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Abstract. We study Hamming versions of two classical clustering prob-
lems. The Hamming radius p-clustering problem (HRC) for a set S of k
binary strings, each of length n, is to find p binary strings of length n
that minimize the maximum Hamming distance between a string in S
and the closest of the p strings; this minimum value is termed the p-radius
of S and is denoted by %. The related Hamming diameter p-clustering
problem (HDC) is to split S into p groups so that the maximum of the
Hamming group diameters is minimized; this latter value is called the
p-diameter of S.

First, we provide an integer programming formulation of HRC which
yields exact solutions in polynomial time whenever k and p are con-
stant. We also observe that HDC admits straightforward polynomial-
time solutions when k = O(log n) or p = 2. Next, by reduction from
the corresponding geometric p-clustering problems in the plane under
the L1 metric, we show that neither HRC nor HDC can be approx-
imated within any constant factor smaller than two unless P=NP. We
also prove that for any ε > 0 it is NP-hard to split S into at most pk1/7−ε

clusters whose Hamming diameter doesn’t exceed the p-diameter. Fur-
thermore, we note that by adapting Gonzalez’ farthest-point clustering
algorithm [6], HRC and HDC can be approximated within a factor of
two in time O(pkn). Next, we describe a 2O(p%/ε)kO(p/ε)n2-time (1 + ε)-
approximation algorithm for HRC. In particular, it runs in polynomial
time when p = O(1) and % = O(log(k+n)). Finally, we show how to find
in O((n

ε
+ kn log n + k2 log n)(2%k)2/ε) time a set L of O(p log k) strings

of length n such that for each string in S there is at least one string in L
within distance (1 + ε)%, for any constant 0 < ε < 1.

1 Introduction

Let Z
n
2 be the set of all strings of length n over the alphabet {0, 1}. For any

α ∈ Z
n
2 , we use the notation α[i] to refer to the symbol placed at the ith position

of α, where i ∈ {1, .., n}. The Hamming distance between α1, α2 ∈ Z
n
2 is defined

as the number of positions in which the strings differ, and is denoted by d(α1, α2).
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The Hamming radius p-clustering problem1 (HRC) is stated as follows: Given
a set S of k binary strings αi ∈ Z

n
2 , where i = 1, .., k, and a positive inte-

ger p, find p strings βj ∈ Z
n
2 , where j = 1, .., p, minimizing the value % =

max
1≤i≤k

min
1≤j≤p

d(αi, βj). Such a set of βj ’s is called a p-center set of S, and the

corresponding value of % is called the p-radius of S. Note that an instance of
HRC can have several p-center sets.

The Hamming diameter p-clustering problem (HDC) is defined on the same
set of instances as HRC, and is stated as follows: Partition S into p disjoint sub-
sets S1, .., Sp (called p-clusters of S) so that the value of max

1≤q≤p
max

αi,αj∈Sq

d(αi, αj)

is minimized. This value is called the p-diameter of S.
One can immediately generalize HRC and HDC by considering a larger finite

size alphabet instead of {0, 1}, making the problem more amenable to biological
applications. However, as long as the distance between two different characters
is measured as one, such a generalization involves only trivial generalizations
of our approximation methods. Therefore, we only consider the original binary
versions of HRC and HDC throughout this paper.

In [4], Frances and Litman showed that the decision version of the Ham-
ming radius 1-clustering problem (1-HRC) is NP-complete. Motivated by the
intractability of 1-HRC and its applications in computational biology, coding
theory, and data compression, two groups of authors recently provided several
close approximation algorithms [5,12]. This was followed by a polynomial-time
approximation scheme (PTAS) for 1-HRC [13]. As for the more general HRC
and HDC, one can merely find work on the related graph or geometric p-center,
p-supplier, and p-clustering problems in the literature [3,8,9,10,15]. In the undi-
rected complete graph case, with edge weights satisfying the triangle inequality,
all of the three aforementioned problems are known to admit 2-approximation
or 3-approximation polynomial-time algorithms, but none of them are approx-
imable within 2−ε for any ε > 0 in polynomial-time unless P=NP [8,9,10]. This
contrasts with the p = O(1) case when, e.g., the graph p-center and p-supplier
problems can be trivially and exactly solved in nO(p) time. HRC doesn’t seem
easier than these graph problems. Optimal or nearly optimal center solutions to
it have to be searched in Z

n
2 whose size might be exponential in the input size.

