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Abstract

We study Hamming versions of two classical clustering problems. Faenming radius
p-clustering problem(HRC) for a setS of k binary strings, each of length, is to find p binary
strings of lengthm that minimize the maximum Hamming distance between a strin§ amd the
closest of thep strings; this minimum value is termed theradius of S and is denoted by. The
relatedHamming diametep-clustering problen{HDC) is to splitS into p groups so that the maxi-
mum of the Hamming group diameters is minimized; this latter value is calleg-tiameter ofS.

We provide an integer programming formulation of HRC which yields exact solutions in polyno-
mial time whenevek is constant. We also observe that HDC admits straightforward polynomial-time
solutions whert = O(logn) andp = O(1), or whenp = 2. Next, by reduction from the correspond-
ing geometrigp-clustering problems in the plane under themetric, we show that neither HRC nor
HDC can be approximated within any constant factor smaller than two unle$fR. We also prove
that for anye > 0 it is NP-hard to splitS into at mostpk1/7_€ clusters whose Hamming diameter
does not exceed thediameter, and that solving HDC exactly is an NP-complete problem already for
p = 3. Furthermore, we note that by adapting Gonzalez’ farthest-point clustering algorithm [T. Gon-
zalez, Theoret. Comput. Sci. 38 (1985) 293-306], HRC and HDC can be approximated within a
factor of two in time @pkn). Next, we describe a@re/&)gOr/e)p2 time (1 + ¢)-approximation
algorithm for HRC. In particular, it runs in polynomial time when= O(1) ande = O(log(k + n)).
Finally, we show how to find in @2 + knlogn + k?logn)(22k)?/¢) time a setL of O(plogk)
strings of lengthn such that for each string il there is at least one string ih within distance
(14 ¢)o, forany constant & ¢ < 1.
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1. Introduction

Let Z5 be the set of all strings of length over the alphabe{0, 1}. For anya € Z5,
we use the notation[i] to refer to the symbol placed at thiéh position of«, where
i € {1,...,n}. The Hamming distanc&etweenus, oz € Z; is defined as the number of
positions in which the strings differ, and is denoteddy(a1, a2).

TheHamming radiugp-clustering problerh (HRC) is: Given a se§ of k binary strings
a; € Z5, wherei = 1,.. ., k, and a positive integep, find p stringsg; € Z5, wherej =
1,..., p, minimizing the value

g}glg}lgl) dp(ai, Bj). (1)
Such a set of optimad;’s is called ap-center set ofS. (Note that an instance of HRC can
have severgp-center sets.) The corresponding value of (1) is calleghthadius of S, and
is written ase.

TheHamming diametep-clustering problen{HDC) is defined on the same set of in-
stances as HRC, and is stated as follows: Partifianto p disjoint subsetsSs, ..., S,
(called p-clusters ofS) so that the value of

max max dg(a;i, o)) (2)
1<g<p @iajeSsy
is minimized. The minimum value of (2) is called tipediameter ofS, and is referred to
asd.

One can immediately generalize HRC adBC by considering a larger finite size al-
phabet instead of0, 1}, making the problem more amenable to biological applications.
However, as long as the distance between two different characters is measured as one,
such a generalization involves only trivial generalizations of our approximation methods.
Therefore, we only consider the original binary versions of HRC and HDC throughout this
paper.

1.1. Previous results

In [3], Frances and Litman showed thatthecision version of the Hamming radius
1-clustering problem (1-HRC) is NP-complete. Motivated by the intractability of 1-HRC
and its applications in computational biology, coding theory, and data compression, two
groups of authors recently provided severakel@pproximation algorithms [5,12]. This
was followed by a polynomial-time approximation scheme (PTAS) for 1-HRC [13]. As
for the more general HRC and HDC, one can merely find work on the related graph or
geometricp-center, p-supplier, andp-clustering problems in the literature [2,8-10,15].

