage. The most obvious candidate for such a transformation was the web server. A
more independent web server would also introduce the possibility to exchange the current
web server in favour of a third party application.

7.2.2 A POSIX Thread Based Implementation

Having decided on mapping the tasks into threads, the API was naturally chosen to be im-
plemented using the POSIX thread (pthread) library, which is available on all modern Linux
systems.

The POSIX thread library contains the standard thread creation, termination and syn-
chronization functions. Unfortunately, there is no support for thread suspension and hence
an implementation of the suspend and resume functions of the gOS API would be very awk-
ward. As it turns out, these functions are practically never used and they could therefore be
removed from the API.

A task, as specified by the gOS API, has its own ID, name, priority, stack size, environ-
ment variables and set of open files. The task ID was conveniently implemented using the
thread ID of the POSIX threads. However, some application code depended on the ID to
be in a certain interval and hence needed to be rewritten. The pthread library also supports
assignment of priority and stack size during thread creation. The chosen scheduling policy
was SCHEDRR, which schedules the threads strictly based on priority and uses round robin
scheduling among threads with the same priority. This policy is better than the SCHEDFIFO
policy, because it prevents a thread from being indefinitely blocked by a thread with the
same priority. Other thread-specific data, such as name and user ID, was implemented using
the Thread Local Storage (TLS) facility. A thread-specific data item can be accessed from all
functions and is indexed by a key, which is global to all threads.

Unfortunately, the Linux gOS implementation does not support thread-specific environ-
ment variables and open files. The support for environment variables could be implemented
rather easily by utilizing thread local storage, but this has not been done since the feature
actually isn’t implemented in the current EOS version. Having a separate set of open files for
each thread is a more complicated problem, as it is strongly related to the implementation of
the C library.

To be able to redirect the standard streams for each thread independently, the input and
output functions are redefined to use thread-specific streams implemented with TLS.

7.3 Semaphores

The API provides counting semaphores, which are identified by a name and an ID. The
semaphores can be created and deleted by any task. The available operations on a semaphore
are set and get, that increases and decreases the semaphore counter respectively, and a special
reset operation, that releases all waiting tasks and reinitializes the counter.

7.4. MESSAGE QUEUES 37

The semaphore handling was implemented using POSIX semaphores, which is the rec-
ommended alternative for a thread based solution. System V semaphores, which are more
flexible and can be used between different processes, are more heavy weight and hence
slower than POSIX semaphores.

The gOS get and set semaphore functions mapped naturally to the POSIX wait and post
functions, while the reset function needed a bit more work. Also, the identification of the
semaphores was not straightforward. A POSIX semaphore is identified by a pointer to the
semaphore struct, while a gOS semaphore has a name and a number.

7.4 Message Queues

The message queue API defined in the generic interface supports task initiated creation and
deletion of queues. When sending or receiving messages, the queue is identified by a system
unique number. A message can be marked as urgent, which means that the message should
be put first in the queue.

In Linux, an implementation of message queues would normally either make use of pipes
or the System V message queue API. However, these facilities only support a strict FIFO
message handling, and hence it would be impossible to place a message first in queue. As
it turns out, the old message queue implementation did not make use of any EOS specific
mechanisms, and it could therefore be incorporated in the Linux API implementation with-
out major modifications.

7.5 Time Management

The API functions available for time management provide means for getting and setting the
system time, as well as creating timers. The timers are used for setting a semaphore either
periodically or once after a specified time interval. A timer is just a new task, with the sole
purpose to sleep a time interval and then set a semaphore.

The System V timers could not be used, since they work by raising a signal when the
time interval has passed. When running several timers simultaneously, there is no way to
determine which timer has expired. POSIX timers do have this capability, and the work to
bring them to Linux is ongoing by the “high resolution timers project”1. The time manage-
ment functions were implemented using the gettimeofday and settimeofday system
calls, which gets and sets the time since the Epoch (January 1, 1970). The timers were imple-
mented on top of the gOS API.

7.6 Memory Management

The memory management API consists of two functions, which are the equivalents of the
C library functions malloc and free . In EOS, these functions are only used by the locally
implemented malloc and free . Since these are available on the Linux platform, there is
actually no need to implement a Linux version of the memory allocation API. To be compliant
with the EOS behaviour, where applications in theory have the choice between the C memory
functions and the gOS memory functions, simple wrapper functions have been provided.

1http://high-res-timers.sourceforge.net

http://high-res-timers.sourceforge.net

38 CHAPTER 7. API IMPLEMENTATION

7.7 File System

The file system functions of gOS are very similar to those of EOS. The API contains func-
tions for searching directories, creating and deleting files and directories, renaming files and
receiving file status. It also contains some features not available in EOS, such as access con-
trol. Every access to the file system is preceded by a check to control that the user ID of the
task has proper access rights. In addition, every task has its own current directory, and may
specify files relative to this directory.

The implementation of the file API was rather straightforward, as the Linux API contains
all the needed features. The implementation of a current directory for every task would
be very easy if the tasks were implemented as processes, as Linux already implements this
feature for processes. However, the current directory is shared among all threads belonging
to the same process. A thread-specific current directory would be simple to implement using
thread local storage, but C functions like fopen would still use the current directory of the
process. Unfortunately, this problem remains unsolved in the Linux gOS implementation. In
practice, this doesn’t introduce any problems since all file paths specified in the application
are absolute.

7.8 System Tracing

The system trace functions are called by EOS, whenever a process is started or terminated
and at every context switch. This provides a way to collect profiling information.

Since EOS and the Domino software are built together into one big executable this is the
preferred way to perform profiling. However under Linux the kernel is separated from the
applications and it is not desirable to make changes within the kernel. It is not possible to
achieve the same behaviour under Linux without modifying the source code of the Linux
kernel. However, with professional profiling tools like GNU gprof2, there is really no need
for such a feature.

7.9 Power Failure Handling

The power failure handling has been introduced because certain operation can not be inter-
rupted without loosing important data. These operations must be able to finish their execu-
tion, before the power goes down. For this reason, the hardware generates an interrupt 10
ms before the power is lost. During this time, the critical operations should be able to finish.

The gOS API provides a way for tasks to inform the system when they are performing
such critical operations. When a power failure interrupt is received, these tasks are assigned
a higher priority than other tasks.

So far, the Linux implementation of gOS does not support power failure handling. This
has not been prioritized in the porting process, since it is not a necessary feature to have until
the other bits and pieces of the system are working.

2A profiler based on gprof, a call graph execution profiler [GKM82].

Chapter 8

Porting to Linux running on a PC

8.1 The Planning Phase

Before starting the porting work, it is important to know what parts of the software should be
ported and in what order. In a time limited project like this, it is of course difficult to estimate
an appropriate amount of code to be ported. In such a situation, it is good to identify the
parts that are necessary to port, the parts that would be nice to include and the parts that are
less important.

In this project, the variable server and the web server were considered to be the most im-
portant modules to port, while the trend logging and alarm handling modules were chosen
to be ported in a later stage. The rest of the modules were to be ported as time admitted. The
project was also restricted to deal only with functionality available inside the embedded sys-
tem, and not features depending on other devices. In addition, only functionality available
for the TAC Xenta 511 should be ported.

The web server was chosen to be the first module to port, partly because it is an important
module and partly because it was considered relatively easy.

8.2 The Porting Process

The first step was to import the application code into the new development environment,
and create a makefile. The work was then performed iteratively, adding one source file at a
time. The following list describes the basic steps of the process.

1. Add a carefully selected source file to the makefile.

2. Compile the software.

3. Resolve symbolic issues for implemented APIs.

• Write stub header files and substitute the original RTOS header files.

• Change the makefile to include application header files in the compilation.

4. Address unimplemented APIs and data structures.

• Rewrite the software to use functions from the gOS API or the C library instead of
the EOS system calls.

• Add referenced source files to the build script.

• Provide stub functions.

39

40 CHAPTER 8. PORTING TO LINUX RUNNING ON A PC

5. Repeat step 2-4 until the software compiles without errors.

6. Debug the software.

7. If the porting is not finished, start from the beginning again.

To incorporate the latest changes in the Domino software, the Linux project was regu-
larly synchronized with newly checked out code from the source management system. All
code changes were therefore carefully documented. In order to avoid an increasing amount
of changes at each synchronization, many of the code changes in the Linux project could
be incorporated directly into the original project. Thus improving portability and platform
independency of the original source code.

8.2.1 Header Files

Since it should still be possible to compile the code to run under EOS, just exchanging EOS
header files with Linux header files was not an option. Instead, the EOS header files were
replaced by new files, including the corresponding Linux header files and possibly defining
needed EOS constructs.

