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This article presents a fast algorithm for finding the Adams consensus tree of a set of 
conflicting phylogenetic trees with identical leaf labels. Its worst-case running time is 
O (kn log n), where k is the number of input trees and n is the size of the leaf label set; in 
comparison, the original algorithm of Adams has a worst-case running time of O (kn2). To 
achieve subquadratic running time, the centroid path decomposition technique is applied in 
a novel way that traverses the input trees by following a centroid path in each of them in 
unison. For k = 2, an even faster algorithm running in O (n · log n

log log n ) time is provided, which 
relies on an extension of the wavelet tree-based technique of Bose et al. for orthogonal 
range counting on a grid. Our extended wavelet tree data structure also supports truncated 
range maximum/minimum queries efficiently.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Scientists use phylogenetic trees to describe treelike evolutionary history [11,21,25,27]. A consensus tree is a phylogenetic 
tree that reconciles two or more given phylogenetic trees with identical leaf labels but different branching patterns, e.g., 
obtained from multiple data sets or obtained by resampling. The concept of a consensus tree was introduced by Adams 
in 1972 [1], and the tree constructed by the algorithm in [1] is nowadays referred to as the Adams consensus tree. Since 
conflicting branching information can be resolved in various ways, a number of alternative definitions of consensus trees 
have been proposed and analyzed in the literature since then; see the surveys in [8], Chapter 30 in [11], or Chapter 8.4 
in [27]. However, the Adams consensus tree was the only existing consensus tree of any kind for several years and thus 
gained popularity among the research community early on. It has been implemented in classic phylogenetics software 
packages such as COMPONENT [22], EPoS [14], and PAUP* [28]. Over the decades, many articles in biology have utilized the 
Adams consensus tree to reach their conclusions; some examples of highly cited ones include [19], [24], and [29], and more 
recently, [18] and [23].

Apart from its historical significance, two useful features of the Adams consensus tree are that it preserves the nesting 
information common to all the input trees [2] and that it does not introduce any new rooted triplet information [8]. Another 
feature of the Adams consensus tree is its robustness; adding extra copies of any of the input trees will not affect the 

✩ A preliminary version of this article appeared in J. Jansson, Z. Li, W.-K. Sung, On finding the Adams consensus tree, in: Proceedings of the 32nd 
International Symposium on Theoretical Aspects of Computer Science, STACS 2015, in: LIPIcs, vol. 30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik 
GmbH, 2015, pp. 487–499.

* Corresponding author.
E-mail addresses: jesper.jansson@polyu.edu.hk (J. Jansson), lizhaoxianfgg@gmail.com (Z. Li), ksung@comp.nus.edu.sg (W.-K. Sung).
http://dx.doi.org/10.1016/j.ic.2017.08.002
0890-5401/© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ic.2017.08.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://creativecommons.org/licenses/by/4.0/
mailto:jesper.jansson@polyu.edu.hk
mailto:lizhaoxianfgg@gmail.com
mailto:ksung@comp.nus.edu.sg
http://dx.doi.org/10.1016/j.ic.2017.08.002
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2017.08.002&domain=pdf


J. Jansson et al. / Information and Computation 256 (2017) 334–347 335
Fig. 1. An example. Let S = {T1, T2, T3} as above with �(T1) = �(T2) = �(T3) = {a, b, c, d, e, f }. The Adams consensus tree of S is shown on the right. 
Also note that in this particular example, the Adams consensus tree of S does not equal the Adams consensus tree of {A, T3}, where A is the Adams 
consensus tree of {T1, T2}.

output [11], whereas the structure of the so-called majority rule consensus tree [20] or the frequency difference consensus 
tree [13] may change completely. In addition, the Adams consensus tree is insensitive to the order in which the input trees 
are provided [1], as opposed to the greedy consensus tree [8,12]. Finally, it may be much more informative than the strict 
consensus tree [26] and the loose consensus tree [7] in cases where a few leaves are in the wrong positions in some of the 
input trees due to noisy data (for an example, refer to Figure 1 in reference [2]).

The original algorithm of [1] for building the Adams consensus tree has a worst-case running time of O (kn2), where k is 
the number of input trees and n is the size of the leaf label set [25]. Despite its practical usefulness, its running time has not 
been improved in the last forty years. The purpose of this article is to achieve a better time complexity. The algorithm of [1]
is reviewed in Section 1.2, and Section 2 shows that its expected running time is in fact o(kn2) for trees generated by some 
realistic models of evolution. Next, Section 3 gives an improved algorithm whose worst-case running time is O (kn log n), 
based on a new way of applying the centroid path decomposition technique [9]. Section 4 describes an even faster method 
for the special case of k = 2 with a worst-case running time of O (n · log n

log log n ), using an extension of the wavelet tree of 
Bose et al. [6]. Finally, Section 5 presents a prototype implementation of our algorithm from Section 3 and discusses some 
experimental results.

1.1. Definitions and notation

We will use the following definitions. A phylogenetic tree is a rooted, unordered, leaf-labeled tree such that all leaves 
have different labels and every internal node has at least two children. Below, phylogenetic trees are called “trees” for short, 
and every leaf in a tree is identified with its label. All edges in a tree are assumed to be directed from the root to the 
leaves.

Let T be a tree. The set of all nodes in T and the set of all leaves in T are denoted by V (T ) and �(T ), respectively. For 
any u, v ∈ V (T ), u is called a descendant of v and v is called an ancestor of u if there exists a (possibly empty) directed path 
in T from v to u; if this path is nonempty then we write u ≺ v and call u a proper descendant of v and v a proper ancestor 
of u. For any u ∈ V (T ), T u is the subtree of T rooted at u, i.e., the subgraph of T induced by the node u and all of its proper 
descendants in T . For any u ∈ V (T ), let ChildT (u) be the set of all children of u in T . The depth of any u ∈ V (T ), denoted by 
depthT (u), is the number of edges on the unique path from the root of T to u. For any nonempty X ⊆ V (T ), lcaT (X) is the 
lowest common ancestor in T of the nodes in X . For any nonempty B ⊆ �(T ), define the restriction of T to B , denoted by 
T |B , as the tree T ′ with leaf label set B and node set {lcaT ({u, v}) : u, v ∈ B} that preserves the ancestor relations from T , 
i.e., that satisfies lcaT (B ′) = lcaT ′

(B ′) for all nonempty B ′ ⊆ B .
Next, let S = {T1, T2, . . . , Tk} be any set of trees with �(T1) = �(T2) = . . . = �(Tk) = L for some leaf label set L. The 

Adams consensus tree of S [1,2] is the unique tree T with �(T ) = L for which the following two properties hold:

• For any A, B ⊆ L, if lcaT j (A) ≺ lcaT j (B) in every T j ∈ S then lcaT (A) ≺ lcaT (B).
• For any u, v ∈ V (T ), if u ≺ v in T then lcaT j (�(T u)) ≺ lcaT j (�(T v)) in every T j ∈ S .

See Fig. 1 for an example. Importantly, it was proved in [2] that these two properties are satisfied by the output of the 
algorithm in [1] (reviewed in Section 1.2 below). This means that to prove the correctness of a new algorithm for building 
the Adams consensus tree, one just needs to show that its output is equal to the output of the algorithm in [1].

Given any input set S of trees with identical leaf label sets, we write S = {T1, T2, . . . , Tk} and define L = �(T1)(=
�(T2) = . . . = �(Tk)). To express the time complexity of any algorithm computing the Adams consensus tree of S , we 
define k = |S| and n = |L|.
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Algorithm Old_Adams_consensus

Input: A set S = {T1, T2, . . . , Tk} of trees with �(T1) =�(T2) =. . .=�(Tk).
Output: The Adams consensus tree of S .