For this reason, HRC is NP-complete already for p = 1. Our results indicate
that in the general case HRC as well as HDC are equally hard to approximate
in polynomial time as the p-center or p-clustering graph problems are.

1.1 Motivation

Clustering is used to solve classification problems in which the elements of a
specified set have to be divided into classes so that all members of a class are
similar to each other in some sense. HRC and HDC are equally fundamental
problems within strings algorithms as the corresponding graph and geometric
1 The corresponding graph problem is often termed the p-center problem in the liter-

ature [8].
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center and clustering problems are within graph algorithms or computational
geometry respectively [3,8,9,10,15]. They have potential applications in compu-
tational biology and pattern matching.

For example, when classifying biomolecular sequences, consensus representa-
tives are useful. The around 100000 different proteins in humans can be divided
into 1000 (or less) protein families, which makes it easier for researchers to
understand their structures and biological functions [7]. A lot of information
about a newly discovered protein may be deduced by establishing which family
it belongs to. During identification, it is more efficient to try to align the new
protein to representatives for various families than to individual family mem-
bers. Conversely, given a set S of k related sequences, one way to find other
similar sequences is by computing p representatives (where p << k) for S and
then using the representatives to probe a genome database. The representatives
should resemble all sequences in S, and must be chosen carefully. For instance,
when p = 1, the sequence s that minimizes the sum of all pairwise distances
between s and elements in S is biased towards sequences that occur frequently,
but using a 1-center as representative will avoid this problem2. For p > 1, the
representatives can be the members in the p-center set or simply p sequences,
each from a different p-cluster.

In pattern matching applications, the number of classes p can be large; a
system for Chinese character recognition, for example, would need to be able to
discriminate between thousands of characters.

1.2 Organization of the Paper

Section 2 provides polynomial-time solutions for restricted cases of HRC and
HDC based on integer programming, exhaustive search, and breadth-first search.
In Section 3, we prove the NP-hardness of approximating HRC and HDC within
any constant factor smaller than two. In the same section, we also prove that
another type of approximation for HDC in terms of the number of clusters
is NP-hard. Section 4 presents three approximations algorithms for HRC and
HDR: a two-approximation algorithm for HRC and HDC based on Gonzalez’
furthest-point clustering method [6], an approximation scheme, i.e., a (1 + ε)-
approximation algorithm for HRC, and a (1 + ε)-approximation algorithm for
HRC using a moderately larger number of approximative centers.

2 Polynomial-Time Solutions for Restricted Cases

The Hamming radius p-clustering problem is equivalent to a special case of the
integer programming problem. A given instance (α1, .., αk, p, %) of the decision
version of HRC, where αi ∈ Z

n
2 for 1 ≤ i ≤ k, and p, % ∈ N, can be expressed as

a system of k ·p linear inequalities.
2 Depending on the application, the difference between strings is sometimes measured

in terms of edit distance, which also takes insertions and deletions into account,
rather than Hamming distance, which just considers substitutions.
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We use two matrices X and Y of 0-1-variables. The rows of X correspond
directly to the p strings that constitute a p-center for the supplied instance, and
Y is used to make sure that each αi is within distance % of at least one of the
centers.

Let X be a p×n-matrix of variables xjm ∈ Z2, where 1 ≤ j ≤ p and
1 ≤ m ≤ n. The value of xjm determines the value of the m-th position of the
j-th center. Let Y be a k×p-matrix of variables yij ∈ Z2, where 1 ≤ i ≤ k and
1 ≤ j ≤ p. yij = 1 only if row j of X is a center string that is closest to αi,

so that for each i = 1, .., k, we have
p∑

j=1
yij = 1. Next, for each i = 1, .., k and

j = 1, .., p, we have the inequality
∑

αi[m] = 0
1 ≤ m ≤ n

xjm +
∑

αi[m] = 1
1 ≤ m ≤ n

(1 − xjm) ≤ % + (1 − yij)·D

where D = max
1≤j≤k

( max
1≤i≤k

d(αi, αj)).

