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produces agreement (see [2] and references
therein). The approximability of the MAST
and related problem has been studied in [3] and
references therein.
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Problem Definition

A phylogenetic tree is a rooted, unordered tree
whose leaves are distinctly labeled and whose
internal nodes have degree at least two. By dis-
tinctly labeled, we mean that no two leaves in the
tree have the same label. Let T’ be a phylogenetic
tree with a leaf label set S. For any subset S’ of S,
the topological restriction of T to S’ (denoted by
T | S’) is the tree obtained from T by deleting all
nodes which are not on any path from the root
to a leaf in S’ along with their incident edges
and then contracting every edge between a node
having just one child and its child. See Fig.1
for an illustration. For any phylogenetic tree T,
denote its set of leaf labels by A(T).

The maximum agreement supertree problem
(MASP) [12] is defined as follows.

Problem1 Let 7 = {T1,72,...,Tx} be an
input set of phylogenetic trees, where the sets
A(T;) may overlap. The maximum agreement su-
pertree problem (MASP) asks for a phylogenetic
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Maximum Agreement Supertree, Fig. 1 Let 7 be the
phylogenetic tree on the left. Then T |{a,c,d} is the
phylogenetic tree shown on the right

tree Q with leaf label set A(Q) S Uz, e A(T7)
such that |A(Q)| is maximized and for each
T; € T, it holds that T; | A(Q) is isomorphic to

Q| A(T)).

The following notation is used below:
n = |UrerAT)|, k = [T, and D =
maxr, 7 {deg(7;)}, where deg(7;) is the degree
of 7; (i.e., the maximum number of children of
any node belonging to 7;).

A problem related to MASP is the maximum
compatible supertree problem (MCSP) [2]:

Problem2 Let 7 = {T1,72,...,Tx} be an
input set of phylogenetic trees, where the sets
A(T;) may overlap. The maximum compatible
supertree problem (MCSP) asks for a phylo-
genetic tree W with leaf label set A(W) C
Ur,er A(Ti) such that [A(W)| is maximized
and for each T; € T, it holds that 7; | A(W) can
be obtained from W | A(T;) by applying a series
of edge contractions.

For information about MCSP, refer to [2, 11].

Key Results

The special case of the maximum agreement su-
pertree problem in which A(Ty) = A(T3) ... =
A(Ty) has been well studied in the literature and
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is also known as the maximum agreement subtree
problem (MAST). By utilizing known results for
MAST, several results can be obtained for various
special cases of MASP. Firstly, it is known that
MAST can be solved in O(~/Dnlog(2n/D))
time when k = 2 (see [13]) or in O(kn> + nP)
time when k > 3 (see [4, 6]), which leads to the
following theorems.

Theorem 1 ([12]) When k = 2, MASP can
be solved in O(TyastT + n) time, where
Tymast is the time required to solve MAST
for two O(n)-leaf trees. Note that Tyast =
O(~/'D nlog(2n/D)).

Theorem 2 ([2]) For any fixed k > 3, if
every leaf appears in either 1 or k trees,
MASP can be solved in O(Ty g7 + kn)
time, where Tj/u AST IS the time required to
solve MAST for {T1|L, T>|L, ..., Tx|L}, where
L = (Nrer AT). Note that Ty ,or =
O(k|L|> + |LIP).

On the negative side, the maximum agree-
ment supertree problem is NP-hard in general,
as shown by the next theorem. (A rooted triplet
is a binary phylogenetic tree with exactly three
leaves.)

Theorem 3 ([2,12]) For any fixed k > 3, MASP
with unbounded D is NP-hard. Furthermore,
MASP with unbounded k remains NP-hard even
if restricted to rooted triplets, i.e., D = 2.

The inapproximability results for MAST by
Hein et al. [9] and Gasieniec et al. [7] immedi-
ately carry over to MASP with unbounded D as
follows.