1: if T1 has only one leaf then let T := T1; /* Base case of recursion */
2: else /* General case of recursion */
3: π := Compute_partition(S);
4: for B ∈ π do T B := Old_Adams_consensus({T1|B, T2|B, . . . , Tk|B});
5: Create a tree T whose root is the parent of the root of T B for all B ∈ π ;
6: end if
7: return T ;

Fig. 2. Algorithm Old_Adams_consensus, adapted from [1].

Procedure Compute_partition

Input: A set S = {T1, T2, . . . , Tk} of trees with �(T1) = �(T2) = . . . = �(Tk) =
L′ such that |L′| ≥ 2.
Output: A list of all parts in the partition π(S) of L′ .
1: Fix an arbitrary left-to-right ordering of the children of the root of every 

T j ∈ S and denote the ith child (according to this ordering) of the root 
of T j by ci

j ;

2: for every � ∈ L′ do compute the vector (m1(�), m2(�), . . . , mk(�)), where for 
j ∈ {1, 2, . . . , k}, m j(�) = i if and only if � is a descendant of ci

j in T j ;

3: Put the vectors (m1(�), m2(�), . . . , mk(�)) for all � ∈ L′ in a list W and 
sort W ;

4: Do a single scan of W to identify the parts in π(S) and return them;

Fig. 3. Procedure Compute_partition.

1.2. Previous work

The Adams consensus tree can be computed by the algorithm from [1], which we will now describe. From here on, this 
algorithm will be referred to as Old_Adams_consensus. The pseudocode is given in Fig. 2.

For any tree T with at least two leaves, define π(T ) = {�(T c) : c ∈ ChildT (r), where r is the root of T }. Observe that 
π(T ) is a non-trivial partition of �(T ); i.e., |π(T )| ≥ 2. Next, for any set of trees S = {T1, T2, . . . , Tk} with �(T1) = �(T2) =
. . . = �(Tk) = L for a leaf label set L with |L| ≥ 2, define π(S) to be the product of the partitions π(T1), π(T2), . . . , π(Tk); 
i.e., π(S) is the partition of L in which, for each part B ∈ π(S), it holds that B �= ∅ and B = ⋂k

j=1 �(T
c j

j ) for some child c j

of the root of T j for every j ∈ {1, 2, . . . , k}. As an example, in Fig. 1, π(T1) =
{{a, b, c, d, e}, { f }}, π(T2) =

{{a}, {b, c, d, e, f }},
π(T3) =

{{a, b, c, d}, {e, f }}, and π(S) = {{a}, {b, c, d}, {e}, { f }}.
To compute π(S), one can apply Procedure Compute_partition in Fig. 3. It encodes each � ∈ L by a vector of 

length k whose jth entry m j(�) (for j ∈ {1, 2, . . . , k}) indicates which child of the root of T j is an ancestor of �. In this way, 
any two leaf labels in L belong to the same part in π(S) if and only if their vectors are identical. By sorting the list W of 
all such vectors and scanning W to find all vectors that are identical, the parts in π(S) are obtained.

Old_Adams_consensus first computes π(S). It then recursively constructs the Adams consensus tree of
{T1|B, T2|B, . . . , Tk|B} for each B in π(S) and attaches all of them to a newly created common root node. By Theorem 3 
in [2], this yields the Adams consensus tree of S . According to [25], the time complexity of Old_Adams_consensus is 
O (kn2).

2. Preliminaries

This section reanalyzes the time complexity of Old_Adams_consensus. For any B ⊆ L, B is called a relevant block if at 
any point of the algorithm’s execution, Step 4 makes a recursive call with {T1|B, T2|B, . . . , Tk|B} as the argument. Define 
B = {B : B is a relevant block}. For every � ∈ L, define B(�) = {B ∈ B : � ∈ B}. The next lemma gives a bound on |B(�)|.

Lemma 1. For every � ∈ L, |B(�)| ≤ mink
j=1 depthT j (�).

Proof. Step 3 of Old_Adams_consensus initially generates a partition π1 of L, and there exists exactly one relevant 
block B1 in π1 such that � ∈ B1. Then, during the recursive call Old_Adams_consensus ({T1|B1, T2|B1, . . . , Tk|B1}), 
a partition π2 of B1 is generated in the same way, and there exists exactly one relevant block B2 in π2 such that 
� ∈ B2. This process is repeated until a relevant block of the form Bm = {�} is reached and the recursion stops. At any 
recursion level i, when Old_Adams_consensus({T1|Bi, T2|Bi, . . . , Tk|Bi}) makes a call to Old_Adams_consensus
({T1|Bi+1, T2|Bi+1, . . . , Tk|Bi+1}), it always holds that depthT j |Bi+1 (�) ≤ depthT j |Bi (�) − 1 for all trees T j ∈ S . Hence, the 
number of recursive calls that involve � is upper-bounded by mink

j=1 depthT j (�). �
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Theorem 1. Old_Adams_consensus runs in O (k · ∑�∈L mink
j=1 depthT j (�)) time.

Proof. We first explain how to implement the procedure Compute_partition to run in O (k|L′|) time, where L′ is the 
leaf label set of its input S . In Step 2, use the level ancestor data structure from [4] as follows: Spend O (|L′|) time to 
preprocess each T j ∈ S so that the ancestor of any � ∈ L′ at depth 1 in T j can be retrieved in O (1) time. This preprocessing 
takes O (k|L′|) time, and finding the vectors (m1(�), m2(�), . . . , mk(�)) for all � ∈ L′ subsequently takes a total of O (k|L′|)
time. In Step 3, sort the list W in O (k|L′|) time by radix sort.

Next, we consider Old_Adams_consensus. Before running the algorithm, use the method from Section 8 of [9] to 
preprocess each T j ∈ S in O (n) time so that T j |B for any B ⊆ L can be constructed in O (|B|) time. This takes O (kn) time 
in total. The same preprocessing works for all recursion levels and does not need to be repeated during recursive calls 
because for any A � B , (T j|B)|A = T j |A holds (to see this, observe that lcaT j |B({�1, �2}) = lcaT j ({�1, �2}) for any �1, �2 ∈ A, 
so V ((T j |B)|A) = V (T j |A) and furthermore, lca(T j |B)|A(A′) = lcaT j |A(A′) for all nonempty A′ ⊆ A, giving (T j|B)|A = T j|A
in accordance with the definitions in Section 1.1). Excluding the time required by its recursive calls, the running time 
of Old_Adams_consensus({T1|B, T2|B, . . . , Tk|B}) then becomes O (k|B|) for each B ∈ B. In total, the running time of
Old_Adams_consensus(S) is O (kn + ∑

B∈B k|B|) = O (k · ∑B∈B |B|) = O (k · ∑�∈L |B(�)|). By Lemma 1, 
∑

�∈L |B(�)| ≤
∑

�∈L mink
j=1 depthT j (�). The theorem follows. �

Since |L| = n and depthT j (�) < n for all � ∈ L and T j ∈ S , Theorem 1 implies that the worst-case running time of
Old_Adams_consensus is O (kn2), as already mentioned in [25]. However, if the average leaf depth is very small then 
the running time can be much less than that. According to Theorem 1, we obtain:

Corollary 1. If S is a set of trees with expected average leaf depth α then the expected running time of Old_Adams_consensus is 
O (knα).

For example, the expected average leaf depth in a random binary phylogenetic tree with n leaves generated in the Yule-
Harding model [5,16,25], the uniform model [5,25], and the activity model [16] (with the activity parameter p set to 1

2 ) is 
O (log n) [5,16], O (n1/2) [5], and O (n1/2) [16], respectively. In these cases, the expected running time of Old_Adams_con-
sensus will be O (kn log n), O (kn1.5), and O (kn1.5).