In the case of an undirected complete graph with edge weights satisfying the triangle in-
equality, all of the three problems mentioned above are known to admit 2-approximation or
3-approximation polynomial-time algorithms, but none of them are approximable within
2— ¢ foranye > 0 in polynomial time unless B NP [8-10]. This contrasts with the case

1 The corresponding graph problem is often termed;theenterproblem in the literature [8].
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p = 0(1) in which, e.g., the graplp-center andp-supplier problems can be trivially and
exactly solved im©® time. HRC does not seem easier than these graph problems. Since
HRC is NP-complete even fqgr = 1, optimal or nearly optimal center solutions to it may
have to be searched for ii;, whose size can be exponential in the input size. Our results
indicate that in the general case, HRC as well as HDC are equally hard to approximate in
polynomial time as the-center orp-clustering graph problems are.

1.2. Motivation

Clustering is used to solve classification problems in which the elements of a specified
set have to be divided into classes so that all members of a class are similar to each other
in some sense. HRC and HDC are equally fundamental problems within strings algorithms
as the corresponding graph and geometric center and clustering problems are within graph
algorithms or computational geometry respectively [2,8—10,15]. They have potential appli-
cations in computational biology and pattern matching.

For example, when classifying biomoleculagsiences, consensus representatives are
useful. The around 100000 different proteins in humans can be divided into 1000 (or less)
protein families, which makes it easier for easchers to understand their structures and
biological functions [7]. A lot of information about a newly discovered protein may be de-
duced by establishing which family it belongs to. During identification, it is more efficient
to try to align the new protein to representatives for various families than to individual
family members. Conversely, given a sebf k related sequences, one way to find other
similar sequences is by computipgrepresentatives (whepe « k) for S and then using
the representatives to probe a genome database. The representatives should resemble all
sequences i¥, and must be chosen carefully. For instance, whea 1, the sequence
that minimizes the sum of all pairwise distances betweamd elements it is biased
towards sequences that occur frequently, but using a 1-center as representative will avoid
this problen? For p > 1, the representatives can be the members inpthenter set or
simply p sequences, each from a differgntluster.

In pattern matching applications, the number of clagsesn be large; a system for
Chinese character recognition, for example, would need to be able to discriminate between
thousands of characters.

1.3. Organization of the paper

Section 2 demonstrates that while thadiameter of a set of binary strings is not nec-
essarily equal to itp-radius, it is always within a factor of two. Next, Section 3 provides
polynomial-time solutions for restricted cases of HRC and HDC based on integer program-
ming, exhaustive search, and breadth-first search. In Section 4, we prove the NP-hardness
of approximating HRC and HDC within any constant factor smaller than two. In the same
section, we also prove that another type of approximation for HDC in terms of the number

2 pepending on the application, the fdifence between strings is sometimes measured in terms of edit dis-
tance, which also takes insertions and deletions intowug rather than Hamming distance, which just considers
substitutions.
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of clusters is NP-hard, and that solving HDC exactly is an NP-complete problem already
for p = 3. Section 5 presents three approximation algorithms for HRC and HDR: a two-
approximation algorithm for HRC and HDC based on Gonzalez’ furthest-point clustering
method [6], an approximation scheme, i.e(lat+ ¢)-approximation algorithm for HRC,

and a(1 + ¢)-approximation algorithm for HRC using a moderately larger number of ap-
proximate centers.

2. Preliminaries

HRC and HRC are defined for the same set of instances, byt-tiagliusp and the
p-diameterd of a set of binary strings are different in general, as the following example
illustrates.

Example 2.1. Consider the instanc& = {00010000 00100000 01000000 10000000
11110000 11111113 with p =2.

An optimal solution to HRC i§81 = 00000000 8> = 11110103} with o = 2.

On the other hand, an optimal solution to HDC {i$; = {00010000 00100000
01000000 10000000 11110000, S ={11111113} with d equal to 3.

Let (S, p) be an instance of HRC/HDC. p-center se{ps, ..., B} of S with p-radius
o induces an approximagecluster se{Sy, ..., §p} of S with diameted (fori =1, ..., k,
if B4 is a center string that is closest & and has the lowest possible index then let
a; € S;). Analogously, ap-cluster set{Sy, ..., S,} of S with p-diameterd induces an
approximatep-center setfu, ..., f,} of S with radiusg (forg =1,..., p, let{f,} be a
1-center set for the set of strings belongingd.

