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Abstract. Henzinger et al. posed the so called Online Boolean Matrix-
vector Multiplication (OMv) conjecture and showed that it implies tight
hardness results for several basic partially dynamic or dynamic problems
[STOC’15].

We show that the OMv conjecture is implied by a simple off-line con-
jecture. If a not uniform (i.e., it might be different for different matrices)
polynomial-time preprocessing of the matrix in the OMv conjecture is
allowed then we can show such a variant of the OMv conjecture to be
equivalent to our off-line conjecture. On the other hand, we show that
the OMV conjecture does not hold in the restricted cases when the rows
of the matrix or the input vectors are clustered.

1 Introduction

Henzinger et al. considered the following Online Boolean Matriz-vector Multipli-
cation (OMv) problem in [8]. Initially, there are given an integer n and an n X n
Boolean matrix M. Then, for ¢ = 1,...,n, in the i-th round there is given an n-
dimensional Boolean column vector v;, and the task is to compute the product of
M with v; before the next round. The objective is to design a (possibly random-
ized) algorithm that solves the OMv problem, i.e., it computes all the n products
as quickly as possible. In [8], Henzinger et al. provided efficient reductions of the
OMv problem to several basic partially dynamic or dynamic problems includ-
ing subgraph connectivity, Pagh’s problem, d-failure connectivity, decremental
single-source shortest paths, and decremental transitive closure.
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They also stated the following OMv conjecture in [8].

Conjecture 1 OMv conjecture. For any constant € > 0, there is no randomized
algorithm that solves the OMv problem in O(n3~¢) time with an error probability
of at most 1/3.

Their conjecture implies tight hardness results for the aforementioned par-
tially dynamic or dynamic problems [8]. It also implies the following off-line Mv
conjecture [8].

Conjecture 2 Mv conjecture. For any constant € > 0 and any polynomial p(),
there is no randomized preprocessing and randomized algorithm such that any
nxn Boolean matrix M can be preprocessed in p(n) time so the Boolean product
of M with an arbitrary Boolean n-dimensional column vector can be computed
in O(n?~¢) time with an error probability of at most 1/3.

The fastest known algorithm for the OMv problem is due to Green Larsen
and Williams [7]. Their recent (not combinatorial) randomized algorithm runs in
O(n?/2%(V1en)) time. Williams has also shown in [10] that any n x n Boolean
matrix can be preprocessed in O(n?T¢) time so the Boolean product of the
matrix with an arbitrary n-dimensional Boolean vector can be computed in
O(n?/log® n) time. This implies that the Mv problem corresponding to the My
conjecture admits an O(n?/ log? n)-time solution. Also recently, Chakraborty et
al. have established tight cell probe bounds for succinct Boolean matrix-vector
multiplication in [4].

Our Contributions. We show that the OMv conjecture is implied by the follow-
ing simple off-line MvP conjecture: For any constant ¢ > 0 and any polynomial
p there is an n x n Boolean matrix M that cannot be preprocessed in p(n) time
such that the Boolean product of M with an arbitrary n-dimensional column
vector v can be computed in O(n?~¢) time with an error probability of at most
1/3. There is a subtle but a substantial difference between our MvP conjecture
and the Mv conjecture, the latter stated and shown to be implied by the OMv
conjecture in [8]. In our conjecture the preprocessing is not uniform with respect
to the matrices while in the Mv conjecture in [8] one considers a uniform, univer-
sal preprocessing. It follows that the difficulty of proving the OMv conjecture lies
between the two aforementioned off-line conjectures: OMv is not more difficult
than MvP and it is not easier than Mv.

We also show that if we relax the OMv problem by allowing for a not uniform
polynomial-time preprocessing of the matrix M then the corresponding online
conjecture will be equivalent to our MvP conjecture.