3. New algorithm for k input trees

This section provides a more efficient solution for computing the Adams consensus tree of k input trees. The algorithm 
is called New_Adams_consensus_k and its worst-case running time is O (kn log n).

The main idea is to avoid making recursive calls to large subproblems, and treat them iteratively instead. For this purpose, 
we apply the centroid path decomposition technique [9] in a new manner. Essentially, by utilizing Lemma 2 below, the 
algorithm implicitly computes π(S) in such a way that the Adams consensus tree can be constructed recursively for all parts 
in π(S), except for one. To handle the remaining part, its corresponding Adams consensus tree is constructed iteratively by 
going down the centroid paths in all the trees in unison and applying Lemma 2 at each level. (This kind of “synchronized 
centroid path traversal” appears to be a novel way of applying the centroid path decomposition technique.) Finally, the 
Adams consensus tree of S is assembled by attaching the root of each tree constructed for the parts in π(S) to a new root 
node.

Some definitions needed to describe the details of New_Adams_consensus_k are given in Section 3.1. Then, the 
algorithm is presented in Section 3.2 and its time complexity is analyzed in Section 3.3.

3.1. Additional definitions

Recall from [9] that a centroid path in a tree T is a path in T of the form P = 〈pα, pα−1, . . . , p1〉, where pα can be any 
node in T , pw−1 for every w ∈ {2, . . . , α} is a child of pw with the maximum number of leaf descendants (with ties broken 
arbitrarily), and p1 is a leaf. For example, in Fig. 4, the path in the tree T j from the root to the leaf i indicated by dashed 
lines is a centroid path in T j because the child of the root lying on this path has eight leaf descendants while none of the 
root’s other children have more than that, and similarly at each non-leaf node along the path. Next, let P be a centroid path 
in a tree T . For any u ∈ V (T ) such that u does not belong to P but the parent of u does, the subtree T u is called a side tree
of P . In Fig. 4, the indicated centroid path in T j has seven side trees. For any side tree τ of a centroid path starting at the 
root of a tree T , the property |�(τ)| ≤ |�(T )|/2 holds. This property will be used in the proof of Theorem 2 to bound the 
time complexity of the new algorithm.

Suppose |L| ≥ 2. As Old_Adams_consensus above, New_Adams_consensus_k will compute the partition π(S)

of L to determine the branching structure at the top level of the Adams consensus tree. However, for efficiency reasons, it 
does not compute π(S) directly. Instead, it computes a restricted partition, defined as follows: For any X ⊆ L, let π(S; X) =
{B ∩ X : B ∈ π(S) and |B ∩ X | ≥ 1}. In other words, π(S; X) is the partition π(S) restricted to elements in X . Note that 
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Fig. 4. A tree T j and a centroid path in T j (indicated by dashed lines) are shown on the left. Contracting the side trees of the given centroid path in T j to 
fan trees yields the tree T ′

j on the right.

π(S; X) may be the trivial partition of X as it can be a singleton. To continue the example from Fig. 1 in Section 1.2 where 
we had π(S) = {{a}, {b, c, d}, {e}, { f }}, if X = {a, b, c} then π(S; X) = {{a}, {b, c}} and if X = {b, c} then π(S; X) = {{b, c}}.

For each j ∈ {1, 2, . . . , k}, let P j be any centroid path in T j that starts at the root of T j . By taking the set of all leaves that 
belong to a topmost side tree of at least one P j , the partition π(S) can be expressed as a restricted partition as follows:

Lemma 2. Let X = {
x ∈ L : for some j ∈ {1, 2, . . . , k}, x belongs to a side tree of P j attached to the root of T j

}
. It holds that:

• If X �= L then π(S) = π(S; X) ∪ {L \ X}.
• If X = L then π(S) = π(S; X).

Proof. Consider any B ∈ π(S). If B contains at least one element from X then B ⊆ X , and consequently B ∩ X = B and B ∈
π(S; X). On the other hand, if B contains no elements from X then B is equal to L \ X . Therefore, π(S) ⊆ π(S; X) ∪ {L \ X}
when X �= L, and π(S) ⊆ π(S; X) when X = L.

To prove the other direction, consider any B ∈ π(S; X). By the definition of X , B ∈ π(S). Also, if X �= L then L \ X
is nonempty and consists of all leaves that are descendants of the child of the root of T j that lies on P j for every j ∈
{1, 2, . . . , k}. Since all these leaves belong to the same part in π(T j) for each j ∈ {1, 2, . . . , k}, we have L \ X ∈ π(S). Thus, 
π(S; X) ∪ {L \ X} ⊆ π(S) when X �= L, and π(S; X) ⊆ π(S) when X = L. The lemma follows. �

Next, we define a tree T ′
j for each T j ∈ S . We remark here that using the T ′

j-trees does not increase or decrease the 
asymptotic time complexity, but greatly simplifies the description of the algorithm and its implementation. First, a delete
operation on any non-root, internal node u in a tree is the operation of letting all of u’s children become children of the 
parent of u, and then removing u and the edge between u and its parent. A fan tree is a tree in which either all the leaves 
are children of the root, or there is just a single leaf. For each j ∈ {1, 2, . . . , k}, let T ′

j be the tree obtained by taking a copy 
of T j and doing a delete operation on every non-root, internal node whose parent does not belong to the centroid path P j ; 
by performing all delete operations in top-down order, T ′

j can be constructed in O (n) time. Thus, T ′
j consists of the centroid 

path P j with a collection of fan trees attached to it, and each such fan tree’s leaf label set is equal to the leaf label set of 
one of the side trees of P j . See Fig. 4 for an illustration. The T ′

j-tree is a useful summary of T j that helps us to directly 
retrieve the leaf label set of any side tree of P j or to check which side tree of P j that a specified leaf belongs to in O (1)

time. In particular, Lemma 2 can be rephrased in terms of the T ′
j-trees as in Corollary 2 below, which will be used in the 

new algorithm.

Corollary 2. Let X = {
x ∈ L : for some j ∈ {1, 2, . . . , k}, x belongs to a fan tree attached to the root of T ′

j

}
. It holds that:

• If X �= L then π(S) = π({T ′
1, T

′
2, . . . , T

′
k}; X) ∪ {L \ X}.

• If X = L then π(S) = π({T ′
1, T

′
2, . . . , T

′
k}; X).

Proof. The set X defined in Lemma 2 is equal to 
{

x ∈ L : for some j ∈ {1, 2, . . . , k}, x belongs to a fan tree attached to the
root of T ′

j

}
. Next, note that π({T ′

1, T
′
2, . . . , T

′
k}; X) = π({T1, T2, . . . , Tk}; X) by the construction of the T ′

j-trees. �
3.2. Algorithm description

We now present New_Adams_consensus_k. Refer to Fig. 5 for the pseudocode.
The base case in which there is only one leaf is handled in Steps 1–2. In the general case, Steps 4–6 first build P j and T ′

j
for every j ∈ {1, 2, . . . , k}. The algorithm then enters a repeat-loop (Steps 8–13) that initially computes and stores the re-
stricted partition π({T ′ , T ′ , . . . , T ′ }; X1), where X1 is the subset X of �(T ′ ) (= �(T ′ ) = . . . = �(T ′ )) defined in Corollary 2. 
1 2 k 1 2 k
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Algorithm New_Adams_consensus_k

Input: A set S = {T1, T2, . . . , Tk} of trees with �(T1) =�(T2) =. . .=�(Tk).
Output: The Adams consensus tree of S .