The above system of inequalities can be transformed to the form Ax ≤ b,
where A is a (kp)× (np + kp) integer matrix, x is a variable vector over Z

np+kp
2 ,

and b is a vector in Z
kp
2 . Note that the scalar product of any prefix of any row of

A with a 0−1-vector of the same length is neither less than −n nor greater than
n + D. In particular, when p = 1, such a product has its absolute value simply
bounded by n. Now, we can solve the transformed system of kp inequalities by
a well-known dynamic programming procedure [14], proceeding in stages. At
the jth stage, we compute the set Sj of all vectors that can be expressed as∑j

l=1 clzl, where cl is the lth column of A and zl ∈ Z2. Since the Sj cannot be
larger than (2n + D + 1)kp (or (2n + 1)k if p = 1), the whole procedure for a
fixed % takes O((2n + D)kp2kp(np + kp)) time (or O(nk22k(n + k)) if p = 1).
Hence, by using binary search to find the smallest possible %, we conclude that
HRC for k = O(1) and p = O(1) can be solved in polynomial time.

Theorem 1. HRC for instances with k strings of length n is solvable in nO(kp)

time.

On the other hand, if n = O(logk), exhaustive search yields a kO(p)-time
solution.

Theorem 2. HRC restricted to instances with k strings of length O(logk) is
solvable in kO(p) time.

One of the main differences between HDC and HRC is that the former doesn’t
involve strings outside the input set S. For this reason it seems simpler to solve
exactly than HRC does 3. For example, it has a simpler integer programming
formulation involving only a single matrix of indicator variables. Furthermore,
it can be solved by exhaustive search in O(k2n+k2pk) time, which immediately
yields the following result.
3 Paradoxically, as for approximation in terms of the number of clusters it might be

more difficult, as is observed in the next sections.
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Theorem 3. HDC restricted to instances with O(logn) strings of length n is
solvable in nO(log p) time.

More interestingly, the Hamming diameter 2-clustering problem admits the
following, rather straightforward polynomial-time solution. Let d be a candidate
value for the maximum Hamming cluster diameter in an optimal 2-clustering
of the k input strings of length n. Form a graph G with vertices in one-to-one
correspondence with the input strings, and connect a pair of vertices by an edge
whenever the Hamming distance between the corresponding strings is less than
or equal to d. Now, the problem of Hamming diameter 2-clustering for the input
strings becomes equivalent to that of partitioning the vertices of G into two
cliques. The latter problem in turn reduces to 2-coloring the complement graph.
By breadth-first search, we can find a 2-coloring of the complement graph, if one
exists, in O(k2) time. To find the smallest possible d, we use the procedure just
described to test different values of d, generated by a binary search. Calculating
all pairwise Hamming distances requires O(k2n) time, but this can be done
before starting the search for d. Hence, we obtain the following result.

Theorem 4. For p = 2, HDC is solvable in O(k2n) time.

Note that Theorem 4 can be generalized to any metric.

3 NP-Hardness of Approximating HRC and HDC

By approximating HRC or HDC, we mean providing a polynomial-time algo-
rithm yielding a p-center set or a p-clustering approximating the p-radius or
the p-diameter, respectively. Our results from the first subsection prove the
NP-hardness of this type of approximation of HRC and HDC. In the second
subsection, we consider another kind of approximation of HDC relaxing the re-
quirement on the number of produced clusters under the condition that their
diameter doesn’t exceed the p-diameter; we show that it is NP-hard to approxi-
mate the number of clusters within any reasonable factor.

3.1 NP-Hardness of Approximating the p-Radius and p-Diameter

To prove the hardness results in this subsection, we use the reduction described
in [3] from vertex cover for planar graphs of degree at most three to the corre-
sponding p-clustering problem in the plane under the L1 metric. (The radius p-
clustering problem in the plane under the L1 metric is the following: For a finite
set S of points in the plane, find a set P of p points in the plane that minimizes
max
s∈S

min
u∈P

d1(s, u), where d1 is the L1 distance. The diameter p-clustering problem

in the plane under the L1 metric is defined correspondingly.)
By straightforward inspection of the aforementioned reduction from vertex

cover for planar graphs [3] and using, e.g., the planar graph drawing algorithm
from [2] in order to embed the input planar graph in the plane, we can ensure
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that the points in the resulting instance of the p-clustering problem in the plane
as well as p points in an optimal solution lie on an integer grid of size polynomial
in the size of the input planar graph and (α − 1)−1. This yields the following
technical strengthening of Theorem 2.1 from [3].

