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ProblemDefinition

Let S D fs1; s2; : : : ; sng be a set of elements
called objects and let C D fc1; c2; : : : ; cmg be
a set of functions called characters such that
each cj 2 C is a function from S to the set
f0; 1; : : : ; rj ! 1g for some integer rj . For every
cj 2 C , the set f0; 1; : : : ; rj ! 1g is called the
set of allowed states of character cj , and for any
si 2 S and cj 2 C , it is said that the state of si
on cj is ˛, or that the state of cj for si is ˛, where
˛ D cj .si /. The character state matrix for S

and C is the .n"m/-matrix in which entry .i; j /
for any i 2 f1; 2; : : : ; ng and j 2 f1; 2; : : : ; mg
equals the state of si on cj .

In this encyclopedia entry, a phylogeny for S
is an unrooted tree whose leaves are bijectively
labeled by S . For every cj 2 C and ˛ 2
f0; 1; : : : ; rj !1g, define the set Scj ;˛ by Scj ;˛ D
fsi 2 S W the state of si on cj is ˛g. A perfect
phylogeny for .S; C / (if one exists) is a phy-
logeny T for S such that the following holds:
for each cj 2 C and pair of allowed states ˛; ˇ
of cj with ˛ ¤ ˇ, the minimal subtree of T
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that connects Scj ;˛ and the minimal subtree of T
that connects Scj ;ˇ are vertex disjoint. See Fig. 1
for an example. The Perfect Phylogeny Problem
(also called the Character Compatibility Problem
in the literature [2, 9]) is the following:

Problem 1 (The Perfect Phylogeny Problem)

INPUT: An .n"m/-character state matrixM for
some S and C .

OUTPUT: A perfect phylogeny for .S; C /, if one
exists; otherwise, null.

Below, we define r D maxj2f1;2;:::;mg rj for
the input character state matrixM .

Key Results

The following negative result was proved by
Bodlaender, Fellows, and Warnow [2] and, inde-
pendently, by Steel [14]:

Theorem 1 ([2, 14]) The Perfect Phylogeny
Problem is NP-hard.

On the other hand, certain restrictions of the
Perfect Phylogeny Problem can be solved ef-
ficiently. One such special case occurs if the
number of allowed states of each character is
limited. For this case, Agarwala and Fernández-
Baca [1] designed a dynamic programming-based
algorithm that builds perfect phylogenies on cer-
tain subsets of S called c-clusters (also referred
to as proper clusters in [5, 10] and as charac-
ter subfamilies in [6]) in a bottom-up fashion.

Each c-cluster G has the property that: (1) G

and S n G share at most one state of each
character; and (2) for at least one character, G
and S n G share no states. The number of c-
clusters is at most 2rm, and the algorithm’s to-
tal running time is O.23r .nm3 C m4//, i.e.,
exponential in r . Hence, the Perfect Phylogeny
Problem is polynomial-time solvable when the
number of allowed states of every character is
upper-bounded byO.log.mCn//. Subsequently,
Kannan and Warnow [10] presented a modified
algorithm with improved running time. They re-
structured the algorithm of [1] to eliminate one
of the three nested loops that steps through all
possible c-clusters and added a preprocessing
step which speeds up the innermost loop. The
resulting time complexity is given by:

Theorem 2 ([10]) The algorithm of Kannan and
Warnow in [10] solves the Perfect Phylogeny
Problem in O.22rnm2/ time.

A perfect phylogeny T for .S; C / is called
minimal if no tree which results by contracting
an edge of T is a perfect phylogeny for .S; C /.
In [10], Kannan and Warnow also showed how to
extend their algorithm to enumerate all minimal
perfect phylogenies for .S; C / by constructing a
directed acyclic graph that implicitly stores the
set of all perfect phylogenies for .S; C /.

Theorem 3 ([10]) The extended algorithm of
Kannan and Warnow in [10] enumerates the set
of all minimal perfect phylogenies for .S; C / so

M c1

s1

s2

s3

s5

c2 c3

0 0 1
1 1 0
2 2 0

s4 1 0 0

s6 1 0 1
0 3 1

a b

s1
[0,0,1]

s6
[1,0,1]

s2
[1,1,0]

s4
[1,0,0]

s5
[0,3,1]

s3
[2,2,0]

Perfect Phylogeny (Bounded Number of States), Fig.
1 (a) An example of a character state matrixM for S D
fs1; s2; : : : ; s6g and C D fc1; c2; c3g with r1 D 3,

r2 D 4, and r3 D 2, i.e., r D 4. (b) A perfect
phylogeny for .S;C/. For convenience, the states of all
three characters for each object in S are shown
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Perfect Phylogeny (Bounded Number of
States), Table 1 The running times of the fastest
known algorithms for the Perfect Phylogeny Problem
with a bounded number of states

r Running time Reference

2 O.nm/ [11] together with [7]

3 minfO.nm2/;
O.n2m/g

[3, 10] together with [9]

4 minfO.nm2/;
O.n2m/g

[10] together with [9]

!5 O.22rnm2/ [10]

that the maximum computation time between two
consecutive outputs is O.22rnm2/.