The EOS header file socket.h provides an example of this procedure. This file is re-
placed by another file with the same name, which includes the needed Linux header files
sys/socket.h and sys/types.h . Since EOS does not treat files and sockets in exactly
the same way, there is a need for a special close function for sockets (close socket). Under
Linux, both files and sockets are closed using the close function, and hence the replacement
header file redefines the symbol. In addition, the application uses the EOS socket errors and
the EOS socket ID type, which therefore needs to be defined in the header file.

#include <sys/types.h>
#include <sys/socket.h>

#define SOCKET_INVALID (-1)
#define SOCKET_ERROR (-1)

#define close_socket close

typedef int socket_id_type;

extern int get_socket_last_error();

Figure 8.1: Replacement header file for socket.h

8.2.2 Application Rewriting

Ideally, the software modules should only use functions from the generic OS interface, but in
practice the EOS system calls are sometimes used. For natural reasons, this is especially true
in the modules that originated from the EOS operating system. Since the operating system
code is part of the Domino project, there is actually a blurred line between the operating
system and the application.

The goal is to be able to use the same application code for both operating systems. There-
fore there must not be any operating system dependencies left or introduced in the code. All

8.3. MODULE PORTING 41

uses of OS dependent system calls must be removed and replaced by generic functions or C
library functions.

8.2.3 Stub Functions

A stub function replaces an original function, in that it has the same interface, but contains
as little code as possible if non at all. Stub functions have been used thoroughly during the
project. First of all, stub functions have been used to act as an interface to unported modules.
In many cases, these stubs have been replaced by the real implementations at a later time.
Secondly, the interface to the hardware needed to be stubbed.

8.2.4 Debugging

The behaviour of the code may be different when run under Linux compared to when run
under EOS. Therefore the porting process is not finished when the software compiles, it also
needs to be debugged. In most cases, this is because the software contains bugs that for
various reason don’t appear in the EOS environment.

The Linux memory protection makes sure that many memory bugs are caught immedi-
ately, by raising either a segmentation fault signal or a bus error when an illegal memory
location is accessed. The target hardware has no such protection and hence allows for all
memory accesses. Most found bugs involve inappropriate reads, since they do not corrupt
the system and hence can be performed without notice in EOS.

It is important to realize that not all memory related errors can be caught by the memory
protection mechanisms. Although an access outside the range of an array causes undefined
behaviour [HS02], it is perfectly legal from the OS perspective as long as the access is within
the process’ address space. Memory debugging was therefore performed using Valgrind,
which is able to detect such errors and also helped to find many cases of uninitialized mem-
ory.

Some coding errors were also discovered because of timing differences. Running Linux
in a virtual machine on top of Windows resulted in a timing problem, where the Linux clock
was too slow and sometimes needed to synchronize itself with the Windows host. For this
reason, the clock made a jump in time which made otherwise unnoticed mistakes visible.

Further complications were introduced due to the employment of the newly implemented
gOS interface. Although a test suite has been implemented to ensure the correctness of the
gOS implementation, part of the misbehaviour was found to be the result of gOS bugs.

8.3 Module Porting

This section describes the process of porting the different modules of the Domino platform.
In total over twenty modules were ported, entirely or partially, but only the most important
and difficult modules are discussed here.

8.3.1 Makefile

In the beginning of the project, a simple makefile was used. As more and more source files
and modules were incorporated, a more sophisticated build system was created. The tradi-
tional method of building a large Linux project is to use recursive make, which means that
the top-level makefile recursively invokes the make program on the sub-directory makefiles.
However, the recursiveness might introduces a number of problems, both regarding correct-
ness and building time [Mil98]. To produce correct results, one must make sure that the

42 CHAPTER 8. PORTING TO LINUX RUNNING ON A PC

makefiles are invoked in the correct order with regard to their internal dependencies. Often
it is necessary to do more than one pass over the sub-directories to build the whole system,
which leads to extended build times.

Although the size of the project does not imply that recursive make would lead to much
damage, it was decided to use a single top-level makefile. To keep this makefile at a maintain-
able size, one makefile and one dependency file is included from each module. The module
makefile contains all the building information relevant for the specific module, while the
dependency file is automatically generated and contains all dependencies of the module.

This building system is superior to the building system used for EOS in several ways.
First, the EOS makefile does not contain any dependency information, which makes it neces-
sary to rebuild the entire project in order to be sure that the executable is up to date. Further,
the EOS build system uses a single makefile, which is huge and difficult to maintain.

8.3.2 Web Server

Being the first part of the system to be moved to Linux, the porting of the web server was
by far the most time consuming. The connections between the different modules turned out
to be fairly strong, which resulted in an seemingly endless addition of source files before
anything could be compiled. Not being very familiar with the software, it was difficult to
identify the code pieces that were actually needed for the basic web server function. It was
for example a bit problematic to remove the SSL support, since the web server is intended
to always use SSL. As the code became more familiar, suitable dividing lines could be recog-
nized and stub functions created. At first, only the file web module was ported. The other
web modules were incorporated as the modules adherent to them were ported.

The time it took to port the web server was also prolonged by the fact that it was first
ported without consideration of compatibility for the EOS platform. This requirement was
later taken into account and the previous work needed to be redone.

When the web server code eventually compiled, the debugging phase followed. The
problems were mainly memory related, but there were also a few bugs found in the gOS
implementation. To test the web server, the file system of the embedded system had to be
used. Apart from the actual web pages, the application needed a set of configuration files.
During debugging, it was discovered that a large percentage of the HTML pages contained
special tags unrecognized by the browser. These tags were supposed to be replaced by values
fetched from the variable server. As this module was not yet ported, the real web site had to
be replaced by a few simple pages.

8.3.3 Variable Server

Having ported the first module, the following modules were much easier. One problem dur-
ing the port of the variable server module, was the handling of ASN.1 variables. To be able to
quickly allocate and deallocate such variables, the variable server implements its own mem-
ory management. When a task needs to use the variable server, a larger memory area called
nibble memory is allocated and used to store the variables. This way it is not necessary to
allocate memory for each individual variable. The task-specific memory pointers are stored
in an array, which is indexed by the task ID. This worked fine in EOS, were the task identi-
fiers are small numbers. The Linux thread identifiers can assume any value, which makes it
impossible to use them as indexes. The memory pointers were instead saved in the thread
local storage provided by the pthread library.

8.3. MODULE PORTING 43

8.3.4 Trend Logging and Alarm Handling

When moving the trend logging and alarm handling modules, timing became an issue. Be-
cause of a faulty implementation of the C library function clock , these two modules be-
haved in a very strange way. Once the problem was identified, it could be solved rather
quickly. The timing problems caused by VMware also makes the trend logs look a bit pecu-
liar, but this is only a problem when running in an emulated machine.

8.3.5 The Domino Shell

The Domino shell (DSH) constitutes the command line interface of the Domino platform.
The Linux counterpart is of course a Linux shell, but to interact with the Domino application
it must be possible to issue DSH commands from the Linux command line. One solution
is to start the Domino shell as an application, but then the possibility to alternately issue
DSH commands and Linux commands would be lost. It would also be impossible to utilize
pipes and file redirections. For these reasons, it was decided that Linux required a partially
separate implementation of DSH, where the commands were issued independently.

In the original implementation the user communicates with the Domino shell through
the serial port. The implementation for Linux uses sockets instead, which makes it possible
to handle an arbitrary number of DSH users. The DSH task, running as a thread in the
Domino process, acts as a server and waits for clients to connect. To be able to handle several
simultaneous DSH users, a new thread is started for each new client.

A Linux user who wishes to issue a DSH command starts the DSH client program, which
connects to the server and sends the command. In order to know what privileges the DSH
command should run with, the server first requires the client to authenticate itself with a
username and a password. This of course refers to the Domino user information and not the
Linux username and password. Before the command is started, the user ID is changed and
the standard streams are redirected to the socket.

To make the issuing of DSH commands as easy as possible, one symbolic link is created
for each DSH command. All links point to the DSH client program (dsh), which looks at the
way it was invoked and sends the corresponding command to the server. This way the DSH
commands can be started just as easily as the usual Linux commands. There are however
DSH commands, such as date , which conflict with Linux commands. This problem is solved
by starting the client program directly, providing the command name as an argument (e.g.
dsh date).

