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Abstract. A consensus tree is a phylogenetic tree that synthesizes a given
collection of phylogenetic trees, all of which share the same leaf labels but
may have different topologies, typically obtained through bootstrapping. Our
research focuses on creating a consensus tree from a collection of phylogenetic
trees, each detailed with branch-length data. We integrate branch lengths
into the consensus to encapsulate the progression rate of genetic mutations.
However, traditional consensus trees, such as the strict consensus tree,
primarily focus on the topological structure of these trees, often neglecting the
informative value of branch lengths. This oversight disregards a crucial aspect
of evolutionary study and highlights a notable gap in traditional phylogenetic
approaches. In this paper, we extend PrimConsTree, an graph-based method
for constructing consensus trees. This algorithm incorporates topological
information, edge frequency, clade frequency, and branch length to construct
a more robust and comprehensive consensus tree. Our adaptation of the
well-known Prim algorithm efficiently identifies the maximum frequency
branch and maximum frequency nodes to build the optimal consensus tree.
This strategy was pre-processed with clustering steps to calibrate the robustness
and accuracy of the consensus tree.
Availability and implementation: The source code of PrimConsTree is freely
available on GitHub at https://github.com/tahiri-lab/PrimConsTree.

1 Introduction

The exploration of phylogenetic relationships is crucial in biology to reveal evolutionary
connections among species. A consensus tree is a computational method used to synthesize a
set of phylogenetic trees, aiming to distill the most frequently occurring characteristics into a
single representative tree. This approach facilitates the identification of common evolutionary
relationships and patterns across multiple phylogenetic analyses [1]. In this context, the
accuracy of a consensus tree lies in its ability to effectively represent the collective input
while accounting for uncertainty or divergence in the data. However, consolidating multiple
trees into a single structure presents a significant challenge [2].
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The difficulty in this process is reconciling variations and conflicts that may arise from a
set of phylogenetic trees. Integrating diverse evolutionary perspectives and resolving incon-
sistencies becomes intricate due to structural differences between trees, often making them
incompatible. This mismatch requires careful consideration and the application of advanced
computational techniques to construct a coherent and accurate composite consensus tree. In
addressing this issue, a proposed solution recommends employing multiple consensus trees
for a more comprehensive approach [3, 4].

The phylogenetic tree involves three main elements: 1) topology, 2) branch length, and
3) label position. In phylogenetic trees, topology refers to the branching structure that rep-
resents evolutionary relationships among species. It is important to note that closely related
species based on topology may not necessarily exhibit morphological similarity. For instance,
crocodiles are more closely related to birds than to lizards based on their evolutionary lineage,
despite crocodiles and lizards appearing more morphologically similar. This occurs due to
differing rates of evolutionary change, particularly rapid morphological evolution along the
bird lineage. Branch lengths in phylogenetic trees represent the amount of genetic diver-
gence, commonly measured in nucleotide substitutions. While branch lengths can sometimes
be interpreted as indicative of time, this interpretation is contingent upon the assumption of
a molecular clock. In cases where terminal branches descend from the same common ances-
tor, differences in branch lengths are generally interpreted as variations in evolutionary rates
rather than direct representations of temporal duration. For instance, a longer branch may
reflect a higher rate of substitution rather than a longer period of time when compared to a
shorter branch arising from the same ancestral node. The position of the labels, affixed to the
ends of the branches, provides essential taxonomic information, revealing evolutionary links
through their relative positions.

A crucial element in the accurate depiction of phylogenetic trees is the incorporation
of branch lengths, representing evolutionary time or genetic change among species or se-
quences. These lengths contribute significantly to the understanding of the temporal aspects
of evolution, offering insights into the processes shaping the Tree of Life. Branch lengths play
multiple roles across diverse domains, from assessing phylogenetic diversity to identifying
and analyzing selection processes [5–10]. Despite substantial advancements in reconstruct-
ing phylogenetic trees, the challenge of constructing consensus trees with more topological
information and meaningful branch lengths remains an active research area.