Lemma 5. Let α be a positive constant not less than 1. The radius p-clustering
and diameter p-clustering problems for a finite set S of points in the plane with
the L1 metric, where the points in S lie on an integer grid of size polynomial
in the cardinality of S and (α − 1)−1, and where the approximative solution to
the radius version is required to lie on the grid, are NP-hard to approximate
within α.

By using the idea of embedding the L1-metric on a integer square grid into
the Hamming one, we obtain our main result in this section.

Theorem 6. HRC and HDC are NP-hard to approximate within any constant
factor smaller than two.

Proof. Let S be a set of points on integer square grid of size q(|S|) where q() is
a polynomial. Encode each grid point s of coordinates sx and sy respectively by
the 0 − 1 string e(s) of length 2q(|S|) composed of sx consecutive 1’s followed
by q(|S|) − sx consecutive 0’s, next sy consecutive 1’s, and finally, q(|S|) − sy

consecutive 0’s. Note that for any two grid points s′ and s′′ their L1 distance
is equal to the Hamming distance between their encodings e(s′) and e(s′′). This
observation yields immediately the theorem thesis for HDC by Lemma 5.

Consider an approximative solution a1, a2, .., ap to HRC problem for the
strings e(s), s ∈ S. For i = 1, .., p, we can transform ai to a′

i having the form of
1l0q(|S|)−l1m0q(|S|)−m for some l, m ≤ q by moving all the 1’s in the first half of
ai to the appropriate prefix of ai and similarly moving the remaining 1’s to the
appropriate prefix of the second half of ai and filling the left positions with the
left 0’s. Observe that the resulting string sequence a′

1, a
′
2, .., a

′
p yields at least as

good solution as a1, a2, .., ap for the strings e(s), s ∈ S by the special form of
the e(s)’s. Also, it can be immediately decoded into a sequence of grid points
g1, g2, .., gp such that a′

i = e(gi) for i = 1, .., p. Putting everything together, we
obtain the theorem thesis for HRC by Lemma 5. ut

3.2 NP-Hardness of Approximating HDC in Terms of the Number
of Clusters

Consider the following clique partition problem: Given an undirected graph G
and a natural number p, partition the set of vertices of G into pairwise disjoint
subsets V1, .., Vp such that for j = 1, .., p, the subgraph of G induced by Vj is
a clique. Clearly, this problem is equivalent to coloring the complement graph
with p colors. It follows from known inapproximability results for graph coloring
[1] that for any ε > 0, the problem of finding an approximative solution to the
clique partition problem consisting of pn1/7−ε cliques, where n is the number
of vertices in the instance graph G, is NP-hard. For our purposes, it will be
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convenient to assume that the instance graph is quasi-regular, by which we mean
that it satisfies the following two properties:

1. It contains two distinguished cliques.
2. All vertices outside the two cliques have the same degree, which is not less

than that of any vertex in the cliques.

To achieve this, we can augment G with two cliques on n auxiliary vertices each.
Next, we connect each original vertex in G of degree q to we equally distribute
the new connections in a cyclic fashion so that each vertex of the two cliques
receives at most d(2n2 − 2m)/2ne connections to the original vertices. Let G∗

be the resulting graph on 3n vertices. Note that all original vertices have degree
2n and all vertices in the n-cliques have degree at most 2n in G∗. It is clear
that if the vertices of G can be partitioned into l cliques then the vertices of
G∗ can be partitioned into at most l + 2 cliques. Conversely, if the vertices of
G∗ can be partitioned into l cliques then the vertices of G can also be trivially
partitioned into at most l cliques. Putting everything together, we obtain the
following technical lemma.

Lemma 7. For any ε > 0, the clique partition problem restricted to quasi-regular
graphs cannot be approximated (in terms of the number of cliques) within n1/7−ε

unless P=NP.