It is quite tedious to provide the username and password for every DSH command and to
avoid this, the login information is saved to a file the first time a DSH command is issued. It is
still possible to log in as a different Domino user at a later time. By starting the dsh program
without any arguments, the user can update the stored username and password. To avoid
the security risk of sending plain text passwords over the network, the DSH commands can
not be invoked from another computer. Instead, one must log in to the system using SSH and
issue the commands from there.

In addition to the migration of the DSH platform to Linux, the actual DSH commands
needed to be ported. Apart from a set of system commands, every module contributes a
number of commands applicable to that module. Certain commands were not ported, since
it exist equivalent commands in the Linux environment.

44 CHAPTER 8. PORTING TO LINUX RUNNING ON A PC

8.4 Porting Issues

8.4.1 CPU Scheduling

For a real-time application, the way the CPU scheduling works is very important. In EOS,
there are two different scheduling policies. High priority tasks are scheduled strictly based on
priority, while low priority tasks are scheduled according to a round robin policy. In Linux,
the scheduling policy can be specified for each individual task. However, both real-time
scheduling policies strictly assign CPU time to the task with highest priority. The policies
only differ in the way they schedule tasks with the same priority. Since the Linux scheduling
method is actually a bit stricter than that of EOS, this difference does not constitute a problem.

Also, the priority range differs between the two operating systems. While Linux priorities
range from 1 to 99, EOS only manages priorities between 1 and 15. Because all EOS priorities
are inside the Linux priority range, this difference causes no problems.

8.4.2 Root Privileges

As real-time scheduled processes are able to preempt any other process in the Linux system,
only root processes may activate the real-time scheduling policies. In order to schedule the
tasks based on priorities, the Domino process therefore must run with root privileges. This
is also necessary due to the web server functionality, which makes use of port 80. Only root
processes are able to open ports below 1024.

8.4.3 C Library Functions

Part of the EOS C library functions were developed locally, for use only by the Domino soft-
ware. Some of these functions behave differently than their Linux counterparts, which causes
problems when the application depends on the deviating behaviour.

Some of the locally implemented C functions make use of a task-specific data structure
which is part of the generic interface. This structure holds information regarding the open
files and the environment variables of each task. It also contains function specific data, to turn
functions that normally use static variables into thread-safe functions. With the use of the
GNU C library, these accommodations are lost. In Linux, all threads within a process share
open files and environment variables. Since the tasks are implemented as threads and not
processes, it is not possible to achieve the behaviour of the original system without rewriting
the library functions. This has not been done, since it was decided not to be worth loosing
the comfort and safety of the functions in the GNU C library.

One of the library functions that have been implemented as a reentrant function for the
Domino platform is strtok . In the GNU C library, the strtok function is not thread-safe,
but there is a reentrant version called strtok r , which takes an extra parameter. A pos-
sible solution to the problem would be to rewrite the application code to use the reentrant
version. Because the function was used very frequently, the problem was instead solved by
overloading the C library strtok function with a reentrant version using TLS.

Another diverging function is clock , which returns the value of the real-time clock (the
number of ticks since system start-up). The correct behaviour is to return an approximation
of the CPU time used so far by the current process [KR88]. As the application expects the
faulty behaviour, and this behaviour happens to be the same as the behaviour of the gOS
function gOSGetTime , all uses of clock were replaced by uses of gOSGetTime .

8.4. PORTING ISSUES 45

8.4.4 The Socket API

With a few deviations, EOS sockets are compatible with the BSD socket API. When porting
applications from EOS to Linux, which has a fully BSD conforming socket API, these devia-
tions become important.

Often the difference between EOS and Linux is that EOS lacks some feature that Linux
provides, which constitutes no problems during the port. For instance, EOS does not provide
full integration of sockets and files and hence file I/O functions can not be used to operate
on sockets. For this reason, EOS provides two special socket functions, ioctl socket and
close socket , to replace ioctl and close when used on sockets. These functions need
to be redefined under Linux.

The select function, which waits for a number of file descriptors to change status, has
a parameter that specifies the highest-numbered descriptor to be watched. This parameter is
ignored in EOS, which always considers all socket descriptors. Hence, calls to this function
often have this parameter set to zero, which means that the function has no effect in Linux.
The easiest solution is to change the function calls to pass the maximum integer value instead
of zero.

While Linux makes use of the global variable errno to communicate error codes to the
calling process, EOS provides a function named get socket last error . Since the error
codes are the same, the function could be easily implemented.

Finally, the EOS socket identifiers are of the type socket id type while Linux uses the
int type. The socket id type is actually defined as an int in EOS, and this could simply
be done in Linux as well.

8.4.5 Case Sensitivity

Unlike Windows file names, Linux file names are case sensitive. The development of the
Domino project has been carried out in a Windows environment, and hence the developers
have not needed to worry about case when specifying file names. One effect of this is that
the include statements do not match the actual header file names with regard to case, and
therefore cause compilation errors under Linux.

A solution to this problem is of course to change all include commands into specifying
the file names correctly. To avoid this tedious work, instead a script was created purposed to
change all filenames to lower-case letters and to modify the include statements accordingly.
This was the easiest way to solve the problem, and it also helps to prevent future mistakes.
From now on, file paths are written in all lower-case letters.

A related problem is that Windows uses backslash (\) to separate directories in file paths,
while Linux uses slash (/). The current development environment allows for both symbols in
the include statements, and hence backslashes can sometimes be found in file paths. Chang-
ing the backslashes to slashes was also performed by a script.

8.4.6 File System Placement

In the EOS file system, the Domino files are stored directly in the root directory. This is very
impractical in Linux, since the files become mixed up with the Linux files. Also, the Domino
file system contains directories, such as the sys directory, that conflict with Linux directories.
Consequently, the Domino file system needed to be stored in a sub-directory.

Changing the file system path to all the Domino files introduced a new problem, since
all file paths in the application were absolute. To simplify the porting process, TAC changed
their implementation and specified all file paths in a single file. By defining a macro, the
Domino root directory could be specified. Unfortunately, this root directory was also added

46 CHAPTER 8. PORTING TO LINUX RUNNING ON A PC

to partial paths and the URIs used for the comparisons that decide which web modules are
to handle an incoming request. Although such mistakes could be easily corrected once dis-
covered, this was a continuous problem throughout the project.

The placement of the Domino root directory further down in the file system hierarchy, led
to a lengthening of the file paths. This resulted in unpredictable behaviour caused by buffer
overflows. When overflowing a stack allocated buffer, there is a risk that the return address
is overwritten. The problems were naturally solved by increasing the buffer sizes.

8.4.7 Assembly Routines

To achieve better performance, a few extensively used functions have been written in assem-
bly language. Since the ARM assembly code obviously can not be used on the Intel processor,
the code was rewritten in C. The performance loss is not critical, since the Intel processor is
much faster than the ARM processor. When moving the software to the target hardware, the
assembly routines can be utilized again.

8.4.8 Hardware Dependencies

The PC uses little endian byte ordering while the ARM processor uses big endian byte or-
dering. The byte ordering is mostly important when doing external communication. This
is done through the BSD socket interface, which provides functionality for making sure that
addresses and ports are in the correct byte order. Sine EOS was written with both little and
big endian compatibility in mind, the porting to Linux on x86 caused almost no problem with
respect to endian issues (only one function had to be modified).

Because of the memory protection offered by the MMU, memory cannot be directly ac-
cessed on the PC. In the original software, the non volatile memory of the embedded system
is directly accessed for storing important data. In the PC version this memory had to be em-
ulated by first allocating the same amount of dynamic memory, and then providing a pointer
to the allocated memory. When the application exits, the volatile memory is stored on disk
in order to load it in to memory again at startup.

The embedded device uses flash memory for storing the file system whereas the PC uses
a hard drive. A flash memory has a limited number of erase-write cycles, which means that
one should not write to flash if it is not necessary. Therefore parts of the Domino file system
which contains temporary data are kept in RAM. Since the hard drive does not suffer from
this limitation, all parts of the Domino file system was put on hard drive when developing
under Linux.

Chapter 9

Moving to uClinux running on the
Target Hardware

9.1 C Language Libraries for Embedded Linux

On a standard GNU/Linux installation the most common C library is the GNU C library
(glibc). This library has support for multiple operating systems and also contains some exotic
features that are seldom used.

In an embedded system where every single byte of memory is valuable, glibc is not the
optimum choice in terms of memory consumption. There are several other C libraries that
can be used instead, and the most popular for embedded GNU/Linux today is uClibc. The
goal of uClibc is to minimize the size of the library, which is achieved by only targeting
GNU/Linux systems and eliminating redundant code.

In order to work as a drop-in replacement for glibc, uClibc uses the glibc header files.
Since uClibc only contains a subset of the functions included in glibc, the header files might
declare functions that are not actually implemented.