In response to this problem, our study introduces an efficient methodology for construct-
ing Maximum Spanning Trees (MST) that consider edge and clade frequencies. This unified
framework aims to integrate information from diverse phylogenetic inference methods and
data sources, culminating in a consensus tree encapsulating widely supported branches and
their associated branch lengths. Our approach promises a refined and comprehensive perspec-
tive on evolutionary relationships, shedding light on the consensus time scale of evolution.

2 Definitions and notation

This article uses standard phylogenetic tree terminology. A phylogenetic tree is a rooted,
directed tree where every internal node has at least two children and each leaf has a distinct
label. Given a tree T , the set of all nodes in T is V(T ) and it includes two disjoint subsets:
the leaf nodes L(T ), and the internal nodes (including the root node) I(T ). The set of edges in
T is E(T ) and an edge (u, v) ∈ E(T ) denotes a directed link from node u to v. An edge (u, v)
represents a parent-child relation where u is the parent of v and v is the child of u. The length
of an edge (u, v) in T is denoted by distT (u, v) and represents the amount of genetic change
from u to v. Given a node u ∈ V(T ), T [u] means the subtree of T rooted at u.
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In a phylogenetic tree, a clade is anny subset of the leaves that have a common ancestor
such that no other leaves in the tree have that same node as an ancestor. Given a tree T , each
node u ∈ V(T ) represents a distinct clade that is defined as Cu = L(T [u]). A clade Cu is said
to be supported by T if there exists a v ∈ V(T ) with L(T [v]) = Cu. Two distinct clades Cu and
Cv are said to be compatible either if Cu ⊆ Cv, Cv ⊆ Cu or Cu ∩Cv = ∅.

The set of input trees S = {T1, . . . ,Tk} is a set of k phylogenetic trees, all sharing the same
set of leaves L(S ) = L(T1) = · · · = L(Tk). The parameters used to measure the size of the
input are k = |S | for the number of trees and n = |L(S )| for the number of leaves, respectively.
We refer to the subset of trees in S that support the clade Cu by S u, i.e., for every internal
node we define S u = {T ∈ S : u ∈ V(T )}.

A graph refers to an undirected weighted graph. Given a graph G, its set of vertices is
V(G), its set of edges is E(G), and its weights are W(G). An edge (u, v) ∈ E(G) denotes an
undirected link between vertices u and v so (u, v) is the same as (v, u). The weight of the edge
(u, v) in G is WG(u, v); as only one graph is involved, we simply write W(u, v) for convenience.
Given a subset of vertices X ⊆ V(G), let G[X] denote the subgraph induced by X.

Definition 1 (Consensus tree) Let S = {T1, . . . ,Tk} be a set of k phylogenetic trees on the
same set of species L = L(T1) = · · · = L(Tk). A consensus tree of S is a phylogenetic tree Tc

with L(Tc) = L that summarizes all of the trees in S .

The main challenge considered in this paper is to find a consensus tree Tc of S that
accurately represents the topology as well as the branch lengths of all the trees in S . In the
case of building a consensus tree, the objective function (OF) of the method can be defined
as follows:

OF =
k∑

i=1

dist(Ti,Tc), (1)

where k is the number of input trees, Tc is the consensus tree, and dist(Ti,Tc) is a distance
metric between input phylogenetic tree i (denoted Ti) and Tc. The objective is to determine
the consensus tree, Tc, that minimizes the sum of distances across all input trees, thereby
optimizing the agreement between Tc and the input set. This optimization seeks to capture
the central tendency of the phylogenetic relationships encoded within the input trees while
minimizing discordance.

3 Related work

Given a set of phylogenetic trees, many methods exist for defining a consensus tree [11, 12].
The most well-known types of consensus trees are the strict consensus tree [13], the majority-
rule consensus tree [14], the extended majority consensus tree (also referred to in the litera-
ture as the greedy consensus tree) [11, 12], and the frequency difference consensus tree [15]
(called the plurality consensus tree in [16]). All consensus tree inference methods are based
on the topology of the input phylogenetic trees. They mostly focus on the representation of
each clade in the input trees.