1: if T1 has only one leaf then
2: T := T1;
3: else
4: for j := 1 to k do
5: Let P j be a centroid path in T j starting at the root, and construct the 

tree T ′
j based on P j ;

6: end for
7: h := 0;
8: repeat
9: h := h + 1;

10: Xh := {
x ∈ L : for some j ∈ {1, 2, . . . , k}, x belongs to a fan tree

attached to the root of T ′
j

}
;

11: πXh := Compute_restricted_partition({T ′
1, T ′

2, . . . , T ′
k}; Xh);

12: for j := 1 to k do T ′
j := T ′

j |(�(T ′
j) \ Xh);

13: until �(T ′
1) = ∅;

14: for j := 1 to k do
15: Construct T j |B for all B ∈ ⋃h

w=1 πXw ;
16: end for
17: for w := h downto 1 do
18: for B ∈ πXw do
19: T B := New_Adams_consensus_k({T1|B, T2|B, . . . , Tk|B});
20: end for
21: Create a tree Q w whose root is the parent of the root of every T B , 

where B ∈ πXw ;
22: if w < h then attach the root of Q w+1 as a child of the root of Q w ;
23: end for
24: T := Q 1;
25: end if
26: return T ;

Fig. 5. Algorithm New_Adams_consensus_k.

(By Corollary 2, the parts in π({T ′
1, T

′
2, . . . , T

′
k}; X1) along with �(T ′

1) \ X1 yield the partition at the top level of the Adams 
consensus tree.) To obtain π({T ′

1, T
′
2, . . . , T

′
k}; X1), the algorithm uses a procedure called Compute_restricted_par-

tition that is identical to Procedure Compute_partition in Fig. 3 except that it only computes and sorts the vectors 
(m1(�), m2(�), . . . , mk(�)) for those � ∈ L′ that belong to X1 rather than of all � ∈ L′ in the second and third steps. After 
that, the leaves belonging to X1 are removed from all the T ′

j-trees. The process is repeated until the T ′
j-trees are empty, 

and each subsequent iteration of the repeat-loop mimics the computations at one recursion level in Old_Adams_con-
sensus that determine how to further partition the leaves in the set �(T ′

1) \ X1. Next, the algorithm constructs T j |B
for every part B previously computed by the repeat-loop for all j ∈ {1, 2, . . . , k} (Steps 14–16). Then, the solution Q w at 
each level w is built by recursively computing the Adams consensus tree T B for every part B in π({T ′

1, T
′
2, . . . , T

′
k}; Xw) at 

level w (Steps 18–20), combining the obtained solutions (Step 21), and attaching the Adams consensus tree Q w+1 for the 
part corresponding to L \ Xw in Corollary 2 (Step 22); Corollary 2 ensures that Q w will indeed get the same structure as 
the tree output by Old_Adams_consensus on this level. Lastly, the tree Q 1 obtained at the topmost level is returned 
(Step 26). The correctness follows from the correctness of Old_Adams_consensus.

3.3. Time complexity

The time complexity of the algorithm is given by the next theorem:

Theorem 2. New_Adams_consensus_k runs in O (kn logn) time.

Proof. Denote the time complexity of New_Adams_consensus_k({T1|L′, T2|L′ , . . . , Tk|L′}) for any L′ ⊆ L by t(L′).
We derive a recurrence for t(L′) in the following way. Steps 4–6 build P j and T ′

j for each j ∈ {1, 2, . . . , k} in 
O (k|L′|) total time. Next, iteration h of the repeat-loop computes a set Xh in Step 10 and the restricted partition πXh =
π({T ′

1, T
′
2, . . . , T

′
k}; Xh) of Xh in Step 11, both in O (k|Xh|) time. The former is accomplished by examining the T ′

j-trees, 
and the latter by computing and radix sorting the vectors (m1(�), m2(�), . . . , mk(�)) for � ∈ Xh as in Procedure Com-
pute_partition in Fig. 3 except that only � ∈ Xh are considered and each m j(�) is recovered directly from T ′

j in 
O (1) time. To implement Step 12 in O (k|Xh|) time, update every T ′

j-tree by removing all leaves that belong to Xh as 
well as any previously internal node that turns into a leaf as a result and contracting any outgoing edge from a node 
of degree 1. Constructing all the trees T j|B in Steps 14–16 takes a total of O (k|L′|) time with Lemma 5.2 from [10]
(alternatively, its generalization in Section 8 of [9] can also be used). Finally, for each w ∈ {1, 2, . . . , h}, the recursive 
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Fig. 6. Illustrating Lemma 3. Let u ∈ V (T1) and v ∈ V (T2) be two nodes as shown above and suppose B = �(T u
1 ) ∩ �(T v

2 ) = { f , h, j, k}. Then Zγ ,δ =
{(u′, v ′), (u′′, v ′), (u′′, v ′′)}, corresponding to the three parts { f , h}, {k}, and { j}, respectively, in π({T1|B, T2|B}).

calls in Steps 18–20 take 
∑

B∈πXw
t(B) time and building Q w in Steps 21 and 22 time. In total, the time complexity is 

t(L′) = O (k|L′|) + ∑h
w=1

(
O (k|Xw |) + ∑

B∈πXw
t(B)

)
.

To solve the recurrence, we use the fact that 
⋃h

w=1 πXw is a partition of L′ . Write πL′ = ⋃h
w=1 πXw . Then t(L′) =

O (k|L′|) + ∑
B∈πL′ t(B). Since every part B ∈ πL′ is of size at most |L′|/2 according to the definition of a side tree of a 

centroid path, the problem size is reduced by at least half for each successive recursive call. Thus, there are O (log |L′|)
recursion levels. The total size of all subproblems on each recursion level is O (|L′|), so each level takes O (k|L′|) time 
(excluding its recursive calls). This gives t(L′) = O (k|L′| log |L′|). �
4. New algorithm for two input trees

Here, we present an even faster algorithm for the case k = 2. The algorithm is named New_Adams_consensus_2
and has a worst-case running time of O (n · log n

log log n ). It is described in Section 4.1 and its time complexity is analyzed 
in Section 4.3. The algorithm relies on an efficient data structure for orthogonal range counting on a grid, developed in 
Section 4.2.

4.1. Outline of the new algorithm

Consider any recursive call to the original Adams consensus tree algorithm reviewed in Section 1.2. It has the form
Old_Adams_consensus({T1|B, T2|B}) for some B ⊆ L. The algorithm will spend 	(|B|) time to obtain {T1|B, T2|B} and 
to compute the partition π({T1|B, T2|B}) of the leaves in B with the procedure Compute_partition. The new algorithm 
in this section avoids constructing {T1|B, T2|B} and employs a faster method for doing the partitioning, thereby improving 
the overall running time. First, we observe that by the definition of the algorithm, B always satisfies B = �(T u

1 ) ∩ �(T v
2 ) for 

some pair of nodes u ∈ V (T1), v ∈ V (T2). This means that successive recursive calls to the algorithm can be specified by 
pairs of nodes from T1 and T2. Secondly, we observe that the algorithm does not need to proceed recursively from (u, v) to 
those (u′, v ′), where u′ ∈ ChildT1 (u) and v ′ ∈ ChildT2 (v), for which |�(T u′

1 ) ∩ �(T v ′
2 )| = 0. Based on these two observations, 

define Zu,v = {(u′, v ′) : u′ ∈ ChildT1 (u), v ′ ∈ ChildT2 (v), |�(T u′
1 ) ∩ �(T v ′

2 )| > 0}. We have:

Lemma 3. Suppose u ∈ V (T1) and v ∈ V (T2) are given. Let B = �(T u
1 ) ∩ �(T v

2 ), γ = lcaT1 (B), and δ = lcaT2 (B). If |B| > 1 then 
π({T1|B, T2|B}) = π({T u

1 |B, T v
2 |B}) = π({T γ

1 |B, T δ
2|B}) = {�(T u′

1 ) ∩ �(T v ′
2 ) : (u′, v ′) ∈ Zγ ,δ}.