Basically, the Combinatorial Boolean Matrix Multiplication conjecture
(CBMM conjecture) states that there is no combinatorial (randomized) algo-
rithm for the Boolean product of two n x n Boolean matrices that runs in sub-
stantially subcubic time [2,8]. Marginally, we also observe that if we strengthen
the CBMM conjecture by allowing for a polynomial-time uniform preprocessing
of one of the matrices, the resulting conjecture will be equivalent to the original
CBMM conjecture.
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On the other hand, by adapting known algorithms for Boolean matrix prod-
uct of matrices with clustered data [3,5,6], we obtain a combinatorial random-
ized algorithm for the product of a Boolean n x n matrix M and an arbitrary
Boolean n-dimensional column vector v running in O(n + STyr) time after an
O(nQ)—time preprocessing of M, where ST, stands for the cost of a minimum
spanning tree of the rows of M under the extended Hamming distance (never
exceeding the Hamming distance). Consequently, we obtain a combinatorial ran-
domized algorithm for the OMv problem running in O(n(n + STys)) time. We
also show that OMv admits a combinatorial randomized algorithm running in
O(nmax{ST(V),n't°M)) time, where ST (V) stands for the cost of a minimum
spanning tree of the column vectors vy, ..., v, under the extended Hamming dis-
tance. The time analysis of the latter algorithm relies in part on our analysis of
an approximate nearest-neighbour online heuristic for the aforementioned mini-
mum spanning tree.

The overwhelming majority of the reductions of the OMv problem to other
partially dynamic or dynamic problems in [8] are unfortunately one-way reduc-
tions that do not yield applications of our algorithms for the OMv and Mv
problems. Following the applications of the Mv problem given in [2,10], we pro-
vide analogous applications of our algorithms to vertex subset queries (e.g., for
a given graph, such a query asks if a given subset of vertices is independent),
triangle membership queries and 2-CNF formula evaluation queries.

Organization of the Paper. Section 2 introduces three new conjectures and
it shows implications and equivalences between them and the OMv conjecture.
Section 3 presents our algorithms for the OMv and Mv problems whose time
complexity is expressed in terms of the minimum cost of a spanning tree of the
rows of the matrix or the input column vectors under the extended Hamming
distance. Section4 presents applications of our algorithms. Section 5 concludes
with some final remarks. Because of space considerations, the proof of Lemma 3
as well as a marginal subsection of Sect.2 on Combinatorial Boolean Matrix
Product, and an additional application are omitted in this extended abstract.

2 An Off-Line Conjecture

By the auxiliary Boolean Matrix-vector multiplication problem (AMv) we shall
mean the problem of efficiently computing the product of a fixed n x n Boolean
matrix M, that can be (not uniformly) preprocessed in O(n3~¢) time for some
fixed € > 0, with an arbitrary n-dimensional Boolean column vector v. We state
the following conjecture related to the AMv problem.

Conjecture 3 AMv conjecture. For any constant ¢ > 0 and constants ¢y, ca,
there is an n x n Boolean matrix M that cannot be preprocessed in c;n>~¢ time
such that the Boolean product of M with an arbitrary n-dimensional Boolean
column vector v can be computed in con’®~€ time with an error probability of at
most 1/3.

We shall show the AMv conjecture to imply the OMv one.
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Lemma 1. Let € be a positive constant and let M be an n X n Boolean matrix.
If the OMv problem for M can be solved in O(n3~¢) time with an error prob-
ability of at most 1/3 then the matrix M can be (not uniformly) preprocessed
in O(n®>~¢) time such that the Boolean product of M with an arbitrary input
n-dimensional Boolean column vector v can be computed in O(n?~€) time with
an error probability of at most 1/3. Consequently, the AMv conjecture implies
the OMuv conjecture.

Proof. Construct a sequence of n-dimensional Boolean vectors wvy,....v, itera-
tively by picking as v; a vector that jointly with the preceding vectors maximizes
the total time of the assumed OMv solution for vy, ..., v;. Since the assumed OMyv
solution for the whole sequence takes O(n®~¢) time, there must be i € {1,...,n}
such that the product of M with v; is computed in O(n?~¢) time after computing
the products of M with the preceding vectors in the sequence. The computation
of all the products clearly takes O(n3~€) time and it has an error probability of
at most 1/3. By the definition of v;, if we compute instead of the product of M
with v;, the product of M with an arbitrary n-dimensional input vector v, the
computation will take only O(n?~¢) time after the products with the preceding
vectors have been computed. Again, the computation of all the products, and
hence in particular that of M with v, will have an error probability of at most
1/3. Since the vectors v;...v;—1 are fixed, the computation of the products of M
with the preceding vectors can be regarded as an O(n®~¢)-time preprocessing. 0

Unfortunately, we cannot show the reverse implication, i.e., that the OMv
conjecture implies the AMv one like it implies the Mv conjecture [8]. The reason
is that in the definition of the AMv problem, we do not require a universal
preprocessing that could work for any matrix M of size n x n, we only require
the existence of an individual preprocessing for a given M.