Example 2.2. Let S be the instance in Example 2.1. _

The approximate 2-cluster set induced g4, f2} is {S1 = {00010000 00100000
01000000 10000000, S> = {11110000 11111113}, so the corresponding value df
is 4.

An approximate 2-center set induced {8, S»} is {1 = 010100008, = 1111111},
which impliesp = 3.

The next lemma shows that an approximate solution to HDC induced by an optimal
solution to HRC is within a factor of two of optimum, and vice versa. Moreover, it shows
that the p-diameter of a set of binary strings is always less than or equal to twige its
radius.

Lemma 2.3. Given an instance of HRC/HDC, defingd, d, andd as above. Then
(@) 0 < 20;

(b) d < 2d;
(€) 0 <d < 2.
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Proof. By definition, we have (1p < & and (2)d < d. Also, (3)& < d because setting
Bq to an arbitrary string irf, for eachg € {1, ..., p} gives an approximatg-center set
with radius less than or equal tb Next, since the Hamming distance obeys the triangle
inequality [11, p. 424], the distance between two strimgsy; that end up in the samg,
must be less than or equaldg («;, ) + du (B4, @) < 20, S0 it holds that (4) < 20.

Now, (a) follows from (3), (2), and (4); (b) follows from (4), (1), and (3). Finally, (c)
follows from (1), (3), (2), and (4). O

3. Polynomial-time solutionsfor restricted cases

The Hamming radius 1-clustering problem (1-HRC) is equivalent to a special case of the
integer programming problem. Any given instar(as, . .., o) of 1-HRC, wherey; € Z3
for 1 <i <k, can be expressed as a system bfear inequalities as follows.

Fori =1,...,k, lettheith inequality be

Yo oxmt+ Y, -xw)<o

a;[m]=0 a;[m]=0
1<m<n 1<m<n

and letX = (x1,...,x,) € Z} be a vector of 0-1-variables representing a 1-center of
{a1,...,a¢}. 0 IS an integer variable corresponding to the 1-radius. The left-hand side
of inequalityi equals the Hamming distance betwegrand X. (For each positiom, if
a;[m] = 0 then the sum is incremented by one if and only,if= 1, and conversely, if
a;[m] = 1 then the sum is incremented by one if and only,jf=0.) The constraint¥ o”
ensures thaiy («;, X) is smaller than or equal to the radius.

The above system of inequalities can be transformed into the fornd b(o), where
A is a(k x n)-matrix with every entry belonging to the stl, 1}, x is a(n x 1)-vector
of variables belonging t&@,, andb(p) is a (k x 1)-vector that depends an The scalar
product of any prefix of any row i with a 0—1-vector of the same length is neither
less than—n nor greater tham. Therefore, we can solve the transformed systent of
inequalities by a dynamic progmming procedure, proceeding in stages [14]. In sfage
we compute the sé¥; of all (k x 1)-vectors that can be expressedas,_; cmzm, Where
¢ is the mth column of A and z,, € Z,. Since the cardinality o#¥; cannot be larger
than (2n + 1)* and there are stages, this procedure takes a total gfZ)* - n) time.
Next, for eachv in W,, solvev < b(p) in O(k) time to identify av* which yields the
smallest possible value of A 1-centers for the given instance is then obtained by setting
Blm] =z}, for 1< m < n, where

n
Vi = Z Cmzp,-
m=1
The whole algorithm uses

O((Zn)k n+ @) k+ n) =n°®

time.
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Lemma 3.1. 1-HRC for instances with strings of length: is solvable im°® time.

If k is constant then any instance of the Hamming ragitdustering problem can be
transformed into a polynomial number of instances of 1-HRC. (wgt. .., o, p) be a
given instance of HRC, wherg € Z, for 1 <i < k and p € N. For each of the (0740)
ways to partition thé strings intop subsetgS, ..., S,}, constructy instances of 1-HRC
such that instancg consists of subsef;, use the method in Lemma 3.1 to solve each
instance, and let the value of this partition equal the maximum opthesulting 1-radii.
As the final solution, return the set of 1-centers in a partition that yields the smallest value.