By a reduction from the clique partition problem for quasi-regular graphs to
HDC, we obtain the following result.

Theorem 8. For any ε > 0, the problem of finding a partition of a set of k
binary strings of length O(k2) into at most pk1/7−ε disjoint clusters such that
each cluster has Hamming diameter not exceeding the p-diameter is NP-hard.

Proof. Consider an instance of the restricted clique partition problem consisting
of a quasi-regular graph G on k vertices and m edges, and a natural number p.
Enumerate the edges of G. For each vertex v of G, form a string s(v) of length
m such that there is a 1 on the ith position in s(v) iff the ith edge of G is
incident to v. Let d be the maximum vertex degree of G. It follows that each
vertex in G outside the two distinguished cliques has degree d. Note that for any
pair of vertices v1, v2 in G of degree d, the Hamming distance between s(v1)
and s(v2) is 2d − 2 if they are adjacent, otherwise it is 2d. Also, for any pair
of vertices v1, v2 in the same distinguished clique of G, the Hamming distance
between s(v1) and s(v2) is at most 2d − 2. Therefore, any clique p-partition of
G yields a p-clustering of the resulting strings of maximum Hamming diameter
less than or equal to 2d− 2. Conversely, any q-clustering of the resulting strings
of maximum Hamming diameter less than or equal to 2d − 2 trivially yields a
clique (q + 2)-partition of G. Hence, by Lemma 7 we obtain our result. ut

As for the corresponding problem for HRC (i.e., producing a larger set of
approximative centers such that each input string is within the p-radius from at
least one of the centers), we doubt whether it is equally hard to approximate.
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At least, if we weaken the requirement of being within the p-radius by a multi-
plicative factor of 1 + ε, then this problem admits a logarithmic approximation
in polynomial time, as it is shown at the end of the next section.

4 Approximation Algorithms for HRC and HDC

In this section, we first observe how an approximation factor of two for HRC
and HDC can be achieved. Next, we provide an approximation scheme for HRC
running in polynomial time when p = O(1) and % = O(log(k + n)). Finally, we
give a relaxed type of arbitrarily close approximation of % due to a moderate
increase in the number of clusters which runs in polynomial time whenever % =
O(log(k + n)).

4.1 A 2-Approximation Algorithm for HRC and HDC

To obtain an approximation factor of two, we adapt Gonzalez’ farthest-point
clustering algorithm [6] to HRC and HDC respectively as follows:

Algorithm A

STEP 1: Set P ∗ to {αi}, where αi is an arbitrary string in S.
STEP 2: For l = 2, .., p : augment P ∗ by a string in S that maximizes the
minimum distance to P ∗, i.e., that is as far away as possible from the strings
already in P ∗.
STEP 3 (HRC): Return P ∗.
STEP 3 (HDC): Assign each string in S to a closest member in P ∗ and return
the resulting clusters. ut

The Hamming distance obeys the triangle inequality ([11], p. 424). Therefore,
by the proof of Theorem 8.14 in [8], Algorithm A yields an approximative solution
to either HRC or HDC that is always within a factor of two of the optimum. We
can implement this algorithm by updating the Hamming distance of each string
outside P ∗ to the nearest string in P ∗ after each augmentation of P ∗. To update
and then compute a string in S furthermost from P ∗ takes O(kn) time in each
iteration. Hence, we obtain the following theorem.

Theorem 9. An approximative solution to either HRC or HDC that is always
within a factor of two of the optimum can be found in O(pkn) time.

4.2 An Approximation Scheme for HRC

In this subsection we present a 2O(p%/ε)kO(p/ε)n2-time (1 + ε)-approximation
algorithm for HRC. Our scheme is partly based on the idea used in the PTAS
for 1-HRC in [13].
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Algorithm B

STEP 1: Set C to an empty subset of Z
n
2 . For each subset R of S having exactly

r strings, compute the set Q consisting of all positions m, 1 ≤ m ≤ n, on which
all strings in R contain the same symbol. Set P to {1, 2, .., n} \ Q. For every
possible f : P → {0, 1}, let qf be the string in Z

n
2 which agrees with the strings

in R on the positions in Q and contains f(j) in each position j ∈ P. Augment C
by qf .