In the next lemma, we demonstrate that if we allow for an arbitrary (not
uniform) polynomial-time preprocessing instead of the substantially subcubic
one, we will obtain a problem equivalent to the AMv one. This lemma and its
proof idea of dividing the matrix and the vector into appropriate submatrices
and subvectors are similar to Lemma 2.3 and its proof idea in [8], respectively.

Lemma 2. Let § and € be positive constants. If for any n x n Boolean matrix
M there is an O(n3t?)-time preprocessing such that the product of M with an
arbitrary n-dimensional Boolean column vector v can be computed in O(n?=¢)
time with an error probability of at most 1/3 then there is a positive constant
€ such that after an O(ng’el)—time preprocessing the product of M with such a
vector v can be computed in O(n2_el) time with an error probability of at most

1/3.

Proof. Divide M into n?® quadratic submatrices M; ; of size nt= x pl=o,
where i,j € {1,...,n%}. Preprocess all the submatrices in O(n?® x (n!=%)3+7)
time. Then, the product of M with the vector v can be computed in O(n?® x
(nt=%)2=¢ 4+ nl*e) time. The last term in the expression represents the cost of
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summing the results of the products of the submatrices with respective subvec-
tors of v of length n'~®. In order to obtain an exponent of the total prepro-
cessing time in the form 3 — € and the exponent of computing the product in
the form 2 — €/, it is sufficient to solve the inequalities 20 + (1 — )(3 + §) < 3,
20+ (1 —a)(2 —€) < 2 and 1 + o < 2 with respect to @. Any « in the open
interval (%, 1) satisfies these inequalities.

Following the proof of Lemma 2.3 in [8], we can keep the error probability
below 1/3 by repeating the computation of each of the products of a submatrix of
M with a respective vector O(logn) times, and picking the most frequent answer.
In order to tackle the additional logarithmic factor in the time complexity, we
can slightly decrease our €. a

We shall call the problem and the conjecture resulting from the AMv problem
and the AMv conjecture by replacing an O(n3~¢) (not uniform) preprocessing
time with a polynomial (not uniform) preprocessing time, a Boolean Matriz-
vector multiplication with (polynomial-time not uniform) preprocessing problem
and a Boolean Matriz-vector multiplication with (polynomial-time not uniform)
preprocessing conjecture (MvP for short), respectively. Since the MvP conjecture
trivially implies the AMv conjecture, by Lemmata 1, 2, we obtain the following
theorem.

Theorem 1. The AMv and MvP conjectures are equivalent and they imply the
OMv conjecture.

Relaxing the OMv Problem. In order to obtain a version of OMv equivalent
to AMv and MvP, we shall consider generalized versions of the OMv problem and
the OMv conjecture allowing for a not uniform polynomial-time preprocessing of
the matrix. We shall term them, the OMvP problem and the OMvP conjecture,
respectively.

The proof of the following lemma is analogous to that of Lemma 1.

Lemma 3. Let € be a positive constant, and let M be an nxn Boolean matriz. If
the OMuP problem for M and any positive natural number n, after a polynomial-
time (not uniform) preprocessing of M can be solved in O(n3~¢) time with an
error probability of at most 1/3 then the matrix M can be (not uniformly) pre-
processed in polynomial time such that the Boolean product of M with an arbi-
trary input n-dimensional Boolean column vector v can be computed in O(n>~¢)
time with an error probability of at most 1/3. Consequently, the MuP conjecture
implies the OMuvP conjecture.