To prove the correctness of this method, consider an optirtanter setpy, ..., B}

It induces a partitior{Sy, ..., Sy} of {a1, ..., a}, where for 1<i <k, o; € S, if B, is
the center string with lowest index closestdto Let o be thep-radius. By the definition
of a p-center setdp (i, Bg) < 0 for all o; € ;. Thus, the distance between an optimal
1-center ofS, and a string in§, cannot be greater than All partitions of the input strings,
including (S, ..., S}, are tested, so an optimal solution will be found.

The method takes a total of(@") - O(p) - nO% = nO® time. We conclude that HRC
with k£ = O(1) and arbitraryp can be solved exactly in polynomial time.

Theorem 3.2. HRC for instances with strings of length is solvable im©® time.
On the other hand, it = O(logk), exhaustive search give%&(”)-time solution.

Theorem 3.3. HRC restricted to instances withstrings of lengthO(logk) is solvable in
kO time.

One of the main differences between HDC ariRCis that the former does not involve
strings outside the input s&t For this reason, it seems simpler to solve exactly than HRC
does? Furthermore, it can be solved by exhaustive search(tfD+ k2p*) time, which
immediately yields the following result.

Theorem 3.4. HDC restricted to instances witB(logn) strings of length: is solvable in
n00097) time.

More interestingly, the Hamming diameter 2-clustering problem admits the following,
rather straightforward polynomial-time solution. Lebe a candidate value for the maxi-
mum Hamming cluster diameter in an optimal 2-clustering ofitigut strings of length
n. Form a graphG with vertices in one-to-one correspondence with the input strings, and
connect a pair of vertices by an edge whesrethe Hamming distance between the cor-
responding strings is less than or equakitoNow, the problem of Hamming diameter
2-clustering for the input stngs becomes equivalent to that of partitioning the vertices of
G into two cliques. The latter problem in turn reduces to 2-coloring the complement graph.

3 Paradoxically, as for approximation in terms of the number of clusters, it might be more difficult, as is
observed in the next sections.
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By breadth-first search, we can find a 2-catgriof the complement graph, if one exists,
in O(k?) time. To find the smallest possihde we use the procedure just described to test
different values ofl, generated by a binary search. €dhting all pairwise Hamming dis-
tances requires @%n) time, but this can be done before starting the search fétence,

we obtain the following result.

Theorem 3.5. For p = 2, HDC is solvable inD(k%n) time.

Note that Theorem 3.5 can be generalized to any metric.

4. NP-hardness of approximating HRC and HDC

By approximating HRC or HDC, we mean providing a polynomial-time algorithm
yielding a solution which approximates tiperadius or thep-diameter, respectively. Our
results from the first subsection prove the NP-hardness of this type of approximation of
HRC and HDC. In the second subsection, we consider another kind of approximation of
HDC relaxing the requirement on the numbépooduced clusters under the condition that
their diameter does not exceed thaliameter; we show that it is NP-hard to approximate
the number of clusters within any reasonable factor.

4.1. NP-hardness of approximating tperadius andp-diameter

To prove the hardness results in this subsection, we use the reduction in [2] from vertex
cover for planar graphs of degree at most three to the correspopéihgtering problem
in the plane under th&; metric. (Theradius p-clustering problem in the plane under the
L1 metricis the following: For a finite sef of points in the plane, find a sét of p points
in the plane that minimizes max min,cp d1(s, u), whereds is the L1 distance. Theli-
ameterp-clustering problem in the plane under tlig metricis defined analogously.) By
inspection of the aforementioned reduction, we show that the points in the resulting in-
stance of thep-clustering problem in the plane as well as the points in an approximate
p-center can be required to lie on an integer grid of size polynomial in the size of the input
planar graph. This gives the following technical strengthening of Theorem 2.1 in [2].

Lemma4.1. Leta be a positive constant less thanThe radiusp-clustering and diameter
p-clustering problems in the plane under the metric for a finite sefS of points, where

the points inS lie on an integer square grid of size polynomial in the cardinalitys &nd
where the approximate solution to the radius version is required to lie on the grid, are
NP-hard to approximate withia.