Theorem 4 ([2, 12]) cannot be  approxi-
mated within a factor of 2'°¢°" in polyno-
mial time for any constant § < 1, unless
NP C DTIME[2PY¢ | oven when restricted
to k = 3. Also, MASP cannot be approximated
within a factor of n® for any constant &€ where
0 < ¢ < ; in polynomial time unless P =
NP, even for instances containing only trees of

height 2.

Although MASP is difficult to approximate
in polynomial time, a simple approximation
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algorithm based on a technique from [1] achieves
an approximation factor that is close to the
bounds given in Theorem 4.

Theorem 5 ([12]) MASP can be approximated
within a factor of kgn in O(n?) - min{O(k .
(loglogn)?), O(k + logn - loglogn)} time.
MASP restricted to rooted triplets can be
approximated within a factor of " in

logn
O(k + n?*log® n) time.

Fixed-parameter tractable algorithms for solv-
ing MASP also exist. In particular, for binary
phylogenetic trees, Jansson et al. [12] first gave
an O(k(2n2)3**)-time algorithm. Later, Guille-
mot and Berry [8] improved the time complex-
ity to O((8n)%). Hoang and Sung [11] further
improved the time complexity to O((6n)F), as
summarized in Theorem 6.

Theorem 6 ([11]) MASP restricted to D = 2
can be solved in O((6n)¥) time.

For the case where each tree in 7 has degree at
most D, Hoang and Sung [11] gave the following
fixed-parameter polynomial-time solution.

Theorem 7 ([11]) MASP restricted to phyloge-
netic trees of degree at most D can be solved in
O((kD)*P+3(2n)*) time.

For unbounded n, k, and D, Guillemot and
Berry [8] proposed a solution that is efficient
when the input trees are similar.

Theorem 8 ([8]) MASP can be solved in
O((2k)Pkn?) time, where p is an upper bound
on the number of leaves that are missing from
Uz, e A(T:) in a MASP solution.

Applications

One challenge in phylogenetics is to develop
good methods for merging a collection of phy-
logenetic trees on overlapping sets of taxa into
a single supertree so that no (or as little as
possible) branching information is lost. Ideally,
the resulting supertree can then be used to deduce
evolutionary relationships between taxa which
do not occur together in any one of the in-
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put trees. Supertree methods are useful because
most individual studies investigate relatively few
taxa [15] and because sample bias leads to certain
taxa being studied much more frequently than
others [3]. Also, supertree methods can combine
trees constructed for different types of data or
under different models of evolution. Furthermore,
although computationally expensive methods for
constructing reliable phylogenetic trees are in-
feasible for large sets of taxa, they can be ap-
plied to obtain highly accurate trees for smaller,
overlapping subsets of the taxa which may then
be merged using computationally less intense,
supertree-based techniques (see, e.g., [5, 10, 14]).

Since the set of trees which is to be combined
may in practice contain contradictory branching
structure (e.g., if the trees have been constructed
from data originating from different genes or if
the experimental data contains errors), a supertree
method needs to specify how to resolve conflicts.
One intuitive idea is to identify and remove a
smallest possible subset of the taxa so that the
remaining taxa can be combined without con-
flicts. In this way, one would get an indication of
which ancestral relationships can be regarded as
resolved and which taxa need to be subjected to
further experiments. The above biological prob-
lem can be formalized as MASP.

Open Problems

An open problem is to improve the time complex-
ity of the currently fastest algorithms for solving
MASP. Moreover, the existing fixed-parameter
polynomial-time algorithms for MASP are not
practical, so it could be useful to provide heuris-
tics that work well on real data.

Cross-References

Maximum Agreement Subtree (of 2 Binary
Trees)

Maximum Agreement Subtree (of 3 or More
Trees)

Maximum Compatible Tree
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Problem Definition

The input to an instance of the classical stable
marriage problem consists of a set of n men and
n women. Additionally, each person provides a
strictly ordered preference list of the opposite set.
The goal is to find a complete matching of men
to women that is also stable, i.e., a matching
having the property that there does not exist a