Lemma 4. Let € be a positive constant, and let M be an nxn Boolean matriz. If
the AMv problem for M can be solved in O(n?=€) time with an error probability
of at most 1/3 after an O(n3=¢) not uniform preprocessing of M then the OMvP
problem for the matriz M and n Boolean column vectors can be solved in O(n3~¢)
time with an error probability of at most 1/3. Consequently, the OMuvP conjecture
implies the AMv conjecture.
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Proof. Before computing the product of M with the first vector, perform the
appropriate not uniform O(n3~¢) time preprocessing of M. After that the prod-
uct of M with each consecutive vector can be computed in O(n%~¢) time, so
the total time for n vectors becomes O(n3~¢). We can keep the error probability
below 1/3 for the whole sequence of input vectors similarly as in the proof of
Lemma 2. a

Since the conjectures AMv and MvP are equivalent (see Theorem 1), by Lem-
mata 3 and 4, we obtain the following extension of Theorem 1.

Theorem 2. The MvP, AMv and OMuvP conjectures are equivalent.

3 Easy Cases of Matrices and Vectors for the Conjectures

Bjorklund et al. [3] proposed a method of multiplying two Boolean matrices by
using a close approximation of the minimum spanning tree of the rows or columns
of one of the matrices under the Hamming distance. Subsequently, the method
has been generalized to include the so called extended Hamming distance [6] and
integer matrix multiplication [5]. In the first warming-up subsection, we present
an explicit adaptation of the aforementioned generalizations to the case of the
product of an n x n Boolean (or 0 — 1) matrix M and an n-dimensional Boolean
(or 0 — 1) column vector v in the context of the OMv conjecture. Several results
presented in the first subsection can be regarded as implicit in [5,6]. This is not
the case in the second subsection handling the online scenario where the input
column vectors are clustered. Here, we have to develop a novel online approach
involving among other things an analysis of an approximate nearest-neighbour
online heuristic for minimum spanning tree of the vectors under the extended
Hamming distance. We shall use the following concepts in both subsections.

Definition 1. For two 0 — 1 strings s = $1S2....8m; and u = UiU...Up,, their
Hamming distance, i.e., the number of k € {1,...,m}, s.t., sy # ug, is denoted
by H(s,u). An extended Hamming distance, EH (s,u), between the strings, is
defined by a recursive equation EH (s,u) = EH(8;41---Sm, Ut1---Um) + (81 + w1
mod 2), where l is the mazimum number, s.t., s; = s1 anduj; = uq forj=1,..,1.

A differentiating block for the strings s, w is a mazximal consecutive subse-
quence w of 1,2,..n, s.t., either for each i € w s; = 1 and u; = 0 or for each
i €w s; =0 and u; = 1. In the first case, we set h(s) = —1 while in the second
case h(s) = 1.

3.1 Small Spanning Tree of the Rows of the Matrix (Warming Up)

For ¢ > 1 and a finite set S of points in a metric space, a c-approzimate minimum
spanning tree for S is a spanning tree in the complete weighted graph on S, with
edge weights equal to the distances between the endpoints, whose total weight
is at most ¢ times the minimum.



162 L. Gasieniec et al.

Fact 1 (Lemma 3 in [6]). For € > 0, a 2 + e-approximate minimum spanning
tree for a set of n 0 — 1 strings of length d under the extended Hamming metric
can be computed by a Monte Carlo algorithm in time O(dnHl/(He/z)).

By selecting € = 2logn, we obtain the following lemma.

Lemma 5. Let M be an nxn Boolean matriz. An O(logn)-approzimation min-
imum spanning tree for the set of rows of M under the extended Hamming dis-
tance can be constructed by a Monte Carlo algorithm in O(n?) time.

We shall also use the following data structure, easily obtained by computing
all prefix sums:

Fact 2 (e.g., see [5]). For a sequence of integers ay, as,. .. ,a,, one can construct
a data structure that supports a query asking for reporting the sum > 5 _. ax for
1<i<j<ninO(1) time. The construction takes O(n) time.

By using Lemma 5 and Fact 2, we obtain the following algorithm which in fact
computes the arithmetic product of the input Boolean matrix M and Boolean
vector v interpreted as 0 — 1 ones. Observe that the aforementioned arithmetic
product immediately yields the corresponding Boolean one.