The library can be used on platforms with and without MMU. Since the target platform
of this project lacks MMU, uClibc has been compiled without MMU support. This means
that some functions are not available, of which the most important is the fork system call.

9.2 Porting uClinux

The uClinux/ARM 2.6 project has provided support for the SoC that the target hardware
is built around. This means that support for the serial ports and the Ethernet interface is
provided. The SoC itself can handle access to the external interfaces in both big and little
endian mode, but the hardware setup only allows for big endian mode. Unfortunately, only
little endian mode is supported by the uClinux/ARM 2.6 project and hence minor changes
had to be made in the serial and Ethernet drivers. The rest of this section describes a few other
target specific issues that were found during the work of porting uClinux to the embedded
system.

9.2.1 The Serial Port

It was discovered that the serial console has a peculiar behaviour. A debug console is opened
at ttyS1 1 in the initial boot sequence. This is forced to 19200 bps and apparently no attempt

1The second serial port.

47

48 CHAPTER 9. MOVING TO UCLINUX RUNNING ON THE TARGET HARDWARE

is made to see if this device is already in use. The console on our setup happens to run on
the very same interface, which forced usage of 19200 bps for the console as well and not 9600
bps as for EOS. The behaviour was not changed in the Linux kernel since we wanted to keep
changes against the standard kernel to a minimum.

9.2.2 Memory Alignment

On the ARM platform memory accesses must be 32 bit aligned. A non-aligned memory
access results in a trap, which can be caught by a routine in the kernel. This routine is called
an alignment trap handler and is optional to include in the kernel, since it may have impact on
performance. If an alignment trap occurs and the system doesn’t have the handler installed,
the kernel will print out a warning message with debug information and the application or
the whole system will most probably malfunction. In our specific case the only alternative
was to not include the alignment trap handler, since it contains inline assembly utilizing the
MMU. As earlier pointed out, our system does not have an MMU.

However running without the trap handler should generally not cause any trouble, since
the compiler should make sure that memory accesses are aligned.

9.2.3 Flash Memory

The target hardware includes 16 MiB of NAND flash memory which is used by EOS to host
the file system with the Domino application and associated data files. NAND flash memory
differs from NOR flash memory in that it can’t be directly mapped to memory addresses. It
has to be accessed sequentially through a driver, about the same way as a hard drive.

Fortunately Linux includes support for many different NAND flash chips through the
Linux Memory Technology Devices project2. In order to compile the flash support under
the ARM architecture, the alignment trap handler must also be included in the kernel. So
unfortunately, the flash memory does not run with our SoC under uClinux without reimple-
menting the alignment trap handler.

9.2.4 NFS

Since the flash memory was not available, the root file system of the embedded device had to
be stored elsewhere. The amount of dynamic memory in the system was not enough to host
both the file system and to provide space for the executing applications, so another solution
had to be found. An NFS (Network File System) server was set up on a standard Linux
desktop PC and the target device was configured as an ordinary NFS client.

9.3 Running Domino on uClinux

Once a fully functional uClinux system was up and running, the Domino application could
be ported to the target hardware. From an application’s point of view, the differences be-
tween a standard Linux system and a uClinux system are very small. Since it was known in
advance that the application should eventually run on uClinux, the porting to standard Linux
was done without using functions unavailable on uClinux. Due to this fact, the application
could run on uClinux without modifications.

When compiling the Domino application for uClinux, different optimization levels were
tested. It was observed that there was no significant change in size of the executable file when

2http://www.linux-mtd.infradead.org

http://www.linux-mtd.infradead.org

9.3. RUNNING DOMINO ON UCLINUX 49

using the second level of optimization compared to when compiling with the “optimize for
size” flag. For this reason it was decided that the application should be compiled with the
second level of optimization in order to make the execution as efficient as possible.

An overview of the memory usage in EOS and in uClinux is presented in figure 9.1. Since
EOS and Domino are compiled together, it is not possible to see the amount of memory used
by each component.

1,23

1,88

0,88

2,05

13,95
12,01

0

2

4

6

8

10

12

14

16

18

1 2

M
em

or
y

(M
iB

) Free
Kernel / Domino
Domino
Memory used by system
Kernel

Figure 9.1: Memory usage

It can be observed that the uClinux system uses almost twice as much memory as the
EOS system. The largest part of the allocated memory is used by system processes, includ-
ing system buffers and caches as well as the shell and other utilities. The difference between
uClinux and EOS is not large enough to cause any problems when running the Domino ap-
plication. The remaining 12 MiB of free memory is definitely enough to handle the dynamic
memory consumption of the application running under normal circumstances. The configu-
ration used during this project utilizes on average 2 MiB of dynamic memory.

It should also be considered that the Domino application of the uClinux system does not
include as much functionality as the EOS version, since not all software modules have been
ported. The source files used for building the Domino binary for uClinux contains about
130 000 lines of code, while the source code compiled for EOS contains 350 000 lines (not
counting the operating system code). This implies that the entire Domino executable should
consume over 2 MiB of memory, when all modules have been ported. When reaching such
sizes, it might be better to use an optimization level focused on reducing the code size.

50 CHAPTER 9. MOVING TO UCLINUX RUNNING ON THE TARGET HARDWARE

Part III

Evaluation

51

Chapter 10

Real-Time Performance Measurements

10.1 Benchmarks

To be able to evaluate the performance of the uClinux system, a benchmark suite containing
a number of small test cases has been created. The same benchmarks are run on both uClinux
and EOS to collect measurements that can be used to compare the two systems.

The benchmarks can be divided into two categories, which focus on performance at dif-
ferent levels. The system performance tests evaluate system functionality such as the TCP/IP
stack and the gOS benchmarks test the implementation of the gOS API.

When comparing the performance of two systems, it is important that the testing condi-
tions are as equal as possible. In the comparison between EOS and uClinux there are a few
differences that may affect the fairness of the comparison. In EOS the file system resides on a
flash memory, but in uClinux it resides on a network file system. The amount of work needed
for accessing the file systems can not be considered as equal.

Timer interrupts in the uClinux/ARM 2.6 kernel are by default generated at 100 Hz, but
EOS generates timer interrupts at 1000 Hz. In order to make a fair comparison between
EOS and uClinux, the timer interrupts were raised to 1000 Hz in uClinux. Although the
timer generates interrupts at 1000 Hz in EOS, the internal clock was only updated at 100 Hz
intervals. This rate was also adjusted to 1000 Hz, in order to get the same time granularity in
both systems.

In order to measure the performance the two systems will achieve when they are in use,
the benchmarks were compiled with the same optimization levels that are used when com-
piling the Domino application. In the case of uClinux, the O2 optimization flag was passed
to the GCC compiler. The Norcroft ARM C compiler was run at the default level, without
additional optimizations.

10.1.1 System Performance

The system performance benchmark consists of three tests, measuring context switch over-
head, memory allocation performance and network communication speed. To be able to run
the tests on both EOS and Linux, task creation and IPC are done using the gOS interface.

The context switch benchmark measures the time it takes to switch between a number
of tasks. This is done by letting each task wait on a separate semaphore, which is initially
set to zero. The chain is started by increasing the value of the first semaphore. When a task
is released, it sets the semaphore of the next task in line. The communication overhead is
calculated and subtracted from the measured time.

The memory allocation test iteratively allocates and releases memory blocks of various
sizes, using malloc and free . The test is written to produce memory fragmentation.

53

54 CHAPTER 10. REAL-TIME PERFORMANCE MEASUREMENTS

Network communication speed is measured by sending data blocks of increasing size
through a socket set up between two tasks. By using the loopback interface, the TCP/IP stack
can be tested without interference from the external network. The same test is also performed
using an external client program, which receives data from the benchmark program. When
sending data over the loopback interface several different send and receiver buffer sizes were
used.

10.1.2 gOS Performance

The performance of the gOS functions is crucial for the performance of the application, be-
cause all operating system specific mechanisms must be accessed through this interface. Fast
underlying system calls are not useful if they cannot be effectively utilized through the gOS
API. The gOS benchmark measures the following operations.

1. Tasks

(a) A new empty task is started and terminated.

(b) The ID of the current task is obtained.

(c) The name of the current task is obtained.

(d) The name of the current task is changed.

(e) The priority of the current task is obtained.

(f) The priority of the current task is changed.

(g) The user ID of the current task is obtained.

(h) The user ID of the current task is changed.

2. Semaphores

(a) A semaphore is created and immediately deleted.

(b) A set and a get operation is performed on a semaphore.