Unfortunately, none of the methods described above is able to reconstruct branch lengths.
Recently, a novel method for generating a consensus tree that incorporates branch lengths
was proposed by Sifat and Tahiri [17]. The experimental analysis conducted was limited,
involving the utilization of branch length and edge frequency to derive the MST. The obtained
results were then compared with a majority-rule consensus tree, revealing a close similarity.
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Figure 1: Comprehensive visualization of the system architecture overview, illustrating the three main
steps of the approach (a-e). The process initiates with the initial input trees and concludes with the
generation of one consensus tree per cluster, through the modified Prim algorithm [18]. From step (b),
each color of the arrows represents an independent instance of the pipeline.

4 Method

In this study, we address the complex problem of integrating simultaneously edge frequency
and branch length into the construction of a consensus tree. Our method pipeline, depicted
in Figure 1, involves a series of steps to derive a consensus tree from the input phylogenetic
trees. We subdivide the new method in two main phases, in addition to a preprocessing phase.
In the preprocessing phase, we partition the input trees into several clusters (see Section 4.1),
then each cluster can be processed independently by the following main phases. In the first
phase, we transform a set of trees into a super-graph. In the second phase, we use an adapted
version of the algorithm of Prim to construct a Maximum Spanning Tree (MST) of the super-
graph. This MST serves as a base to create the consensus tree. We describe the first phase,
and the second phase. Figure 1 (a,b) presents the clustering phase, Figure 1 (c) presents the
first phase, and Figure 1 (d,e) presents the second phase of our method.

4.1 Clustering

Phylogenetic analysis involves three distinct steps. In the first step, researchers collect data,
such as genomic, proteomic, and metabolomic data, for the different taxa under study (e.g.,
genes, species, morphology). The next step is to apply a tree reconstruction method to the
collected data. Many of these methods produce several potential trees for the given data
set. Often, hundreds or thousands of trees can be obtained. In the final step, a consensus
tree is calculated from the candidate trees to reconcile conflicts, summarize information, and
mitigate the large number of potential solutions in the evolutionary story. Although many
consensus tree methods exist (see Section 3), they generally generate a single tree, which
poses problems such as loss of information and susceptibility to outliers.

Given k genes defined across n species, the problem is to identify the optimal partition
of phylogenetic trees that exhibit similar patterns of evolutionary history while accounting
for outliers. This intermediate step in constructing a consensus tree facilitates the resolution
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of conflicts among trees and emphasizes the potential for various alternative consensus trees
[3, 4]. Figure 1 (b) illustrates the clustering step in the process. We have added the choice
of k-medoids to create a homogeneous clustering with the Silhouette (SH) index [19]. We
selected the k-medoids clustering method for its ability to handle variability in phylogenetic
tree topologies and minimize the influence of outliers. This method optimizes the SH index
[19] to form clusters with well-supported topological similarities. Its non-hierarchical nature
avoids biases that may arise in hierarchical approaches, making it suitable for datasets with
complex evolutionary patterns. The SH index is a method used to interpret and validate the
consistency within clusters of data, providing a concise graphical representation of how well
each object has been classified. This technique was introduced by [19]. The SH value mea-
sures how similar an object is to its cluster (cohesion) compared to other clusters (separation).
This value ranges from -1 to +1, with a high value indicating that the object is well-matched
to its cluster and poorly matched to neighboring clusters. If most objects have high SH val-
ues, the clustering configuration is considered appropriate. Conversely, if many points have
low or negative values, the clustering configuration may have too many or too few clusters.

All subsequent steps following clustering will independently process the different clusters
obtained by k-medoids (see Figure 1, which shows the various colored arrows). From now
on, the set of input trees S will refer to the set of trees within a given cluster.

4.2 Tree-to-graph transformation

In this phase, depicted in Figure 1 (c), we present a dynamic tree-to-graph transformation,
enabling the conversion of a set of input phylogenetic trees into an undirected weighted graph
called the super-graph. We explain the dynamic naming of internal nodes followed by the
construction of the super-graph. During this phase, we also detail the computation of edge
frequency, clade frequency, and average edge lengths.