Algorithm 1

Input: An n xn Boolean matrix M and an n-dimensional Boolean column vector
.
Output: The arithmetic product ¢ = (¢, ..., ¢, ) of M and v interpreted as a 0—1
matrix and a 0 — 1 vector, respectively.

1. Find an O(logn)-approximate spanning tree T for the rows row;(M), i =
1,...,n, of M under the extended Hamming distance and a traversal (i.e., a
not necessarily simple path visiting all vertices) of T.

2. For any pair (row;(M), row;(M)), where the latter row follows the former
in the traversal, find the differentiating blocks s for row;(M) and row;(M)
and as well as the differences h(s) (1 or —1) between the common value of
each entry in M mins, ..., Mimaxs and the common value of each entry in
Mi,min57 ey Mi,maxs-

3. Initialize a data structure D for counting partial sums of the values of coor-
dinates on continuous fragments of the vector v.

4. Tterate the following steps:

(a) Compute ¢, where ¢ is the index of the row from which the traversal of
T starts.
(b) While following the traversal of T, iterate the following steps:
i. Set 7, [ to the indices of the previously traversed row and the currently
traversed row, respectively.
ii. Set ¢ to ¢;.
iii. For each differentiating block s for row;(M) and row;(M), compute
Y kes Uk using D and set ¢; to ¢; 4+ h(s) Do, Uk
5. Output the vector (cq,ca, ..., Cp).
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Definition 2. For an n x n Boolean matriz A, let ST stand for the minimum
cost of a spanning tree of row;(A), i € {1,...,n}, under the extended Hamming
distance.

Lemma 6. Algorithm 1 runs in O(n® + STy) with high probability. If Steps 1,
2, 8 are treated as a preprocessing of the matriz M then it runs in O(n + STyr)
time after an O(n?)-time preprocessing.

Proof. The approximate minimum spanning tree 7" in Step 1 can be constructed
by a Monte Carlo algorithm in O(n2) time by Lemmab. Its traversal can be
easily found in O(n) time. Since the length of the traversal is linear in n, Step
2 can be easily implemented in O(n?) time. Step 3 takes O(n) time by Fact 2.
Finally, based on Step 2, Step 4 (b)-ii takes O(1 + EH (row;(M),row;(M)))
time. Let U stand for the set of directed edges forming the traversal of the
spanning tree 7. It follows that Step 4 (b) can be implemented in O(n +
> ner EH(rowi (M), row(M))) time, i.e., in O(n + STyr) time by Lemma 5.

Consequently, Step 4 takes O(n + ST)yy) time. O
By Lemma 6, we obtain:

Theorem 3. The Boolean product ¢ of an n X n Boolean matriz M and an n-
dimensional Boolean column vector v can be computed in O(n+ STh) time with
high probability after O(n?)—time preprocessing.

Proof. The correctness of Algorithm 1 follows from the observation that a dif-
ferentiating block s for row;(M) and row;(M) yields the difference h(s) >, ., vk

between ¢; and ¢; just on the fragment corresponding to M; mins;- - -, Mi maxs
and M minss, - - - , M max, respectively. Lemma 6 yields the upper bounds in terms
of STyy. O

Corollary 1. The OMv problem for an n x n Boolean matriz can be solved in
O(n(n + STy)) time while the Mv problem can be solved in O(n + STyr) time
after O(n?)-time preprocessing.

3.2 Small Spanning Tree of the Input Vectors

In this subsection, we assume an online scenario where besides the Boolean
matrix there is given a sequence of n-dimensional Boolean vectors received one
at a time. In order to specify and analyze our algorithm, we need the following
concepts and facts on them.

Definition 3. For a metric space P and a point g € P, an c-approximate near-
est neighbour of ¢ in P is a point p € P different from q such that for all
p € P,p' # q, dist(p,q) < ¢ x dist(p',q). The e-approzimate nearest neighbour
search problem (e-NNS) in P is to find for a query point ¢ € P a (1 + ¢€)-
approximate nearest neighbour of q in P.
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Fact 3 (See 3rd row in Table 4.3.1.1 in [1]). For € > 0, there is a Monte Carlo
algorithm for the dynamic e-NNS in {0,1}% under the Hamming metric which
requires O(d€ﬁ+°(l)) query time and O(dﬁﬁ"'o(l)) update time, where £ is
the mazimum number of stored vectors in {0,1}.