Proof. The reduction in [2] embeds an instance of vertex cover for planar graphs of degree
at most three in the plane by replacing all edges with odd length paths composed of unit
length edges. The midpoints of these unit length edges form an insfan€eadius or
diameterp-clustering in the plane which admits a solution withradius 05 or p-diameter

1, respectively, if and only if the embedded graph has a vertex covepwitides. The key
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Fig. 1. TheL1 distance between two edge midpoints (shown as filled circles) is 1 if the edges are adjacent, and
> 2 otherwise.

observation is that the minimum distancevbe¢n the midpoints ofto non-adjacent edges

is at least 2 in case of the; metric (see Fig. 1). It follows thédtnding an approximate
solution toZ within any factor smaller thar? is as hard as finding an exact solution
yielding the NP-hardness of approximating radius and diametdustering in the plane
under theL; metric within any factor smaller than 2. For further details concerning the
reduction, see [2] or [8].

Consider the smallest square b&xwith sides parallel to the- and y-axes which
contains the embedded graph constructetiéréduction. Since the graph can be assumed
to be connected, the length of a side of the box (5 Qvherel is the number of points in
the instance of the radius or diameter clustering problem in the plane. Nofedmto be
polynomial in the sizex of the original vertex cover instance [2]. We conclude that the box
has size polynomial in.

Form a uniform point grid withirB such that the distance between nearest neighbors in
the grid ise, where O< ¢ < 0.01. Move each of the midpoints ifito its nearest grid point.
Such a movement changes the relative distance between two midpoints by atemost 2
Adding the requirement that an approximateenter must also lie on the grid can further
increase the radius by at mastlt follows thatZ admits a clustering withp-radius 05
or p-diameter 1, respectively, if and only if the resulting instafi¢®f clustering on the
grid admits a solution withp-radius(0.5 + ¢) + ¢ = 0.5+ 2¢ or p-diameter 1+ 2¢. By
the key observation, it also follows thathas p-radius at least 1 op-diameter at least 2
if and only if 7’ has p-radius> 1 — 2¢ or p-diameter> 2 — 2¢. Now, if the p-radius
of 7' could be approximated within 2 12¢ then thep-radius ofZ could be computed
exactly since(0.5+ 2¢) - (2 — 12¢) < 1 — 2¢. Similarly, if the p-diameter ofZ’ could be
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approximated within 2- 6¢ then thep-diameter ofZ could be computed exactly since
(1+42e)-(2—6¢) <2— 2s.

Sincee can be selected arbitrarily close to 0 aficcan be constructed in time polyno-
mial in n for any fixede, it is sufficient to transform the grid to an integer grid by rescaling
by 1/¢ and shifting appropriately in order to obtain the theorem in both cases.

By embedding thd.; metric on an integer square grid into the Hamming metric, we
obtain our main result in this section.

Theorem 4.2. HRC and HDC are NP-hard to approximate within any constant factor
smaller than two.

Proof. Let S be a set of points on an integer square grid of gge|) x ¢(|S|), where
q(IS]) is polynomial in|S|. For eacts € §, denote the- andy-coordinates of by s, and
sy, respectively. Encode eaghe S by the binary string:(s) of length 2;(|S|) composed
of s, consecutive 1's followed by(|S|) — s, consecutive 0’s, then, consecutive 1’s, and
finally, ¢(IS]) — s, consecutive 0's. Note that for any two pointsands” in S, their L1
distance is equal to the Hamming distance between their encodisigande(s”). This
observation immediately yields the theorem thesis for HDC by Lemma 4.1.

Consider an approximate solutiem, . .., a, to HRC for the stringg(s), s € S. Fori =
1...., p, transformg; to a/ having the form 407(5D=/1moa(ISD=m for somel, m < q(|S])
by moving all the 1's contained in the left half of to the beginning of the left half, and
all the 1's in the right half ofz; to the beginning of the right half. The resulting string
sequencer, ..., a, is a solution which is at least as goodas. .., a, for the strings
e(s), s € S. Also, it can be directly decoded into a sequence of grid pgints. ., g, such
thata, = e(g;) fori =1,..., p. Putting everything together, we obtain the theorem thesis
for HRC by Lemma 4.1. O

4.2. NP-hardness of approximating HDC in terms of the number of clusters

Theclique partition problenis: Given an undirected gragh and a natural number,
partition the set of vertices @ into pairwise disjoint subsetg, ..., V, such that forj =
1,..., p, the subgraph of; induced byV; is a clique. Clearly, this problem is equivalent
to coloring the complement graph wighcolors. It follows from known inapproximability
results for graph coloring [1] that for any> 0, the problem of finding an approximate
solution to the clique partition problem consisting of at mpst/’—¢ cliques, where: is
the number of vertices in the instance graphis NP-hard.