3. Timing

(a) The current time is obtained.

(b) A task is started with the purpose to iteratively sleep for a predefined amount of
time. Every time it wakes up it measures the delay between the correct and the
actual awakening.

(c) The above test is carried out while the Domino application is running and heavily
used. The timer task is assigned the highest priority level.

Message queues are not tested since they have the same implementation in both operating
systems. Instead of using operating system dependent IPC facilities, the implementation
utilizes gOS semaphores. Any message queue measurements will therefore only reflect the
performance of the semaphore API implementation.

File system functions are not tested either, because the unfairness in the comparison was
considered to be too high.

10.2. RESULTS 55

10.2 Results

10.2.1 System Performance

The results of the system performance tests were quite different for the two operating sys-
tems. The most alarming result was the big difference between the calculated context switch
times. Depending on the number of tasks, EOS was 14 to 30 times faster than uClinux.
The only positive observation was that the percentage difference between the two systems
seemed to decrease with the number of tasks.

0

10

20

30

40

50

60

70

2 4 8 16 32 64

Number of tasks

Ti
m

e
(µ

s)

Figure 10.1: EOS context switch overhead

0

100

200

300

400

500

600

700

800

900

2 4 8 16 32 64

Number of tasks

Ti
m

e
(µ

s)

Figure 10.2: uClinux context switch overhead

56 CHAPTER 10. REAL-TIME PERFORMANCE MEASUREMENTS

Memory allocation was also done faster in EOS, although the difference was not quite as
large. The test was completed about 25% faster when run under EOS compared to when run
under uClinux.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

EOS uClinux

Ti
m

e
(s

)

Figure 10.3: Memory allocation

The network communication test on the other hand turned out better for uClinux. Only
the best result for each platform is presented, as the difference between the platforms was
of far larger magnitude than the differences within each architecture. Using the internal
loopback interface, uClinux reached a speed of 2.85 MiB per second. In the external network
test, the speed was limited by the hardware. The result of 1.18 MiB per second is near the
maximum communication speed of 1.19 MiB per second, which can be achieved on a 10
Mbps network interface.

0

0,5

1

1,5

2

2,5

3

3,5

Internal network communication External network communication

S
pe

ed
 (M

iB
/s

)

EOS
uClinux

Figure 10.4: Network communication speed

10.2. RESULTS 57

The network capabilities of EOS were not very impressing, showing an external commu-
nication speed just over half of the maximum speed. A surprising result was that the internal
communication speed was actually lower than the external.

10.2.2 gOS Performance

Most of the gOS benchmarks did not reveal any significant differences between the two sys-
tems. One of the results worth commenting, was the time it takes to start a task and await its
termination. This was more than four times faster in EOS.

0

1

2

3

4

5

6

EOS uClinux

Ti
m

e
(m

s)

Figure 10.5: Task creation and termination

0

10

20

30

40

50

60

70

Get
ID

Get
na

me

Set
na

me

Get
pr

ior
ity

Set
pr

ior
ity

Get
us

er
 ID

Set
us

er
 ID

Ti
m

e
(µ

s)

EOS
uClinux

Figure 10.6: Task operations

58 CHAPTER 10. REAL-TIME PERFORMANCE MEASUREMENTS

Most other task operations were performed in about the same amount of time in EOS and
uClinux. The priority operations were considerably slower in uClinux though, but this is of
small importance for the Domino application. Firstly, the uClinux times are not that bad and
secondly the operations are seldom used. Another significant result was the time it takes to
obtain the name of the current process, an operation that uClinux performed much faster.
Since this operation is also rather uncommon, the result is not very important.

The semaphore operations were performed faster by the uClinux system. The set and get
operations were only slightly faster, but semaphore creation and deletion were over six times
faster.

0

10

20

30

40

50

60

70

80

Create and delete semaphore Get and set semaphore

Ti
m

e
(µ

s)

EOS
uClinux

Figure 10.7: Semaphore operations

0

5

10

15

20

25

30

35

EOS uClinux

Ti
m

e
(µ

s)

Figure 10.8: Obtaining the current time

10.2. RESULTS 59

Being a real-time operating system, EOS was superior to uClinux in the timing bench-
marks. The current time was obtained much faster in EOS, and the timer tests performed
perfectly. The sleeping time was set to 500 ms, and the EOS timer was always right on
time. After increasing the frequency of the timer interrupts in the Linux kernel, uClinux
also managed to provide acceptable results. However, although the uClinux timer in most
cases showed small deviations, the delays sometimes reached alarming levels. This was par-
ticularly evident when running the timer task together with the Domino application, and
thereby increasing the system load. The diagrams show the delay between the correct and
actual awakening. It can be observed that uClinux is always at least 1 ms late.

-1

0

1

2

3

Ti
m

e
(m

s)

EOS
uClinux

Figure 10.9: Timer delay with no load

-1

0

1

2

3

4

5

6

7

8

9

10

Ti
m

e
(m

s)

EOS
uClinux

Figure 10.10: Timer delay while Domino is running

60 CHAPTER 10. REAL-TIME PERFORMANCE MEASUREMENTS

Chapter 11

Discussion

11.1 Development Environment

The choice to run Linux as the host operating system in a VMware virtual machine initially
sounded like a really good solution. It provided the valuable possibility to work with mul-
tiple operating systems in a convenient way. Unfortunately, the performance of the virtual
machine proved to be rather poor, even when run on a fast computer. It was particularly
slow when using Eclipse, which runs inside a Java virtual machine (JVM).

Perhaps a better solution would be to install Linux as the default operating system and
run Windows in a virtual machine if needed. This way computation intensive work, such as
compiling, would be performed on a real machine. Another option is to install both operating
systems on the same machine, and decide at boot time which OS to use. However, with this
alternative the easy switch between the two operating systems is lost. Finally, one may of
course install Linux and Windows on two separate computers.

Apart from the slowness, the work with the Eclipse platform has been an overall good
experience. The framework as such was found to be very feature rich and easily customiz-
able. Not all of the plug-ins have reached a satisfactory maturity level though. Instability
problems have been observed in both the C/C++ plug-in and the Subversion plug-in. As the
Eclipse development projects are very active, the future still looks very promising. During
the work with this project, new releases have become available for both the C/C++ develop-
ment plug-in and the Eclipse platform.

Even though the Eclipse Subversion plug-in showed a few problems, the Subversion re-
vision control system lived up to the high expectations. One of the most important improve-
ment compared to the old SourceSafe repository was the possibility to access the Subversion
server from any operating system and even through a web-based interface. TortoiseSVN, the
Windows Subversion client, was found to be a very good and easy to use tool.

The GNU tools for compiling and building software, i.e. GCC and GNU Make, were
used with total satisfaction. However, troubles arose when debugging the threaded appli-
cation using the GNU Debugger. There were situations where the program behaved totally
different when run in the debugger compared to when run outside the debugger. Although
the problems could be circumvented, they could never be explained. Also, the use of the
vfork system call seemed to mess up the debugging.

Debugging on the embedded device was performed with the Lauterbach Trace32 in-
circuit debugger. When debugging uClinux, Trace32 was hosted under SUSE Linux and
when debugging EOS, Trace32 was hosted under Windows XP. The Trace32 system is very
helpful when debugging both uClinux and EOS. However it seems like the Windows version
is a little bit more mature than the Linux version. The only real problem arose when debug-

61

62 CHAPTER 11. DISCUSSION

ging a specific thread, a task switch occurred and another thread misbehaved resulting in a
crash. This caused some headaches, since the Trace32 tool would still present the part of the
code that was debugged before the task switch and one could not be sure about which thread
that was causing the crash.

11.2 API Implementation

The most important design question when implementing the operating system API was to
decide whether to map the RTOS tasks to processes or threads. Given the application prop-
erties and the amount of time available, it was concluded that threads were the only realistic
choice. Considering thread disadvantages like concurrency complexity and the lack of mem-
ory protection, it can be discussed if processes would be a better option given enough time.
However, with the extensive use of shared memory this would result in a total reimplementa-
tion of large parts of the Domino software. Since the migration to processes also comes with
drawbacks, such as lower communication speed between tasks, this alternative is strongly
discouraged. It is important to remember that this conclusion is based on the properties of
the specific application, and that another conclusion may be drawn in a different porting
project.

The current API implementation does contain a number of unsolved problems. The most
difficult problem is probably the thread-specific set of open files, which enforced a rather
awkward solution for redirection of standard streams.