Fact 4 [6]. There is a simple, linear-time, transformation of any 0 — 1 string
w into the string t(w) such that for any two 0 — 1 strings s and u, EH(s,u) =
[H(t(sgi(u))].

By combining Facts 3, 4. we obtain the following corollary.

Corollary 2. There is a randomized Monte Carlo algorithm for a dynamic
O(log¢)-NNS in {0,1}% under the extended Hamming metric which requires
O(de°M) query time and O(de°™M)) update time.

Our online algorithm is as follows.

Algorithm 2

Input: Given a priori an n X n Boolean matrix M and an online sequence of
n-dimensional Boolean vectors vy, va, ..., vy Teceived one at a time.

Output: For i = 1, ..., £, the arithmetic product ¢! = (ci,...,¢%)) = Mv; of M and
v;, treated as a 0-1 matrix and a 0-1 column vector, is output before receiving
Vi41-

1. For j = 2,...,n, initialize a data structure D; that for any interval s C
{1,...,n} reports », .. M[j, k] using Fact 2.
2. Receive the first vector v; and compute the arithmetic product ¢! =
(c1,...,cl) of M with v; by the definition.
3. Fori=2,...,/, receive the i-th vector v; = (v,.
ing steps:
(a) Find an O(log¢)-approximate nearest neighbour v, of v; in the set
{'Ul, ceey ’Ui,l}.
(b) Determine the differentiating blocks s and the differences h(s) for v,, and
Vi
(¢) For j =1,...,n iterate the following steps.
i. Set ¢ to ¢
ii. For each differentiating block s of v, and v; iterate the following
steps.
A. Compute >, M([j, k] using D;.
B. Set ¢} to cj + h(s) Y pe, MIJ, K]
(d) Output ¢" = (¢, ...,cL)

.., %) and iterate the follow-

In the following lemmata, we analyze the time complexity of Algorithm 2.
The first lemma is an immediate consequence of Corollary 2.
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Lemma 7. There is a randomized Monte Carlo algorithm for a dynamic
O(log £)-NNS in {0,1}? under the extended Hamming metric such that:

— The insertions of the vectors vy through vy in Algorithm 2 can be implemented
in O(nf**+°M) total time.

— The O(log¥)-approzimate nearest neighbours of v;, i = 2,...,¢, in {vy,...,
vi—1}, in Step 8 (a) of Algorithm 2 can be found with high probability in
O(ne*t°M) total time.

Proof. By Corollary 2, the £ — 1 updates and £ —2 O(log ¢)-approximate nearest
neighbour queries take O(nf't°M) total time. O

Lemma 8. The preprocessing of the matriz M in Step 1 and computing the
arithmetic product of M with vy in Step 2 takes O(n?) time. After that, Algo-
rithm 2 for i = 2,...,4, computes the arithmetic product ¢ of M and v; before
receiving vi11 i O(n(1 + min{dist(v;,v;)|j < i})) + (i) time, where t(i) is the
time taken by finding an O(log £)-approzimate neighbour of v; in {v1,va,...,vi—1}
and inserting v; in the supporting data structure, with high probability. The total
time is O(n(L + ST(V))) + Zsz (i), where ST(V') is the minimum cost of the
spanning tree of the vectors in V- = {v1,va, ..., v} under the extended Hamming
distance.

Proof. Step 1 can be implemented in O(n?) time by Fact2 while Step 2 can
be easily done in O(n?) time by the definition. Step 3 (a) takes t(i) time by
our assumptions. The differentiating blocks s and the differences h(s) for v,,
and v; can be easily determined in O(n) time in Step 3 (b). Finally, since
the number of the aforementioned blocks is within a polylogarithmic factor
of min{dist(v;,v;)|j < i}, the whole update of ¢™ to ¢’ in Step 3 (c) takes
O(n(1 + min{dist(v;,v;)|j < i})) time. O

In order to pursue our time analysis of Algorithm 2, we need to specify
and analyze the following simple online approximation heuristic for minimum
spanning tree (MST).