By a reduction from the clique partition problem to HDC, we obtain:

Theorem 4.3. For anye > 0, the problem of finding partition of a set ok binary strings
of lengthO(k?) into at mostpk/7—¢ disjoint clusters such that each cluster has Hamming
diameter not exceeding thediameter is NP-hard.

Proof. Let G be an undirected graph with vertices. Construct an undirected gra@h
with 2n vertices by augmenting with » new vertices and then, for every verteappear-
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ing in G, adding edges betweerand new vertices until gets degree in G’. Enumerate
the edges o6’ from 1 tom, wherem = O(n?). For every vertex in G, form a strings(v)

of lengthm such that there is a 1 on thith position ins(v) if and only if theith edge of

G’ is incident tov. Note that for any pair of vertices, vz in G, the Hamming distance
betweens(vy) ands(v2) is 2n — 2 if they are adjacent, otherwise it iz ZTherefore, any
clique partition ofG into p cliques yields g-clustering of the resulting strings of maxi-
mum Hamming diameter less than or equal 022, and conversely, any-clustering of
the resulting strings of maximum Hamming diameter less than or equal+to2trivially
yields a partition ofG into ¢ cliques. Hence, by the inapproximability result cited above,
we obtain our result. O

Since the clique partition problem is NP-complete for all fixed> 3 (see [4]), the
reduction in the proof of Theorem 4.3 together with the fact that HDC belongs to NP
imply the following:

Coroallary 4.4. HDC is NP-complete for all fixegh > 3.

As for the corresponding approximation problem for HRC (i.e., producing a larger set
of approximate centers such that each input string is withirpthhadius from at least one
of the centers), we doubt whether it is equally hard to approximate. At least, if we weaken
the requirement of being within the-radius by a multiplicative factor of % ¢, then this
problem admits a logarithmic approximation in polynomial time, as is shown at the end of
the next section.

5. Approximation algorithmsfor HRC and HDC

In this section, we first see how an approximation factor of two for HRC and HDC can
be achieved. Next, we provide an approximation scheme for HRC running in polynomial
time whenp = O(1) ande = O(log(k + n)). Finally, we give a relaxed type of arbitrarily
close approximation af due to a moderate increase in the number of clusters which runs
in polynomial time wheneves = O(log(k + n)).

5.1. A 2-approximation algorithm for HRC and HDC

To obtain an approximation factor of two, we adapt Gonzalez’ farthest-point clustering
algorithm [6] to HRC and HDC respectively as follows:

Algorithm A.

STEP 1. SefP* to {«; }, whereq; is an arbitrary string ir5.

STEP 2. Foil =2, ..., p: augmentP* by a string inS that maximizes the minimum
distance taP*, i.e., that is as far away as possible from the strings already in

STEP 3 (HRC). Returi*.

STEP 3 (HDC). Assign each string ifi to a closest member i®* and return the
resulting clusters.
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As mentioned in the proof of Lemma 2.3, the Hamming distance obeys the triangle
inequality. Therefore, by Theorem 8.14 in [8], Algorithm A yields an approximate solution
to either HRC or HDC that is always within a factor of two of the optimum. We can
implement this algorithm by updating thtéamming distance of each string outsi#@é
to the nearest string i®* after each augmentation &f*. To update and then compute a
string in S furthermost fromP* takes Qkn) time in each iteration. Hence, we obtain the
following theorem.

Theorem 5.1. An approximate solution to either HRC or HDC that is always within a
factor of two of the optimum can be found@ipkn) time.

5.2. An approximation scheme for HRC

In this subsection we present 8®2/8)kO/&),2_time (1+ ¢)-approximation algorithm
for HRC. Our scheme is partly based on the idea used in the PTAS for 1-HRC in [13].

Algorithm B.