For small values of r , even faster algorithms
are known. Refer to the table in Table 1 for a sum-
mary. If r D 2, then the problem can be solved
in O.nm/ time by reducing it to the Directed
Perfect Phylogeny Problem for Binary Characters
(see, e.g., Encyclopedia entry !Directed Perfect
Phylogeny (Binary Characters) for a definition
of this variant of the problem) using O.nm/

time [7,11] and then applying Gusfield’sO.nm/-
time algorithm [7]. If r D 3 or r D 4, the
problem is solvable in O.n2m/ time by another
algorithm by Kannan and Warnow [9], which is
faster than the algorithm from Theorem 2 when
n < m. Also note that for the case r D 3, there
exists an older algorithm by Dress and Steel [3]
whose time complexity coincides with that of the
algorithm in Theorem 2.

For other special cases of the Perfect Phy-
logeny Problem that can be solved efficiently, see
Encyclopedia entry!Directed Perfect Phylogeny
(Binary Characters) or the survey by Fernández-
Baca [5].

Applications

Computational evolutionary biology relies on
efficient methods for inferring, from some given
data, a phylogenetic tree that accurately describes
the evolutionary relationships among a set of
objects (e.g., biological species, proteins, genes,
etc.) assumed to have been produced by an

evolutionary process. One of the most widely
used techniques for reconstructing a phylogenetic
tree is to represent the objects as vectors of
character states and look for a tree that clusters
objects which have a lot in common. The Perfect
Phylogeny Problem can be regarded as the ideal
special case of this approach in which the given
data contains no errors, evolution is treelike, and
each character state can emerge only once in the
evolutionary history.

However, data obtained experimentally
seldom admits a perfect phylogeny, so various
optimization versions of the problem such as
maximum parsimony and maximum compatibility
are often considered in practice. These strategies
generally lead to NP-complete problems,
but there exist heuristics that work well
for most inputs. See, e.g., [4, 5, 12] for a
discussion. Nevertheless, algorithms for the
Perfect Phylogeny Problem may be useful
even when the data does not admit a perfect
phylogeny, for example, if there exists a perfect
phylogeny for m ! O.1/ of the characters in C .
In fact, in one crucial step of their proposed
character-based methodology for determining
the evolutionary history of a set of related natural
languages, Warnow, Ringe, and Taylor [15]
consider all subsets of C in decreasing order of
cardinality, repeatedly applying the algorithm
of [10] until a largest subset of C which
admits a perfect phylogeny is found. The ideas
behind the algorithms of [1] and [10] have
also been utilized and extended by Fernández-
Baca and Lagergren [6] in their algorithm for
computing near-perfect phylogenies in which
the constraints on the output have been relaxed
in order to permit non-perfect phylogenies
whose so-called penalty score is less than or
equal to a prespecified parameter q; see [6] for
details. (See also [13] for a fixed-parameter
tractable algorithm for this problem variant
when r D 2.)

The motivation for considering a bounded
number of states is that characters based on
directly observable traits are, by the way they
are defined, naturally bounded by some small
number (often 2). When biomolecular data is
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used to define characters, the number of allowed
states is typically bounded by a constant, e.g.,
r D 2 for SNP markers, r D 4 for DNA or RNA
sequences, or r D 20 for amino acid sequences.
(see also Encyclopedia entry !Directed Perfect
Phylogeny (Binary Characters)). Moreover,
characters with r D 2 can be useful in
comparative linguistics [8].

Open Problems

An open problem is to determine whether the
time complexity of the algorithm of Kannan and
Warnow [10] can be improved. As noted in [5], it
would be interesting to find out if the Perfect Phy-
logeny Problem is solvable inO.22rnm/ time for
any r , or more generally, in O.f .r/ #nm/ time,
where f is a function of r which does not depend
on n or m, since this would match the fastest
known algorithm for the special case r D 2 (see
Table 1). Another open problem is to establish
lower bounds on the computational complexity of
the Perfect Phylogeny Problem with a bounded
number of states.
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