Proof. By definition, π({T γ
1 |B, T δ

2|B}) is equal to {�(T u′
1 ) ∩�(T v ′

2 ) : u′ ∈ ChildT1 (γ ), v ′ ∈ ChildT2 (δ), �(T u′
1 ) ∩�(T v ′

2 ) �= ∅} =
{�(T u′

1 ) ∩ �(T v ′
2 ) : (u′, v ′) ∈ Zγ ,δ}. �

See Fig. 6 for an example.
Algorithm New_Adams_consensus_2, summarized in Fig. 7, uses Lemma 3 to compute the Adams consensus tree 

of {T u
1 |B, T v

2 |B} for any two specified nodes u ∈ V (T1), v ∈ V (T2), where B = �(T u
1 ) ∩ �(T v

2 ). (Selecting u and v to be the 
roots of T1 and T2 thus yields the Adams consensus tree of T1 and T2.)

The algorithm works as follows. If |B| = 1 then the answer is just the common leaf in �(T u
1 ) ∩ �(T v

2 ). Otherwise, 
the algorithm computes γ = lcaT1 (B) and δ = lcaT2 (B), calls a procedure Compute_Z (to be described in Section 4.3) to 
construct Zγ ,δ , and then, for every (u′, v ′) ∈ Zγ ,δ , computes its corresponding Adams consensus tree Tu′,v ′ recursively. The 
Adams consensus tree of {T u

1 |B, T v
2 |B} is obtained by attaching all of the computed Tu′,v ′ -trees to a newly created common 

root node. Lemma 3 implies that this gives the same output as Old_Adams_consensus, so the correctness of the new 
algorithm is guaranteed by the correctness of Old_Adams_consensus.
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Algorithm New_Adams_consensus_2

Input: u ∈ V (T1), v ∈ V (T2), where T1, T2 are two given trees with �(T1) =
�(T2).
Output: The Adams consensus tree of {T u

1 |B, T v
2 |B}, where B = �(T u

1 ) ∩ �(T v
2 ).

1: Compute c := |�(T u
1 ) ∩ �(T v

2 )|;
2: if c = 1 then
3: Let T be a tree consisting of the only common leaf in �(T u

1 ) ∩ �(T v
2 );

4: else
5: γ := lcaT1 (�(T u

1 ) ∩ �(T v
2 )); δ := lcaT2 (�(T u

1 ) ∩ �(T v
2 ));

6: Z := Compute_Z(γ , δ);
7: Let T be a tree consisting of a root node r;
8: for every (u′, v ′) ∈ Z do
9: Tu′,v ′ := New_Adams_consensus_2(u′, v ′);

10: Attach Tu′,v ′ as a child of r;
11: end for
12: end if
13: return T ;

Fig. 7. Algorithm New_Adams_consensus_2.

4.2. Auxiliary data structure for orthogonal range counting on a grid

This subsection presents an extension of the wavelet tree-based data structure by Bose et al. [6] for storing a set of 
2d-points lying on a grid while supporting orthogonal range counting queries (outputting the number of points in any query 
rectangle) and orthogonal range reporting queries (outputting the set of all points in any query rectangle). Our extension 
consists of also supporting truncated range maximum (or minimum) queries efficiently, where the objective is to report the 
point with the maximum (or minimum) x-coordinate inside any query rectangle [�1..�2] × [s1..s2], if any. Furthermore, 
we bound the time needed to construct the data structure since this is crucial in our application. The main result of this 
subsection is summarized in Theorem 3.

Firstly, for smaller grids, we have:

Lemma 4. Let N = {(1, N[1]), . . . , (n, N[n])} be a set of points on an n × t grid, where t = O (logε n) for any constant ε with 0 <
ε < 1/2, such that every column contains exactly one point. We can build a data structure in O (n) time after which: (i) reporting 
the number of points inside any query rectangle [1..�] × [s1..s2] takes O (1) time; and (ii) reporting the point with the maximum 
x-coordinate inside any query rectangle [1..�] × [s1..s2], if any, takes O (1) time.

Proof. We first describe the data structure for (i), i.e., orthogonal range counting queries, analogous to Lemma 3 in [6]. For 
every i = 1, . . . , n

log2 n
, we store Ci[s, s′] = the number of points in [1..i log2 n] × [s..s′] for all 1 ≤ s ≤ s′ ≤ t . Since there are 

n
log2 n

possible indices for i, t possible indices for s, and t possible indices for s′ , there are at most nt2

log2 n
possible entries in 

the table Ci[s, s′]. Since the number of points is upper-bounded by n, each entry Ci[s, s′] can be represented in O (log n) bits. 
In total, all entries Ci[s, s′] require O (

n log1+2ε n
log2 n

) = O (n) bits. To compute Ci , define N Pi[s] = the number of occurrences of 

s in {N[1], . . . , N[i log2 n]} for 1 ≤ s ≤ t . For convenience, also define N P0[s] = 0 for 1 ≤ s ≤ t . We can obtain N Pi iteratively 
for i = 1, . . . , n

log2 n
by first computing the number of occurrences of s in {N[(i − 1) log2 n + 1], . . . , N[i log2 n]} for 1 ≤ s ≤ t

in O (t + log2 n) time. Then, N Pi[s] = N Pi−1[s]+ the number of occurrences of s in {N[(i − 1) log2 n + 1], . . . , N[i log2 n]}. 
Hence, N Pi[s] can be computed using additional O (t) time. In total, N Pi for all i ∈ {1, . . . , n

log2 n
} can be computed in 

O ((t + log2 n) n
log2 n

) = O (n) time. Since Ci[s, s′] = ∑
s≤s′′≤s′ N Pi[s′′], each Ci-table can be obtained using O (t2) time. In total, 

all Ci -tables can be computed in O ((t2) n
log2 n

+ n) = O (n) time.

For every i = 1, . . . , n
log2 n

and every j = 1, . . . , log n log log n, we also store Cij[s, s′] = the number of points in [(i −
1) log2 n +1..(i −1) log2 n + j log n

log log n ] ×[s..s′] for all 1 ≤ s ≤ s′ ≤ t . There are n
log2 n

possible indices for i, log n log log n possible 

indices for j, t possible indices for s and t possible indices for s′ , so there are at most nt2 log n log log n
log2 n

entries in the table 

Ci[s, s′]. Since the number of points is upper-bounded by log2 n, each entry Cij[s, s′] can be represented in O (log logn) bits. 
In total, all entries Cij[s, s′] require O (

n(log2ε n)(log log n)2

log n ) = O (n) bits. Similar to the above, to compute Cij , we first compute 
N Pij , defined by N Pij[s] = the number of occurrences of s in {N[(i − 1) log2 n + 1], . . . , N[(i − 1) log2 n + j log n

log log n ]} for 
1 ≤ s ≤ t . Also define N Pi0[s] = 0 for 1 ≤ s ≤ t . For each i, we build N Pij iteratively for j = 1, . . . , log n log log n. To compute 
N Pij , we first compute the number of occurrences of s in {N[(i −1) log2 n +( j −1)

log n
log log n +1], . . . , N[(i −1) log2 n + j log n

log log n ]}
for 1 ≤ s ≤ t . This can be done in O (t + log n

log log n ) time. Then, N Pij[s] = N Pi( j−1)[s]+ the number of occurrences of s in 
{N[(i −1) log2 n +( j −1)

log n +1], . . . , N[(i −1) log2 n + j log n ]}. Hence, N Pij[s] for all s can be computed in O (t) time. In 
log log n log log n
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total, N Pij , for i = 1, . . . , n
log2 n

and j = 1, . . . , log n log log n, can be computed in O ((t + log n
log log n )(log n log log n) n

log2 n
) = O (n)

time. Since Cij[s, s′] = ∑
s≤s′′≤s′ N Pij[s′′], the table Cij can be computed using O (t2) time for each i, j. In total, all entries 

Cij[s, s′] can be computed in O ((t2)(log n log log n) n
log2 n

+ n) = O (n) time.