STEP 2: Let Cp be the family of all subsets of the set C of size p. Test all sets
in Cp and return the P ∗ ∈ Cp that minimizes max

1≤i≤k
min
c∈P∗ dH(αi, c). ut

The next lemma can be proved analogously as Lemma 11 in [13] (the key
lemma for the PTAS for the Hamming radius 1-clustering problem) is proved in
case of a logarithmic or smaller sized radius.

Lemma 10. For any subset U of S, there is a c in C such that

max
α∈U

dH(α, c) ≤ (1 +
1

2r − 1
) min

β∈Z
n
2

max
α∈U

dH(α, β)

Theorem 11. Algorithm B constructs a p-center with the approximation factor
1 + 1

2r−1 in O(2pr%+1kpr+1n2) time.

Proof. To prove the correctness and the approximation factor of Algorithm B,
consider an optimal p-center for S, say {β1, .., βp}. Partition S into subsets U1

through Up such that for 1 ≤ j ≤ p and α ∈ Uj , βj has minimum Hamming
distance to α among β1, .., βp. By Lemma 10, the set Cp constructed in STEP
2 contains {β∗

1 , .., β∗
p} such that for 1 ≤ j ≤ p and any α ∈ Uj, the Hamming

distance between α and β∗
j is at most 1 + 1

2r−1
times the radius of Uj . Thus,

Algorithm B yields a solution within 1 + 1
2r−1

of the optimum.
To derive the upper bound on the running time of Algorithm B, first observe

that each of the sets P has size at most r% and that a string qf can be constructed
in O(nr) time. Hence, the size of the set C doesn’t exceed 2r%kr, and C can be
constructed in O(r2r%krn) time. Consequently, Cp is of size at most krp2pr% and
its construction from C takes O(2pr%kprn) time. All that remains is to note that
the test of each p-tuple in Cp can be performed in O(kn) time. ut

Note that the running time of Algorithm B is polynomial in n and k as long
as p is a constant and % = O(log(k + n)).

Corollary 12. Algorithm B yields a polynomial-time approximation scheme for
the Hamming radius O(1)-clustering problem restricted to instances with the p-
radius in O(log(k + n)).
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4.3 A Relaxed Type of Approximation for HRC

In this subsection, we consider twofold approximation for HRC allowing for
producing more than p approximative centers and slightly exceeding the p-radius.

For each c in C (see Algorithm B), let S(c) be the set of all strings in S
within distance (1 + 1

2r−1
)% of c. By Lemma 10, there is a set consisting of p

such sets, covering all of S. If % is known, we run the classical greedy heuristic
for minimum set cover (see [8]) on the instance (S, {S(c) | c ∈ C}) to find a set of
O(p logk) sets covering S. Otherwise, we perform a binary search for the smallest
possible value of % ∈ {0, 1, .., n} in the definition of the sets S(c) by running the
aforementioned heuristic O(log n) times and each time testing whether or not
the resulting cover of S has size O(p logk). Recall that |C| ≤ 2r%kr and that C
can be constructed in O(r2r%krn) time. The instance of set cover corresponding
to a given value of % can be constructed in O(|C|kn) time; the greedy heuristic
can be implemented to run in O(|C|k2) time. By choosing r so that 1+ε

2ε < r < 2
ε ,

we obtain the following result.

Theorem 13. For any constant 0 < ε < 1, we can construct a set L of O(p log k)
strings of length n in O((n

ε +kn logn+k2 log n)(2%k)2/ε) time such that for each
of the k strings in S there is at least one string in L within distance (1 + ε) of
the p-radius.

The time bound in Theorem 13 is polynomial in n and k as long as % =
O(log(k + n)).

5 Conclusions

We have shown not only that two is the best approximation factor for HRC and
HDC achievable in polynomial time unless P=NP, but also that it is possible to
provide exact solutions or much better approximation solutions to HRC or HDC
in several special or relaxed cases. It seems that there are plenty of interesting
open problems in the latter direction. For example, is it possible to design very
close and efficient approximation algorithms for protein data (see Section 1.1)
taking into account the specific distribution of the input?
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