Approximate Nearest-Neighbour Heuristic for MST

Input: an online sequence V of vectors vy, vg, .... received one at time.

Output: a sequence of spanning trees T;’ of the vectors v through v; constructed
before receiving v; 1 for all 4.

for each new vector v; do

find an f(i)-approximate nearest neighbour u of v; in the set of vectors received
so far;

expand the spanning tree built for the vectors received before v by {u,v;}.

Theorem 4. Assume that the function f is not decreasing and the input vectors
to the approzimate nearest-neighbour heuristic for MST are drawn from a metric
space. The spanning tree constructed by the heuristic for the first t vectors has
cost not exceeding [logy t|f(t) times the minimum.
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Proof. Assume first that ¢ is a power of two. Let V = {v1, ..., v;:} be the sequence
of ¢ vectors received, where v; is the i-th vector received.

Consider a minimum cost perfect matching P of V. For each edge {v;,v;} in
P, where ¢ < j, the cost of connecting v; to the current spanning tree T;_; of vq
through v;_; does not exceed f(t) x dist(v;, v;). Thus, for t/2 vectors v; in V, the
cost of connecting them to the current spanning tree T;_; does not exceed the total
cost of P times f(t). It is well known that the total cost of P is not greater than
half the minimum cost T'SP (V) of the travelling salesperson tour of V.

In order to estimate from above the cost of connecting the remaining ¢/2
vectors to the current spanning trees, we iterate our argument.

Thus, let V7 denote the remaining set of vertices and let P; be their minimum-
cost perfect matching. We can again estimate the cost of connecting half of the
t/2 vectors in V; to the current spanning trees by the cost of P; times f(¢). On
the other hand, we can estimate the cost of Py by T'SP(V;) < $TSP(V). We
handle analogously the remaining ¢/4 vectors and so on. After log, ¢ iterations,
we are left with the first vector, and can estimate the total cost of connecting
all other vectors to the current spanning trees by log, tf(¢t)T'SP(V)/2. On the
other hand, by the doubling MST heuristic, we know that T'SP(V) is at most
twice the cost ST(V') of minimum-cost spanning tree of V. We conclude that the
cost of the spanning tree of V' constructed by the approximate nearest-neighbour
heuristic does not exceed log, tf(¢)ST (V).

If ¢ is not a power of two, we have to consider minimum-cost maximum car-
dinality matchings instead of minimum-cost perfect matchings. Let ¢ = 210821,
Observe that the number of the remaining vectors after each iteration when we
start with a sequence of ¢ vectors will be not greater than that when we start
with a sequence of ¢’ vectors having the sequence of ¢ vectors as a prefix. This
completes the proof of the [log, t]f(¢)ST (V) upper bound. O

In the special case when f( ) = 1, our online heuristic for MST in a way
coincides with the greedy one for incremental minimum Steiner tree from [9],
which on weighted graphs satisfying triangle inequality could be easily adapted
to consider only received vertices. Hence, in this case a logarithmic upper bound
on approximation factor could be also deduced from Theorem 3.2 in [9]. Putting
together our lemmata and theorem in this subsection, we obtain our main result
here.

Theorem 5. Let M be an n x n Boolean matriz. For an online sequence V
of n-dimensional Boolean vectors vy, vs, ...,vg received one at time, the Boolean
products Mv; of M and v; can be computed before receiving viy1. in total time
O(n(£*+°M) 1+ ST(V))) with high probability by a randomized algorithm, where
ST (V) is the minimum cost of the spanning tree of the vectors in V under the
extended Hamming distance.

Proof. The correctness of Algorithm 2 follows from the observation that a differ-
entiating block s for v,, and v; yields the difference h(s) ), ., M[j, k] between
c* and c¥ just on the fragments v, o, - . U ax s 30 Uiy o+ o5 Uax 5 TESPEC-

tively. Lemmata 7, 8 and Theorem 4 yield the upper bounds in terms of ST (V).
O
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4 Applications to Graph Queries

Suppose that we are given a graph G = (V, E) on n vertices and a subset S
of V. In [10] Williams observed that the questions if S is a dominating set, an
independent set, or a vertex cover in GG, can be easily answered by computing
the Boolean product of the adjacency matrix of G with appropriate Boolean
vectors. Hence, he could conclude (Corollary 3.1 in [10]) that these questions
can be answered in O(n?/(elogn)?) time after an O(n?*¢) preprocessing of G
by using his method of multiplying n x n Boolean matrix with an n-dimensional
column vector in O(n?/(elogn)?) time after an O(n**¢)-time preprocessing of
the matrix. By plugging in our method of Boolean matrix-vector multiplication
(Theorem 3) instead, we obtain the following result.