Furthermore, we precompute a table range(x1, . . . , x�, s, s′) which stores |{xi : s ≤ xi ≤ s′}|, where 1 ≤ xi ≤ t , 1 ≤ s ≤ s′ ≤ t , 

� ≤ log n
log log n . The table has 

∑ log n
log log n
�=1 t�+2 = O (nε) entries, where each entry is represented in log log n bits, so it can be 

constructed in O (n) time and stored in O (n) space.
Now, for any query rectangle [1..�] × [s1..s2], where 1 ≤ � ≤ n and 1 ≤ s1 ≤ s2 ≤ t , we first find 1 ≤ i ≤ n

log2 n
, 1 ≤ j ≤

logn log log n, and 0 ≤ k ≤ log n
log log n − 1 such that � = (i − 1) log2 n + ( j − 1)

log n
log log n + k. Then, the range count for the query 

rectangle [1..�] ×[s1..s2] equals Ci−1[s1, s2]+ Ci( j−1)[s1, s2] + range(N[� −k], . . . , N[�], s1, s2), which can be obtained in O (1)

time.
To support (ii), i.e., truncated range maximum queries, we augment the data structure as follows. For every i =

1, . . . , n
log2 n

and 1 ≤ s ≤ s′ ≤ t , define Si[s, s′] to be x if x is the biggest index smaller than i log2 n such that s ≤ N[x] ≤ s′; 
otherwise, set Si[s, s′] = −∞. For every j = 1, . . . , logn log log n, define Sij[s, s′] to be x − (i − 1) log2 n if x is the biggest 
index in the range [(i − 1) log2 n + 1..(i − 1) log2 n + j log n

log log n ] such that s ≤ N[x] ≤ s′; otherwise, set Sij[s, s′] = −∞. Si and 
Sij can be constructed in O (n) time. Also precompute a table maxi(x1, . . . , x�, s, s′) which stores the biggest index j such 

that s ≤ x j ≤ s′ where 1 ≤ xi ≤ t , 1 ≤ s ≤ s′ ≤ t , � ≤ log n
log log n . This table has 

∑ log n
log log n
�=1 t�+2 = O (nε log2 n) entries and each entry 

is represented in log log n bits. Since ε < 1/2, the table can be constructed in O (n) time and stored in O (n) space.
Then, for any query rectangle [1..�] ×[s1..s2], where 1 ≤ � ≤ n and 1 ≤ s1 ≤ s2 ≤ t , we first find 1 ≤ i ≤ n

log2 n
, 1 ≤ j ≤ logn

and 0 ≤ k ≤ log n − 1 such that � = (i − 1) log2 n + ( j − 1)
log n

log log n + k. Using the precomputed table, max{x : s1 ≤ N[x] ≤
s2, � − k < x ≤ �} can be retrieved in O (1) time. Then, the point with the maximum x-coordinate inside the rectangle 
[1..�] × [s1..s2] equals max{Si−1[s1, s2], Si( j−1)[s1, s2] + (i − 1) log2 n, � − k + maxi(N[� − k + 1], . . . , N[�], s1, s2)}, which can 
be obtained in constant time. �

The next lemma uses the data structure from Lemma 4 to answer slightly more general queries.

Lemma 5. Let N = {(1, N[1]), . . . , (n, N[n])} be a set of points on an n × t grid, where t = O (logε n) for any constant ε with 0 <
ε < 1/2, such that every column contains exactly one point. We can build a data structure in O (n) time after which: (i) reporting the 
number of points inside any query rectangle [�1..�2] × [s1..s2] takes O (1) time; and (ii) reporting the point with the maximum or 
minimum x-coordinate inside any query rectangle [�1..�2] × [s1..s2], if any, takes O (1) time.

Proof. Use Lemma 4 on N = {(1, N[1]), . . . , (n, N[n])} directly, and also on N R = {(1, N[n]), . . . , (n, N[1])}, the sequence of 
points in reverse order. Assume without loss of generality that 1 ≤ �1 ≤ �2 ≤ n and 1 ≤ s1 ≤ s2 ≤ t for any given query 
rectangle [�1..�2] ×[s1..s2]. To support (i) in O (1) time, apply Lemma 4 to find the number of points inside [1..�2] ×[s1..s2]
in N and the number of points inside [1..�1 − 1] × [s1..s2] in N , and return the difference. To support (ii) in O (1) time, 
do the following. If the query is asking for the maximum then apply Lemma 4 to retrieve the point x with the maximum 
x-coordinate in [1..�2] × [s1..s2] in N; if x ≥ �1 then x is the answer, and otherwise no such point exists. If the query is 
asking for the minimum then retrieve the point xR with the maximum x-coordinate in [1..(n + 1 − �1)] × [s1..s2] in N R ; if 
n + 1 − xR ≤ �2 then n + 1 − xR is the answer, and otherwise no such point exists. �

For larger grids, we apply Lemma 5 to obtain:

Theorem 3. Let N = {(1, N[1]), . . . , (n, N[n])} be a set of points on an n × n grid such that every column contains exactly one point 
and every row contains exactly one point. We can build a data structure D(N) in O (n · log n

log log n ) time after which: (i) reporting the 
number of points inside any query rectangle [�1..�2] × [s1..s2] takes O (

log n
log log n ) time; and (ii) reporting the point with the maximum 

or minimum x-coordinate inside any query rectangle [�1..�2] × [s1..s2], if any, takes O (
log n

log log n ) time.

Proof. The basic data structure is the same as in the proof of Lemma 6 in [6], namely a t-ary wavelet tree. Here, we select 
t = logε n for any 0 < ε < 0.5.

On the top level, we project the n points into the 2d-space [1..n] × [1..t] by converting each point (i, N[i]) to (i, N1[i]), 
where N1[i] = �N[i]/(n/t)�. We use Lemma 5 to maintain a range query data structure for {(i, N1[i]) : i = 1, . . . , n}, and 
also build a rank data structure that lets us compute rank j(i) in N1[1..n] (here, rank j(i) is the number of occurrences of j
in N1[1..i]). This data structure can be built in O (n) time. To be precise, we store rank j(i) for every i which is a multiple of 
log2 n, requiring O (

nt log n
log2 n

) = O (n) bits space. We also store rank j(i) − rank j(log2 n� i
logn �) for every i which is a multiple of 

log n , requiring O (t n log log n log log nt) = O (n) bits. We precompute a table occtable(x1, . . . , x�, j) that stores the number 
log log n log n
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of occurrences of j in x1, . . . , x� , where 1 ≤ xi ≤ t , 1 ≤ j ≤ t , � ≤ log n
log log n . This table has o(n) entries and can be computed 

in o(n) time. By taking x = � i
log2 n

� log2 n and y = � i log log n
log n � log n

log log n , we have rank j(i) = rank j(x) + (rank j(y) − rank j(x)) +
occtable(N[i − y + 1], . . . , N[i], j), which can be computed in constant time.