STEP 1. SeC to an empty subset df5. For each subsek of S having exactlyr
strings, compute the sé consisting of all positions:, 1 < m < n, on which all strings in
R contain the same symbol. SRtto {1, 2, ...,n}\ Q. For every possiblg : P — {0, 1},
let g4 be the string inZ3 which agrees with the strings iR on the positions inQ and
containsf () in each positiory € P. AugmentC by g .

STEP 2. LeC? be the family of all subsets of the s2Df size p. Test all sets ir€” and
return theP* € C? that minimizes maxc;<x Mincep dp (e, c).

The next lemma can be proved analogously as Lemma 11 in [13] (the key lemma for
the PTAS for the Hamming radius 1-clustering problem) is proved in case of a logarithmic
or smaller sized radius.

Lemma 5.2. For any subset of S, there is ac in C such that

1 .
maxdy (o, c) < | 1+ =—— ) min maxdy («, B).
aclU 2r—1 BeZy acU

Theorem 5.3. Algorithm B constructs a solution to HRC with approximation facfio#
51 in O(2rre+t1krr+1n2) time.

Proof. To prove the correctness and the approximation factor of Algorithm B, consider an
optimal p-center forS, say{pu, ..., 8,}. PartitionsS into subset$/; throughtU, such that

for 1 < j < p ande € Uy, B; has minimum Hamming distancedcamonggs, . .., 8. By
Lemma5.2, the s&t” constructed in STEP 2 contaif)sy, .. ., ,3;} suchthatfork j <p

and anyx € U;, the Hamming distance betweerandﬂ;'f is at most 14 Tl_l times the

radius ofU;. Thus, Algorithm B yields a solution within % Tl_l of the optimum.
To derive the upper bound on the running time of Algorithm B, first observe that each of
the setsP has size at most and that a string » can be constructed in@r) time. Hence,
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the size of the saf does not exceed 2", andC can be constructed in @22k n) time.
Consequenth¢? is of size at most"?2P"¢ and its construction fror@ takes @2P"?k”"n)
time. All that remains is to note that the test of egehuple inC? can be performed in
O(kn) time. O

Note that the running time of Algorithm B is polynomialinandk as long agp andr
are constant and = O(log(k + n)).

Corollary 5.4. Algorithm B yields a polynomial-time approximation scheme for the
Hamming radiusO(1)-clustering problem restricted to instances with theradius in
O(log(k + n)).

5.3. Arelaxed type of approximation for HRC

In this subsection, we consider twofold approximation for HRC allowing for producing
more thanp approximate centers and slightly exceedingphdius.

For eache in C (see Algorithm B), letS(c) be the set of all strings i within distance
1+ Tl_l)g of c. By Lemma 5.2, there is a set consistingpo$uch sets, covering all of
S. If o is known, we run the classical greedy heuristic for minimum set cover (see [8]) on
the instances, {S(c) | c € C}) to find a set of @Qplogk) sets covering. Otherwise, we
perform a binary search for the smallest possible value®f0, 1, ..., n} in the definition
of the setsS(c) by running the aforementioned heuristi¢l@n) times and each time
testing whether or not the resulting cover$has size Qplogk). Recall thatiC| < 2"¢k"
and thatC can be constructed in@2"%k"n) time. The instance of set cover corresponding
to a given value ofp can be constructed in (@ |kn) time; the greedy heuristic can be
implemented to run in QC|%?) time. By choosing: so that}* < r < 2, we obtain the
following result.

Theorem 5.5. For any constan0 < ¢ < 1, we can construct a sdt of O(p logk) strings
of lengthn in O((% + knlogn + k%logn)(22k)%/¢) time such that for each of thestrings
in S there is at least one string ih within distance(1 + ¢) of the p-radius.

The time bound in Theorem 5.5 is polynomiakirandk as long ap = O(log(k + n)).

6. Conclusions

We have shown not only that two is the best approximation factor for HRC and HDC
achievable in polynomial time unless=PNP, but also that it is possible to provide exact
solutions or much better approximation solutions to HRC or HDC in several special or
relaxed cases. It seems that there are plenty of interesting open problems in the latter direc-
tion. For example, is it possible to design very close and efficient approximation algorithms
for protein data (see Section 1.2) taking into account the specific distribution of the input?
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