Corollary 3. A graph G on n vertices can be preprocessed in O(nQ) time such
that one can determine if a given subset of vertices in G is a dominating set,
an independent set, or a vertex cover of G in O(n + STq) time with high prob-
ability, where STg is the minimum cost of a spanning tree of the rows of the
adjacency matriz of G under the extended Hamming distance. Using the same
preprocessing, one can determine if a query vertex belongs to a triangle in G in

O(n+ STg) time with high probability.

To obtain corresponding applications of the results from Subsect. 3.2, we need
to consider the online versions of the graph subset queries. Thus, we are given
a graph G on n vertices and an online sequence of subsets Si,...,5¢ of vertices
in G. The task is to preprocess G first and then to determine for i = 1,..., ¢, if
S; is a dominating set, an independent set, or a vertex cover of GG, respectively,
before S;11 has been received.

Corollary 4. A graph G on n vertices can be preprocessed in O(n?) time such
that for an online sequence S of subsets S1,...,S¢ of vertices in G, fori=1,...,¢,
one can determine if S; is a dominating set, an independent set, or a vertex
cover of G before receiving Siy1 (ini < £ case) in O(n(£+°M) 4 STy)) total time
with high probability, where STg is the minimum cost of a spanning tree of the
characteristic vectors representing the subsets in S under the extended Hamming
distance. Using the same preprocessing, for an online sequence v, ...,vy of query
vertices, for i = 1,....4, one can determine if v; belongs to a triangle in G
before receiving viy1 (in case i < L) in O(n(1+°M) 4+ STg)) total time with high
probability.

Proof. Recall that a subset S; of vertices in G can be easily represented by an
n-dimensional Boolean column vector w; with 1 on the j-th coordinate iff the
j-th vertex belongs to .S;. Then, S; is independent in G iff the vector u; resulting
from multiplying the adjacency matrix of G with w; has zeros on the coordinates
corresponding to the vertices in S;. Next, S; is a dominating set of G iff each
vertex in V' \ S; has a neighbour in S;, i.e., iff u; has ones on the coordinates
corresponding to vertices in V' \ S;. Finally, S; is a vertex cover of G iff V' \ S;
is an independent set of G, i.e., iff the vector resulting from multiplying the
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adjacency matrix of G with the complement of w; has zeros on the coordinates
corresponding to the vertices in V'\ S;.

Hence, it is sufficient to plug in our solution given in Theorem 5 to obtain the
theorem. The preprocessing of G consists just in the construction of its adjacency
matrix in O(n?) time. Note also that the extended Hamming distance between
two 0-1 strings is equal to the extended Hamming distance between between
the complements of these two strings. Thus, the upper bound in terms of STg
is also valid in case of vertex cover. ad

5 Final Remarks

Our results in Sect. 3 imply that to prove the conjectures OMv, AMv and MvP
it is sufficient to consider n x n Boolean matrices where ST, is almost quadratic
in n.

Interestingly enough, our approximate nearest-neighbour heuristic for MST
combined with the standard MST doubling and shortcuttings techniques imme-
diately yields a corresponding online heuristic for TSP in metric spaces. By
Theorem 4, it provides TSP tours TSP, of length at most 2[log, s]f(s) times
larger than the optimum, where s is the number of input vectors and f(s) is an
upper bound on the approximation factor in the approximate nearest neighbour
subroutine. The resulting TSP heuristic for ¢ = 2, ... simply finds an f(i)-nearest
neighbour u of the new vector v; and replaces the edge between u and its pre-
decessor w by the path {w,v;}, {v;,u} in TSP;_; in order to obtain T'SP;.
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