On the second level, based on N1[], we partition the n points into t point sets N2,1, . . . , N2,t . The set N2, j contains all 
the points where N1[i] = j. Let n2, j = |N2, j|. Every point (i, N[i]) in N2, j is projected into the 2d-space [1..n2, j] × [1..t]. 
Suppose the rank of i is r among all the x-coordinates of the points in N2, j . Then, (i, N[i]) is converted to (r, N2, j[r]) where 
N2, j[r] = �(N[i] − (n/t) j)/(n/t2)�. We use Lemma 5 again to maintain a range query data structure for these n2, j points. We 
also build a rank data structure for N2, j[1..n2, j] in O (n2, j) time. We continue the process recursively and build the above 
data structures on each level. Since there are logt n levels, the entire data structure can be constructed in O (n logt n) time.

Next, given any query rectangle [�1..�2] × [s1..s2], we proceed in a similar manner as in [6]. Let z1 = �s1/(n/t)� and 
z2 = �s2/(n/t)�. The query is partitioned into:

(A) [�1..�2] × [s1..(n/t)z1];
(B) [�1..�2] × [(n/t)z1 + 1..(n/t)z2]; and
(C) [�1..�2] × [(n/t)z2 + 1..s2].

Query (B) is equivalent to the query [�1..�2] × [z1 + 1..z2] among the points in {(i, N1[i]) : i = 1, . . . , n}, and can be solved 
in O (1) time according to Lemma 5. Let x1 = rankz1−1(�1) and x2 = rankz1−1(�2), and denote y1 = s1 − (n/t)(z1 − 1) and 
y2 = s2 − (n/t)(z2 − 1). Query (A) is equivalent to the query [x1..x2] × [y1..y2] among the points in N2,z1−1. We handle this 
query recursively. Query (C) is handled in the same way. As there are logt n levels and each level takes O (1) time, the query 
is answered in O (logt n) = O (

log n
log log n ) time. �

4.3. Time complexity

Finally, we analyze the time complexity of New_Adams_consensus_2 in Fig. 7. We use the following preprocessing:

• Fix an arbitrary left-to-right ordering of the children at every node in T1. For i ∈ {1, 2, . . . , n}, let L1(i) be the ith 
leaf in T1 in the resulting left-to-right ordering. (Thus, (L1(1), L1(2), . . . , L1(n)) is a permutation of L.) Define L2(i)
for i ∈ {1, 2, . . . , n} analogously using an arbitrary left-to-right ordering of the children at every node in T2. Let N ={
(L−1

1 (�), L−1
2 (�)) : � ∈ L

}
and build the data structure D(N) from Theorem 3.

• For j ∈ {1, 2}, preprocess T j in O (n) time so that any lcaT j (B)-query can be answered in O (|B|) time [3,15].
• As in the proof of Theorem 1 in Section 2 above, preprocess T j for j ∈ {1, 2} with the level ancestor data structure 

of [4] in O (n) time so that the ancestor of any � ∈ L at depth 1 in T j can be returned in O (1) time.

The preprocessing takes O (n · log n
log log n ) time in total. From here on, we will assume that the preprocessing has already been 

taken care of.
Next, any u, u′ ∈ V (T j) where j ∈ {1, 2} such that u and u′ have the same parent (possibly with u = u′) are called siblings. 

Let T u..u′
j denote the set of all rooted subtrees of the form T x

j , where x belongs to the interval of siblings [u, . . . , u′] in T j , 
and define �(T u..u′

j ) = ⋃
x∈[u,...,u′] �(T x

j ).

Lemma 6. Given the data structure D(N) in Theorem 3, for any siblings u and u′ in T1 and any siblings v and v ′ in T2 , the value of 
|�(T u..u′

1 ) ∩�(T v..v ′
2 )| can be found in O (

log n
log log n ) time. Furthermore, the leftmost and rightmost leaves in T1 (or T2) among all leaves 

in �(T u..u′
1 ) ∩ �(T v..v ′

2 ) can be reported in O (
log n

log log n ) time.

Proof. Let lu be the leftmost leaf in T u
1 and ru′ the rightmost leaf in T u′

1 . Then each � ∈ �(T u..u′
1 ) satisfies L−1

1 (lu) ≤ L−1
1 (�) ≤

L−1
1 (ru′ ). Similarly, each � ∈ �(T v..v ′

2 ) satisfies L−1
2 (lv ) ≤ L−1

2 (�) ≤ L−1
2 (rv ′ ), where lv is the leftmost leaf in T v

2 and rv ′ the 
rightmost leaf in T v ′

2 . Hence, any � ∈ L belongs to �(T u..u′
1 ) ∩ �(T v..v ′

2 ) if and only if the point (L−1
1 (�), L−1

2 (�)) lies in the 
rectangle defined by [L−1

1 (lu)..L−1
1 (ru′ )] × [L−1

2 (lv )..L−1
2 (rv ′ )] on the grid represented by D(N). By Theorem 3, the lemma 

follows. �
Lemma 6 allows the Zu,v -sets to be computed in an efficient manner by the procedure Compute_Z shown in Fig. 8. 

More precisely:

Lemma 7. Given the data structure D(N) in Theorem 3, Compute_Z can compute the set Zu,v for any u ∈ V (T1) and v ∈ V (T2) in 
O (|Zu,v | · log n

) time.
log log n
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Procedure Compute_Z

Input: u ∈ V (T1), v ∈ V (T2), where T1, T2 are two given trees with �(T1) =
�(T2).
Output: Zu,v = {(u′, v ′) : u′ ∈ ChildT1 (u), v ′ ∈ ChildT2 (v), |�(T u′

1 ) ∩ �(T v ′
2 )| > 0}.

1: Let u1..uα and v1..vβ be the ordered lists of children of u and v , respec-
tively;

2: Z := ∅; i := 1;
3: while i ≤ α do
4: Find the leftmost leaf a in T1 such that a ∈ �(T ui ..uα

1 ) ∩ �(T v
2 );

5: If no such a exists, break;
6: Identify the up ∈ ChildT1 (u) such that a ∈ �(T

up

1 );
7: j := 1;
8: while j ≤ β do
9: Find the leftmost leaf b in T2 such that b ∈ �(T

up
1 ) ∩ �(T

v j ..vβ

2 );
10: If no such b exists, break;
11: Identify the vq ∈ ChildT2 (v) such that b ∈ �(T

vq
2 );

12: Let Z := Z ∪ {(up , vq)} and j := q + 1;
13: end while
14: Let i := p + 1;
15: end while
16: return Z ;

Fig. 8. Procedure Compute_Z.

Proof. Let u1, . . . , uα be the ordered list of children of u and v1, . . . , vβ the ordered list of children of v . The procedure 
identifies the pairs (up, vq) ∈ Zu,v in increasing order of up and then in increasing order of vq . In the outer loop, each 
child up of u satisfying �(T

up

1 ) ∩ �(T v
2 ) �= ∅ is identified from left to right by using Lemma 6 in Step 4 and the level 

ancestor data structure in Step 6. Each up is thus identified in O (
log n

log log n ) time. Then, for each such up , the inner loop 
similarly finds every child vq of v with �(T

up

1 ) ∩ �(T
vq

2 ) �= ∅ from left to right, using O (
log n

log log n ) time per vq . In total, the 
procedure spends O (|Zu,v | · log n

log log n ) time to compute Zu,v . �
Finally, we analyze the time complexity of New_Adams_consensus_2. For any u ∈ V (T1), v ∈ V (T2), denote Su,v =

�(T u
1 ) ∩ �(T v

2 ).

Lemma 8. Given the data structure D(N) in Theorem 3, the running time of New_Adams_consensus_2(u, v) for any u ∈ V (T1)

and v ∈ V (T2) is O (|Su,v | · log n
log log n ).