Another unsolved problem is that there are no access permission controls when trying to
open files through the C library. The lack of a thread-specific current directory is less impor-
tant, since only absolute paths are used. These two problems could be solved by introducing
wrapper functions for the library functions used to access files. This could be done in one of
two ways. Either the functions are overloaded or a number of new gOS functions are added.
By overloading the functions, the application code does not need to be changed. However,
by using gOS functions it is clearer to the programmer that the library functions are not called
directly.

11.3 Porting to Linux running on a PC

A variety of difficulties were discovered during the work of porting the Domino software to
a Linux PC. Some of the problems are specific to this project, while others are likely to be
encountered during most ports. Though satisfactory solutions often could be found, some
problems could gain from a discussion on alternative solutions.

When porting a portion of the software, it is difficult to decide where to place the delim-
iters. A relatively large amount of the time may be used to separate the selected portion from
the rest of the software. To avoid this work, one could try to port the entire application all at
once. Because of the time constraints this was not a possible alternative in this project, and
it would probably not be a good idea anyway. By starting with a small selection, the porting
process can be completed faster and possible problems are encountered at an earlier stage.

The decision to place the Domino file system in another directory than the root direc-
tory introduced countless problems. The complications are mostly caused by the fact that the
URLs and the file paths no longer are identical. The URLs should not be affected by the place-
ment of the file system. To solve the problem, the path to the root directory was added to the
paths. Since no natural delimiter could be found where this addition could take place, this is
done at numerous places in the code. A better solution to this problem is therefore needed.
The easiest way is of course to actually place the file system in the root directory, but this

11.4. MOVING TO UCLINUX RUNNING ON THE TARGET HARDWARE 63

alternative is not recommended. It is important to make a clear distinction between the op-
erating system and the application and not mix the files with each other. A second approach
is to introduce wrapper functions for the file access functions as previously mentioned and
to place the addition of the root directory there.

11.4 Moving to uClinux running on the Target Hardware

The porting of the Domino application from Linux to uClinux was not difficult, since the
APIs are nearly the same. The difficulty was instead to get uClinux running on the target
hardware. The lesson that can be learned is that if you are looking for a solution that is just to
click-download-install-run, you should run little endian. Most precompiled cross-compiler
suites and most of the default configurations in the uClinux distribution assume that the
target runs little endian. It takes a little more time to get everything to run big endian, but it
is by no means impossible.

The main drawback with the uClinux system is that the flash memory could not be uti-
lized, which forced the use of NFS for hosting the file system. This is a convenient solution
during development, since the files don’t have to be downloaded to the target hardware ev-
ery time a change has been made to the source or the configuration. However, it does not
work as a final solution for the embedded system, which needs to store the files locally. To
get the flash memory to work, an alignment trap handler that don’t use the MMU needs to be
implemented. This is a rather time-consuming task and could therefore not be done during
this project.

Another issue that can be discussed is the quality of the uClinux kernel code for our
specific target. One critical bug was found in the timer code, which made the system clock
run erroneously. A fix for this bug was created and sent to the maintainers. Due to the
presence of this bug, it can be assumed that the code has not been extensively tested.

11.5 Real-Time Performance Measurements

The results of the performance tests clearly showed the strengths and weaknesses of the
two operating systems. While EOS was superior when it came to timing accuracy and task
management, Linux proved its excellent networking capabilities. In an overall judgement, it
needs to be said that EOS showed better performance than uClinux. However, this is only
to expect when comparing a real-time operating system with a general purpose operating
system. A few attempts will be made to try to explain the results.

A possible reason for the bad results achieved in the task creation and context switch tests
may be a poor thread library implementation. uClinux uses the old LinuxThreads library in-
stead of the new NPTL implementation, which has been proved to be up to three times more
efficient [tim04]. By running additional tests on the uClinux platform, it was actually dis-
covered that context switches between processes were almost three times faster than context
switches between threads. However, this can only partly explain the great difference between
EOS and uClinux. The results are also a bit unexpected as a study made at Samsung [CY05]
showed that uClinux has very good context switching performance on the ARM9 processor.
Even if the measurements were done on different hardware, the results differ surprisingly
much. The exceptionally good results of EOS in these two tests are understandable, since
EOS is a real-time operating system designed to perform such operations very fast.

The timer tests also clearly show the difference between Linux and an RTOS. While the
EOS timer is correct every time, delays of varying sizes are seen in uClinux. The most dis-
turbing observation is not the average delay on about 1 ms, but the great variation. Delays

64 CHAPTER 11. DISCUSSION

as large as 9 ms were observed.
Operating system functions are generally slower on Linux than on EOS, because Linux

makes use of system calls. A system call is a routine that is executed by the kernel to ac-
complish something on behalf of the calling process [MOS01]. The procedure of transferring
control to the kernel and than back to the process introduces substantial overhead. In EOS,
operating system functions are no different than ordinary function calls and hence there are
no real system calls. This performance difference helps to explain why some functions, such
as the function for obtaining the current time, are slower on Linux.

The higher network performance in uClinux on the external interface is to large extent
explained by the lack of memory copies in the driver for the specific NIC. The NIC automat-
ically fetches data from a ring buffer in RAM. Instead of copying data into this buffer, Linux
changes the addresses to the different segments in this buffer, so that it points to the data re-
ceived from the upper layer. This means that the device driver is also responsible for freeing
the allocated memory in the buffers when transmission has completed.

In EOS the send buffer is fixed, and data that is to be sent is copied into the send ring
buffer within the device driver. This means that EOS stresses the memory bus much more
than uClinux for the same amount of data transmitted out on the network.

Chapter 12

Conclusions and Further Development

12.1 Conclusions

The work performed during this thesis has showed that a migration of the entire Domino
software to Linux is absolutely not an impossible task. During this project the core compo-
nents of the Domino software were ported and thereby the main transition problems were
discovered and solved. During the porting of the remaining parts, the new problems found
will most likely not affect the whole software as the earlier problems did.

When juxtaposing EOS and uClinux, it can be concluded that the migration to Linux
undoubtedly has an impact on performance. However, the decrease in performance is not
severe and the real-time properties will most likely be good enough for the Domino appli-
cation. Nevertheless, an application instance that runs at the limit of what the EOS platform
can handle will probably not be able to work without glitches on uClinux.

12.1.1 Recommendations for Future Linux Ports

The aim of this thesis was to provide a basis for anyone attempting to migrate from an RTOS
to embedded Linux, and not just to find the difficulties in this specific porting process. There-
fore a few recommendations for future Linux ports will be presented.

First of all a thorough investigation must be performed, where the nature and require-
ments of the application are carefully evaluated. Then it is time to consider how much the
system and the development process can benefit from moving to Linux and which possi-
ble drawbacks exist. Will the drawbacks be of minor or major importance and can there be
something done to reduce their influence?

When initiating the porting, it is strongly recommended that the target is a standard desk-
top computer running Linux. Running on a desktop computer will ease debugging signif-
icantly, due to the various tools available for desktop computers. Since there undoubtedly
will be platform specific issues to take care of with respect to memory handling etc, the use
of good debugging tools will greatly impact the progress rate of the porting process.

It is important that people with knowledge of the whole system participate in the porting
process, at least for providing guidance when outlining the porting strategy. Changing the
behaviour slightly in one software module may break functionality in another, and this may
not be noticed immediately. It is therefore important to discuss changes and their impact
before going through with them.

To simplify porting process all tasks should in the initial stage be handled as threads.
When the entire application is ported and runs stable, an overview of the tasks can be done,
where isolated tasks are identified and turned into processes.

65

66 CHAPTER 12. CONCLUSIONS AND FURTHER DEVELOPMENT

During the API implementation work, find out which RTOS features the application ac-
tually utilizes and to what extent. Only implement the features of the RTOS API that is used
by the application. Seldomly used functions should be investigated and their use should be
considered. Perhaps the code calling the function can be rewritten in another way or maybe
it already exists a more common function with the desirable behaviour? The goal should be
to remove seldomly used exotic functions with more common ones in order to keep the API
small and consistent.

12.2 Further Development

The work started in this thesis will continue at TAC, and hopefully eventually result in a
commercially available Linux based TAC Xenta 511 product. The obvious first task during
this further development is to port the remaining modules of the Domino software to Linux.
During this process it is desirable to first have a look at the whole system and identify parts
of the software that should be redesigned in order to provide an OS independent solution.
Decreasing the OS dependency will make it easier to target Linux and EOS from the same
source tree, without introducing a lot of “hacks”.

When the entire system is ported, the different tasks should be evaluated in order to
find tasks that might be converted into processes. One reason for converting some of the
tasks into processes is that it will provide a stricter line between the different modules in the
software, which will make it easier to replace a module with third party software. Memory
corruption will also be easier to track down when running the software in separate processes,
since processes can not access each others’ memory areas.

