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Abstract

We prove that the maximum inferred local consensus tree problem is NP-complete,
thus resolving an open question from [3].

1 Introduction

An evolutionary tree is an unordered tree whose leaves are in one-to-one cor-
respondence with a set of species. Internal nodes represent common ancestors,
and the branching structure reflects the species’ evolutionary relationships. In
some settings, the data does not uniquely determine a root, which leads to
unrooted (as opposed to rooted) trees.

Traditional methods for evolutionary tree construction can be divided into
character-based, distance-based, and maximum likelihood methods [7,8,10].
Recently, methods for inferring evolutionary history from information concern-
ing local topological relationships between the species have been proposed and
analyzed. Among these are quartet methods [5,9] which first compute unrooted
topologies for subsets of cardinality four of the species and then combine them
to form an unrooted evolutionary tree, and rooted consensus methods [1,3,4,6].

Aho et al. [1] studied the problem of inferring a rooted tree from a set of
constraints on lowest common ancestor relations. They showed how to decide
whether an instance admits a solution that is consistent with all of the con-
straints, and if so, how to construct it, in O(mnlogm) time, where m is the
number of constraints and n the number of species. An even faster implemen-
tation restricted to constraints in the form of rooted, unordered, binary trees
on three species was later given by Henzinger et al. [4]. However, data obtained
experimentally often contains errors, implying that there usually will not ex-
ist a tree consistent with all of the constraints. A single erroneous constraint
in the input might result in these algorithms returning the null tree. There-
fore, [3] introduced optimization versions of the problem, called MICT and
MILCT. [3] proved that MICT is NP-complete and proposed some approxima-
tion algorithms for MICT and MILCT, but left the computational complexity
of MILCT as an open problem. In this paper, we prove that MILCT is NP-
complete, obtaining a shorter NP-completeness proof for MICT in the process.
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2 Problem Definitions and Results

Let S be a set of elements. An LCA constraint on S is a constraint of the form
{i,j} < {k,l}, where i,j,k,l € S, which specifies that the lowest common
ancestor of 7 and j is a proper descendant of the lowest common ancestor of &
and [. An LCA constraint of the form {i,j} < {i, k} is called a 3-leaf constraint
on S; it uniquely determines the relative topology of 7, 7, and k, and is written
as ({4,7}, k) for short. A rooted tree with leaves distinctly labeled by elements
in S and an LCA constraint on S which is satisfied in the tree are consistent
with each other.

The mazimum inferred consensus tree problem is to construct a rooted tree
that is consistent with as many LCA constraints as possible from a given set.
The corresponding decision problem is:

The maximum inferred consensus tree problem (MICT)

Instance: Finite set U, set V' of LCA constraints on U, positive integer L < |V|.

Question: Is there a rooted tree that is consistent with L of the constraints in V7

A special case of MICT occurs when each constraint is a 3-leaf constraint:
The maximum inferred local consensus tree problem (MILCT)

Instance: Finite set S, set T of 3-leaf constraints on S, positive integer K < |T|.

Question: Is there a rooted tree that is consistent with K of the constraints in 77

To determine the computational complexity of MILCT, it will be useful to
know that the following problem is NP-complete (problem [MS2] in [2]):

Cyclic Ordering

Instance: Finite set A, collection C' of ordered triples (a, b, ¢) of distinct elements
from A.

Question: Is there a one-to-one function f: A — {1,2,...,|A|} such that, for each
(a,b,c) € A, we have either f(a) < f(b) < f(c), or f(b) < f(c) < f(a), or
fle) < fla) < f(b)?

We are now ready to prove the main result.

Theorem 1 MILCT is NP-complete.

PROOF. MILCT is in NP since verifying if there exists a rooted tree that is
consistent with a given subset of 7" can be done in polynomial time with the
algorithm of Aho et al. [1].

To show the NP-hardness of MILCT, we give a polynomial-time reduction
from Cyclic Ordering. Given an instance (A, C') of Cyclic Ordering, let S =
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AU{zg, x1, 72, ..., 7|0} and K = W +2-|C|. For each a,b € A with a # b,
include the two constraints ({z¢,a},b) and ({xg,b},a) in T. Next, for every
iin {1,2,...,|C|}, add to T the three constraints ({x;, a},b), ({x;, b}, ), and
({xi, c},a), where (a, b, c) is the ith ordered triple in C'. Note that at most one
of ({zg,a},b) and ({xo,b},a) and at most two of ({;,a},b), ({z;, b}, c), and
({x;, ¢}, a) can be consistent with any rooted tree, so the number of constraints
in T that can be satisfied must be < K.

Claim: (A, C) has a cyclic ordering if and only if there exists a rooted tree
that is consistent with K of the constraints in 7'

Proof of claim: Suppose the answer to the Cyclic Ordering instance is yes.
Then there exists a one-to-one function f : A — {1,2,...,]A|} such that,
for each ordered triple (a,b,¢) € C, we have either f(a) < f(b) < f(¢), or
f(b) < f(e) < f(a), or f(c) < f(a) < f(b). We can construct a rooted tree
consistent with K constraints as in Fig. 1.

f (Al

Fig. 1.

If f(oi) < f(B:i) < f(7;) for the ith ordered triple in C, then ({z;, o;}, ()
and ({x;, 5;},7:) are consistent with the tree. Also, for each pair a,b € A with
a # b, exactly one of ({xg,a},b) and ({z¢,b},a) is consistent with the tree.
Thus, the tree is consistent with 2 - |C'| + W of the constraints in 7.

Conversely, suppose there exists a rooted tree R consistent with % +
2-|C] of the constraints. At most W constraints of type ({zo,a},b) and
at most 2 - |C] constraints of type ({x;,a},b) with i # 0 can be consistent
with R, so R must be consistent with precisely this many constraints of each
type, respectively. % constraints of the former type can only be satisfied
if the subtree of R induced by AU{x,} is a rooted caterpillar whose root is the
parent of a leaf and an internal node, and one of the two leaves at maximum
distance from the root is labeled zy (otherwise, for some pair a,b € A, neither
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({xo,a},b) nor ({xg,b},a) would be consistent with R). For each a € A, let
f(a) be the number of internal nodes on the path from a to o in the subtree
of R induced by AU{zo}. Next, because of the constraints of the second type,
for every ordered triple (a,b,c) € C, exactly two of the three corresponding
constraints in 7" are consistent with R (if, for some ordered triple, just one
constraint was consistent with R, then the number of constraints of this type
consistent with R could not add up to 2 - |C|). Therefore, either (1) a is
closer to xy than b is to xy and b is closer to zy than ¢ is to zy, implying
f(a) < f(b) < f(c), or (2) bis closer to xy than ¢ is to xy and ¢ is closer to
than a is to o, implying f(b) < f(c) < f(a), or (3) ¢ is closer to xy than a is
to xp and a is closer to zp than b is to xy, implying f(c) < f(a) < f(b). O

Corollary 2 MICT is NP-complete.

PROOF. MICT is in NP because the algorithm of Aho et al. [1] can check
any given subset of the LCA constraints for consistency in polynomial time.
MICT is NP-hard since it admits a direct reduction from MILCT; just replace
each 3-leaf constraint ({a,b}, c) in the given instance by {a,b} < {a,c}. O
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