Proof. Let T (u, v) be the total running time of New_Adams_consensus_2(u, v), including the time required to compute 
γ , δ, and Zγ ,δ as well as the recursive calls New_Adams_consensus_2(u′, v ′) for all (u′, v ′) ∈ Zγ ,δ . By using the first part 
of Lemma 6, Step 1 can be carried out in O (

log n
log log n ) time. To compute γ and δ in O (

log n
log log n ) time in Step 5, first apply the 

second part of Lemma 6 to find the leftmost leaf a and the rightmost leaf a′ in T1 among all leaves in �(T u
1 ) ∩�(T v

2 ) and the 
leftmost leaf b and the rightmost leaf b′ in T2 among all leaves in �(T u

1 ) ∩�(T v
2 ). Then, compute and assign γ := lcaT1 (a, a′)

and δ := lcaT2 (b, b′), which takes O (1) time because of the lca-preprocessing. Step 6 takes O (|Zγ ,δ | · log n
log log n ) time according 

to Lemma 7. We therefore have T (u, v) = ∑
(u′,v ′)∈Zγ ,δ

T (u′, v ′) + O (|Zγ ,δ| · log n
log log n ). Observe that in the base case, i.e., 

where |Su,v | = 1, it holds that T (u, v) = O (
log n

log log n ).
We apply the recursion-tree method to solve the recurrence for T (u, v). The root of the recursion tree for T (u, v)

represents the top level of recursion, and its cost is O (|Zγ ,δ| · log n
log log n ). There are |Zγ ,δ| subtrees attached to the root, each 

of which corresponds to a recursion tree for one T (u′, v ′) where (u′, v ′) ∈ Zγ ,δ . The leaves of the recursion tree represent 
the base cases of the recursion, i.e., those T (x, y) satisfying |Sx,y | = 1, and they each have cost O (

log n
log log n ). It follows that 

the recursion tree for T (u, v) has exactly |Su,v | leaves and no nodes with degree 1. Now, the value of T (u, v) is equal to the 
sum of the costs taken over all nodes in the recursion tree. Clearly, the total contribution of the leaves is O (|Su,v | · log n

log log n ). 
Rewrite the cost of each internal node x in the recursion tree as O (deg(x) · log n

log log n ), where deg(x) is the degree of x. 
Then, since the sum of the degrees of all internal nodes in a tree without any nodes of degree 1 is less than twice the 
number of leaves, we see that the contribution of the internal nodes is also O (|Su,v | · log n

log log n ). In total, the running time is 
T (u, v) = O (|Su,v | · log n

log log n ). �

Theorem 4. Algorithm New_Adams_consensus_2 computes the Adams consensus tree of T1 and T2 in O (n · log n
) time.
log log n
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Proof. Recall that D(N) is constructed during the preprocessing phase using O (n · log n
log log n ) time. Lemma 8 shows that

New_Adams_consensus_2(r1, r2), where ri is the root of Ti for i ∈ {1, 2}, computes the Adams consensus tree of {T1, T2}
in O (|Sr1,r2 | · log n

log log n ) = O (n · log n
log log n ) time. �

5. Experiments

We have implemented two algorithms for constructing the Adams consensus tree: Adam’s [1] algorithm
Old_Adams_consensus from 1972 described in Section 1.2 and our new algorithm New_Adams_consensus_k from 
Section 3. (We have not implemented Algorithm New_Adams_consensus_2 from Section 4 for the special case of k = 2.) 
A series of experiments were performed to compare the running times of these two algorithms, as described below.

The implementations were written in the C++ programming language. Our prototype implementations are publicly avail-
able in the FACT (Fast Algorithms for Consensus Trees) package [17] at: http :/ /compbio .ddns .comp .nus .edu .sg /~consensus .
tree/ FACT also contains implementations of the algorithms presented in [17] for three other types of consensus trees: the 
majority rule consensus tree [20], the loose consensus tree [7], and the greedy consensus tree [8,12].

5.1. Setup

All experiments were done on a MacBook Pro computer with a 2.3 GHz Intel i7 processor and 8 GB memory. The 
compiler g++ 4.8.4 was used to compile the source code. For various specified values of (k, n), we generated 10 sets 
of k random trees over the leaf label set {1, 2, . . . , n}, ran our C++-implementations of Old_Adams_consensus and
New_Adams_consensus_k, and measured the running times in seconds. Two types of inputs were considered:

• Random binary trees generated in the Yule-Harding model [5,16,25] of evolution (starting from an unlabeled tree consist-
ing of a singleton leaf, repeatedly select one leaf in the current tree uniformly at random and replace it by an internal 
node whose two children are leaves until there are n unlabeled leaves; after that, assign the n leaf labels uniformly at 
random to the n leaves).

• Random binary caterpillars, where a tree is a caterpillar if every node has at most one child that is an internal node (for 
example, trees T1 and T2 in Fig. 1 are caterpillars).

5.2. Results

The worst-case (taken over 10 independent trials for each considered value of (k, n)) running times of our implemen-
tations of Old_Adams_consensus and New_Adams_consensus_k are reported in Fig. 9. Plots for a fixed value of k
(k = 1000) and varying values of n, as well as for a fixed value of n (n = 2000) and varying values of k, are shown for the 
two types of inputs.

For random binary trees generated in the Yule-Harding model, the experiments show that New_Adams_consensus_k
is faster than Old_Adams_consensus for all large enough n. In the top left plot in Fig. 9, corresponding to k = 1000, 
this happens for n ≥ 500. We remark that by Corollary 1 and the comments that follow it, the expected running time of
Old_Adams_consensus for inputs generated in the Yule-Harding model is O (kn log n), so the O (kn log n)-time bound for
New_Adams_consensus_k given in Theorem 2 may be overly pessimistic in practice. On the other hand, for small inputs 
(e.g., inputs with k = 1000 and n = 200), Old_Adams_consensus is faster than New_Adams_consensus_k due to the 
overhead involved in the centroid path computations.

For random binary caterpillars, New_Adams_consensus_k shows a substantial improvement in the running time over
Old_Adams_consensus. This is because all internal nodes in any caterpillar will belong to a single centroid path, so
New_Adams_consensus_k always needs just one level of recursion. In contrast, a binary caterpillar with n leaves has 
height n − 1, forcing Old_Adams_consensus to do 	(n) levels of recursion in the worst case since each level satisfying 
π(T1) = π(T2) = · · · = π(Tk) reduces the number of leaves in the remaining leaf label set by one (or two, at the bottommost 
level). Thus, binary caterpillars are a kind of worst-case scenario for Old_Adams_consensus and a best-case scenario for
New_Adams_consensus_k. Although caterpillars are unlikely to arise in real-world evolutionary data, the results above 
suggest that the centroid path-based technique may be especially powerful for “skewed” inputs containing long paths.

5.3. Other software

Methods for constructing the Adams consensus tree also exist in the software packages COMPONENT [22], PAUP* [28], 
and EPoS [14], However, these are based on Algorithm Old_Adams_consensus and hence not very efficient for large 
inputs. For example, in EPoS, inputs with (k, n) = (100, 100) typically take a minute or more to run, whereas our prototype 
implementation of New_Adams_consensus_k takes less than 0.1 second. Also, inputs with large n such as (k, n) =
(10, 1000) often lead to stack overflow error messages in EPoS, while our implementation works without problems.

http://compbio.ddns.comp.nus.edu.sg/~consensus.tree/
http://compbio.ddns.comp.nus.edu.sg/~consensus.tree/
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Fig. 9. The worst-case running times of our C++-implementations of Old_Adams_consensus and New_Adams_consensus_k for k = 1000 and vary-
ing values of n (top row), for n = 2000 and varying values of k (bottom row), for random binary trees generated in the Yule-Harding model (left column), 
and for random binary caterpillars (right column).

6. Final remark

The only known lower bound on the computational complexity of constructing the Adams consensus tree is the trivial 
one of 	(kn), corresponding to the size of the input. An interesting open problem is to determine whether this is tight or 
not.
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