There is also a desire to create a unified build system for EOS, Linux and uClinux. Main-
taining several build systems makes it more difficult to verify that the different build systems
are coherent with each other and that they produce the same result. Moreover, the current
EOS build system does not maintain dependency information, which is a most wanted fea-
ture.

Migrating to Linux opens up a whole new world of available software, often with open
source licenses. This can be utilized in the Xenta 511 product, for instance by exchanging the
EOS FTP server with a properly maintained third party FTP server. Another module that
may be desirable to replace is the EOS SSL module, for which OpenSSL1 is a good alterna-
tive. The reason for this is that since EOS is no longer maintained, there will be no further
upgrades on the EOS SSL software and thus no security fixes when attacks against the ci-
phers used in older SSL implementations are found. Using a well maintained open source
library, the application will be able to handle the new ciphers needed for providing a strong
secure channel in the future.

1A free well known open source SSL library, http://www.openssl.org .

http://www.openssl.org

Appendices

67

Appendix A

Abbreviations

ANSI American National Standards Institute
ARM Advanced RISC Machine
API Application Programming Interface
ASN.1 Abstract Syntax Notation 1
BSD Berkeley Software Distribution
CDT C/C++ Development Tools
CM Configuration Management
CPU Central Processing Unit
CVS Concurrent Versions System
EOS Etnoteam Operating System
FIFO First-In First-Out
FPU Floating Point Unit
FSF Free Software Foundation
FTP File Transfer Protocol
GCC GNU Compiler Collection
GDB GNU Debugger
GNU GNU’s Not UNIX
gOS Generic Operating System
GPL General Public License
HIRD HURD of Interfaces Representing Depth
HTML Hypertext Markup Language
HTTP Hypertext Transport Protocol
HURD HIRD of UNIX-Replacing Daemons
IDE Integrated Development Environment
IEEE Institute of Electrical and Electronics Engineers
I/O Input/Output
IP Internet Protocol
IPC Inter-Process Communication
JTAG Joint Test Action Group
JVM Java Virtual Machine
KDE K Desktop Environment
MMC Multi Media Card
MMU Memory Management Unit
NFS Network File System
NIC Network Interface Card
NPTL Native POSIX Thread Library

69

70 APPENDIX A. ABBREVIATIONS

OS Operating System
PC Personal Computer
POSIX Portable Operating System Interface for UNIX
PPP Point-to-Point Protocol
RAM Random Access Memory
RISC Reduced Instruction Set Computer
RR Round Robin
RTOS Real-Time Operating System
SCM Source Configuration Management
SoC System-on-Chip
SSH Secure Shell
SSL Secure Socket Layer
SVR4 System V Release 4
TCP Transmission Control Protocol
TLS Thread Local Storage
UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator

Appendix B

Nomenclature

Address Space - A range of logical or physical addresses available for a processor or a pro-
cess.

ANSI C - A definition of the C language and its standard library, developed by the Amer-
ican National Standards Institute. ANSI C is sometimes referred to as C89 or simply
Standard C.

Application Programming Interface (API) - An abstract definition of the interface to a piece
of software.

Benchmark - A test suite that serves as a basis for comparison or evaluation.

Big Endian - A data representation of a multibyte value which has the most significant byte
stored at the lowest memory address.

Binary Semaphore - A semaphore that can only undertake two values. It is often used to
achieve mutual exclusion.

BSD UNIX - A forked version of the original AT&T UNIX that was developed at the univer-
sity of Berkeley, California, USA. Later versions had all AT&T derivative code removed
and were released freely to the public.

Configuration Management - The process of controlling and documenting all changes made
during the development of a software project.

Context Switch - The process of switching from one task to another, which involves storing
the context of the current task and retrieving the context of the new task. The context of
a task may include processor state, virtual address space, scheduling information and
file handles.

Counting Semaphore - A semaphore with more than two states, often used to protect mul-
tiple resources of the same type.

CPU Scheduling - The operating system mechanism that assigns CPU time to the different
tasks in the system.

Cross-Compiler - A compiler that produces object code for another platform than the one it
runs on.

Deadlock - A situation in which two or more tasks are unable to proceed, because each is
waiting for an event that can only be caused by another of the waiting tasks.

71

72 APPENDIX B. NOMENCLATURE

Embedded System - A computerized device designed to perform a dedicated function.

Endianness - An architectural attribute specifying the representation of multibyte values.
The two possibilities are called big endian and little endian.

Free Software - Software which the user is free to run, copy, distribute, study, change and
improve.

Hard Real-Time System - A system that can guarantee a maximum response time.

HVAC - An acronym for “heating, ventilation and air-conditioning”, also known as climate
control.

Integrated Development Environment (IDE) - A set of software development tools accessi-
ble from a single user interface. The environment includes tools such as editors, com-
pilers and debuggers.

Interprocess Communication (IPC) - Communication between different processes, which is
accomplished through a set of operating system facilities.

Little Endian - A data representation of a multibyte value which has the most significant
byte stored at the highest memory address.

LonWorks - A networking platform addressing the special needs of control applications,
popular for the various functions within buildings such as lightning and HVAC.

Memory Management Unit (MMU) - A hardware component handling the memory accesses
requested by the CPU. It is responsible for the translation between logical and physical
addresses.

Memory Protection - The capability of preventing a process from accessing the memory of
other processes. Memory protection is usually implemented in hardware, with the use
of an MMU.

Mutex - A MUTual EXclusion facility. Before entering the critical section, the executing task
locks the mutex. No other task is able to lock the mutex until the thread that owns it
has unlocked it.

Mutual Exclusion - The process of ensuring that only one task at a time has access to a
shared resource.

Open Source - A software distribution philosophy that allows anyone to read and modify
the source code free of charge.

POSIX - A set of standards for operating system interfaces based on UNIX.

Preemption - The act of interrupting a currently running task and replacing it with another.

Process - A running program, possibly containing multiple threads of execution.

Real-Time Operating System (RTOS) - An operating system designed for real-time appli-
cations, usually employed in embedded systems.

Reentrant - Reentrant code allows multiple threads to share a single copy of the instructions
and still be able to interleave execution. The key is to keep task-specific data in separate
memory areas, that are distinct for each task.

73

Response Time - The amount of time passed between the occurrence of an event and the
response of the system.

Scheduling Policy - An algorithm that decides which of the processes ready for execution
to allocate to the CPU.

Semaphore - A synchronization mechanism that consist of an integer value that can be
increased or decreased through two operations. Trying to decrease a non-positive
semaphore value causes the calling task to block. There are binary semaphores and
counting semaphores.

Soft Real-Time System - A system that attempts to give an answer within a maximum re-
sponse time, although no guarantees are given.

Synchronization - A type of communication between processes or threads that aims to con-
strain the relative order of execution. Semaphores and mutexes are synchronization
mechanisms.

System V - AT&T System V was the last UNIX version released from AT&T. Other UNIX
distributions based on this release are Sun Solaris and SCO UnixWare.

Task - An abstract unit of computation.

Thread - An executing unit with its own stack and register content. Memory is shared be-
tween all threads belonging to the same process.

Thread Local Storage (TLS) - A feature providing means to store thread-specific data.

Thread-Safety - A code property that makes it possible for multiple threads to execute the
code simultaneously. A piece of code is thread-safe if it is reentrant or if it is protected
by a mutual exclusion mechanism.

Virtual Memory - A technique for mapping a large logical address space to a smaller physi-
cal address space.

74 APPENDIX B. NOMENCLATURE

Appendix C

The Generic OS API

C.1 Process Management

eError gOSStartProc(tMain Main, int Priority, int StackSize,
int NofFiles, int argc, char *argv[],
char *envp[], tProcID *pPID)

eError gOSStartUserProc(tMain Main, int Priority, int StackSize,
int NofFiles, int argc, char *argv[],
char *envp[], int UserID, tProcID *pPID)

eError gOSSuspendProc(tProcID PID)
eError gOSResumeProc(tProcID PID)
eError gOSDeleteProc(tProcID PID, int ReturnValue)
eError gOSGetProcID(tProcID *pPID)
eError gOSSleep(int Nofms)
eError gOSSetProcName(char *pName)
eError gOSGetProcName(char **ppName)
eError gOSSetProcPrio(tProcID PID, int Priority)
eError gOSGetProcPrio(tProcID PID, int *pPriority)
eError gOSInitChildDeathSemaphore(int Count)
eError gOSWait(tProcID *pPID, int *pStatus)
eError gOSNoWait(tProcID *pPID, int *pStatus)
eError gOSGetUID(int *pUserID)
eError gOSSetUID(int UserID)
eError gOSHome()

C.2 Semaphores

eError gOSCreateSemaphore(char *pName, int Count, tSemID *pSemID)
eError gOSDeleteSemaphore(tSemID SemID)
eError gOSSetSemaphore(tSemID SemID)
eError gOSGetSemaphore(tSemID SemID, int Timeout)
eError gOSResetSemaphore(tSemID SemID, int Count)
eError gOSGetSemaphoreID(tSemID *pSemID, char *pName)

75

76 APPENDIX C. THE GENERIC OS API

C.3 Message Queues

eError gOSCreateQueue(char *pName, int NofEntries, tQueID *pQueID)
eError gOSGetQueue(char *pName, tQueID *pQueID)
eError gOSDeleteQueue(tQueID QueID, void (*Cleanup)(void *pMsg))
eError gOSReceiveMsg(tQueID QueID, void **ppMsg, int Timeout)
eError gOSSendMsg(tQueID QueID, void *pMessage, char UrgentFlag)

C.4 Memory Management

void *gOSAllocateMemory(int Size)
eError *gOSFreeMemory(void *pObj)

C.5 Time Management

eError gOSGetTime(unsigned int *pTime)
eError gOSSetTime(unsigned int Time)
eError gOSSetSemDelayed(tSemID SemID, int Delay, tTimerID *pTimerID)
eError gOSSetSemPeriodic(tSemID SemID, int Period, tTimerID *pTimerID)
eError gOSDeleteSemPeriodic(tSemID SemID, tTimerID Timerid)

C.6 File System

eError gOSCurrentDir(char *pDir, int BufSize)
eError gOSOpenDir(char *pPath, tDir *pDir)
eError gOSCloseDir(tDir Dir)
eError gOSNextFile(tDir Dir, char *pFileName, int BufSize,

tFileAttributes *pFileAttributes)
eError gOSDiskStat(tDir Dir, tDiskStat *pDiskStat)
eError gOSGetDirSize(char *pDir, unsigned long *pSize)
eError gOSChangeDir(char *pDir)
eError gOSCreateDir(char *pDir)
eError gOSDeleteDir(char *pDir, char DeleteRecursive)
eError gOSRenameFile(char *pFromFile, char *pToFile);
eError gOSDeleteFile(char *pFile);
eError gOSFullPath(char *pFileName, char **ppFullPath);
eError gOSGetFileTime(char *pFile, unsigned long *pSeconds,

unsigned long *pUseconds);
eError gOSGetFileSize(char *pFile, unsigned long *pSize)
eError gOSGetFileType(char *pFile, eFileType *pType)
int gOSExec(char *pFile, char *argv[])

C.7 System Tracing

void gTaskCreate(int TaskID)
void gTaskKill(int TaskID)
void gTaskSwitch(int OldID, int NewID)

C.8. POWER FAILURE HANDLING 77

C.8 Power Failure Handling

eError gOSEnterPFSafe()
eError gOSExitPFSafe()
eError gOSRunPFSafe()
int PowerFailTask(int argc, char *argv[])

78 APPENDIX C. THE GENERIC OS API

Bibliography

[CSFP05] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version Control
with Subversion. O’Reilly Media, 2005.

[CY05] Hyok-Sung Choi and Hee-Chul Yun. Context Switching and IPC Performance Com-
parison between uClinux and Linux on the ARM9 based Processor. Software Platform
Lab, Digital Media R&D, Samsung Electronics, 2005.

[eos99] EOS User Documentation. Etnoteam, 1999.

[GKM82] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: a Call Graph
Execution Profiler. Proceedings of the SIGPLAN ’82 Symposium on Compiler Con-
struction, Pages 120-126, 1982.

[Goo04] Jonathan Goodyear. Die VVS Die! CoDe Magazine, September/October 2004.

[gos00] Domino Generic OS Software Design Description. TAC AB, 2000.

[Gup03] Ravi Gupta. Linux 2.6 for Embedded Systems - Closing in on Real Time. LynuxWorks,
2003.

[HS02] Samuel P. Harbison and Guy L. Steele. C - A Reference Manual. Prentice Hall, fifth
edition, 2002.

[Jon05] M. Tim Jones. GNU/Linux Application Programming. Charles River Media, 2005.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice
Hall, second edition, 1988.

[Mil98] Peter A. Miller. Recursive Make Considered Harmful. AUUGN Journal of AUUG Inc.,
1998.

[MOS01] Mark Mitchell, Jeffrey Oldham, and Alex Samuel. Advanced Linux programming.
New Riders Publishing, 2001.

[Raj04] Sp. Raja. Linux for Real Time Requirements. Integrated SoftTech Solutions P Ltd,
2004.

[Sal94] Peter H. Salus. A Quarter Century of UNIX. Addison-Wesley, 1994.

[SGG00] Abraham Silberschatz, Peter Galvin, and Greg Gagne. Applied Operating System
Concepts. John Wiley & Sons, first edition, 2000.

[tim04] Migrating to the 2.6 Linux Kernel. TimeSys Corporation, 2004.

[Wal04] Linus Walleij. Att använda GNU/Linux. Studentlitteratur, 2004.

79

80 BIBLIOGRAPHY

[Wei01] Bill Weinberg. Moving from a Proprietary RTOS To Embedded Linux. Montavista
Software, 2001.

[Wol01] Wayne Wolf. Computers as Components - Principles of Embedded Computing System
Design. Academic Press / Morgan Kaufmann Publishers, 2001.

	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	I Background
	Introduction
	Background
	Purpose
	Methodology
	Report Outline

	The GNU/Linux Operating System
	History
	Linux
	GNU
	GNU/Linux

	POSIX
	The Shell
	User Management
	The File System
	The Process Model

	Processes and Threads
	Memory Management
	Interprocess Communication
	Synchronization
	Data communication

	I/O System

	Embedded Linux
	History
	Embedded Linux Distributions
	Real-Time Properties
	uClinux
	Programming for uClinux
	uClinux/ARM

	The Domino System
	Introduction
	Hardware
	The Etnoteam Operating System
	Task Management
	Memory Management
	Interprocess Communication
	I/O System

	The Generic OS Interface
	The C Library
	The Application Software
	Architecture
	Variable Server
	Web Server
	Trend Logging
	Alarm Handling
	Command Line Interface

	RTOS to Linux Porting Considerations
	Architecture
	The RTOS Model
	The Linux Model
	Processes and Threads
	Application Properties

	Application Programming Interfaces (APIs)
	Accommodation Strategies
	Linux APIs
	Interprocess Communication (IPC) and Synchronization

	The Benefits of Porting to Linux
	An Open Source System
	Important Features
	Development Advantages

	II Migration
	Development Environment
	Background
	Operating System
	Integrated Development Environment
	Eclipse

	Configuration Management
	Compilation
	Debugging
	Cross Compilation
	Remote Debugging

	API Implementation
	Domino Generic OS Interface
	Tasks
	Processes or Threads
	A POSIX Thread Based Implementation

	Semaphores
	Message Queues
	Time Management
	Memory Management
	File System
	System Tracing
	Power Failure Handling

	Porting to Linux running on a PC
	The Planning Phase
	The Porting Process
	Header Files
	Application Rewriting
	Stub Functions
	Debugging

	Module Porting
	Makefile
	Web Server
	Variable Server
	Trend Logging and Alarm Handling
	The Domino Shell

	Porting Issues
	CPU Scheduling
	Root Privileges
	C Library Functions
	The Socket API
	Case Sensitivity
	File System Placement
	Assembly Routines
	Hardware Dependencies

	Moving to uClinux running on the Target Hardware
	C Language Libraries for Embedded Linux
	Porting uClinux
	The Serial Port
	Memory Alignment
	Flash Memory
	NFS

	Running Domino on uClinux

	III Evaluation
	Real-Time Performance Measurements
	Benchmarks
	System Performance
	gOS Performance

	Results
	System Performance
	gOS Performance

	Discussion
	Development Environment
	API Implementation
	Porting to Linux running on a PC
	Moving to uClinux running on the Target Hardware
	Real-Time Performance Measurements

	Conclusions and Further Development
	Conclusions
	Recommendations for Future Linux Ports

	Further Development

	Appendices
	Abbreviations
	Nomenclature
	The Generic OS API
	Process Management
	Semaphores
	Message Queues
	Memory Management
	Time Management
	File System
	System Tracing
	Power Failure Handling

	Bibliography