Definition 2 (Dynamic tree) A dynamic tree T is a tree structure that satisfies the properties
of a phylogenetic tree. Additionally, every internal node u ∈ IT is named according to the
process described below.

The super-graph construction brings together nodes and edges from multiple trees. To
identify the occurrences of the same internal node in distinct trees, we transform each phylo-
genetic tree of S into a dynamic tree by identifying its internal nodes. Each internal node is
named after its corresponding clade, such as two nodes u ∈ I(Ti) and v ∈ I(T j) are considered
equivalent if Cu = Cv. Therefore, the same node occurring in multiple trees can reconcile
different branching patterns. For example, consider how internal nodes are labeled in Figure
2 (a). The node abc appears in two different trees, each time with a distinct underlying topol-
ogy. It is worth noting that all trees in S share the same set of leaves, thus leaving every root
node with the same name after the name attribution of the internal nodes.

It follows that after this step, edges are also identified according to the new names of
internal nodes. Two edges (u, v) ∈ E(T ) and (u′, v′) ∈ E(T ′) are equivalent if u = u′ and
v = v′. We do not consider edge lengths or edge directions since the graph is undirected. By
opposition, the edges are distinct if u , u′ or v , v′.

Definition 3 (Dynamic trees union) Given a set of dynamic trees D, the dynamic tree union
operation is formally noted

⋃
Ti∈D Ti. The result of the operation is an undirected unweighted

graph G; the vertices of V(G) are split in two disjoint subsets such as V(G) = I(G) ∪ L(G),
where I(G) denote internal nodes from the trees and L(G) denote leaf nodes from the trees;
for clarification we always use the terms internal / leaf vertices for a graph and internal / leaf
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nodes for a tree. Vertices are given by I(G) =
⋃

Ti∈D I(Ti) and L(G) =
⋃

Ti∈D L(Ti), and edges
are given by E(G) =

⋃
Ti∈D E(Ti).

The super-graph G is the result of the dynamic tree union operation applied on the set of
input trees S . Every tree shares the same root, so we call the unique vertex corresponding to
the root in V(G) the root vertex for convenience. Additionally, an edge frequency is attached
to each edge (u, v) ∈ E(G) as the edge weight W(u, v). Given an edge (u, v), its frequency
W(u, v) is the number of input trees that contain this edge. Formally, let S (u,v) = {T ∈ S :
(u, v) ∈ E(T )} denote the set of trees that contain the edge (u, v) the formula for edge frequency
is defined as follows:

W(u, v) = |S (u,v)|. (2)

Similarly, a clade frequency is assigned to each internal vertex in the super-graph. Let
u be an internal vertex in I(G), we note F(u) the clade frequency associated u and give the
following formal definition. Given S u = {T ∈ S : u ∈ V(T )} the set of trees support the clade
Cu, and r the root vertex, the formula for clade frequency is defined as follows:

F(u) =

|S u|, if u , r.
0, otherwise.

(3)

Clade frequency provides crucial insight into how often a clade is supported in the input
trees. The clades of a phylogenetic tree are highly significant because, collectively, they de-
scribe the entire topology of the tree. Consequently, clade frequency constitutes an essential
metric in the construction of consensus trees, providing an objective measure for representing
the recurring topologies across the input trees.

Originally, the clade frequency of the root vertex should be equal to |S | because the cor-
responding node is present in all trees. We deliberately put it to 0 to avoid a biased situation
where the root vertex gains undue importance merely due to its presence in every tree. This
approach allows for a more balanced and accurate representation of clade significance across
the super-graph.

Edge and clade frequency are closely related to each other but regardless, each gives
important insight on the topology of the input trees. While the presence of an internal node
u in a tree relates to the presence of a clade, it does not provide details on the topology of
the underlying subtree T [u]. On the other hand, because every internal node is named, each
edge depicts an explicit link between two nodes, which is much more accurate and therefore,
should be given more attention. However, clade frequency is still very important when tree
topologies are too conflicted to refer to explicit edges. For instance, in Figure 2 (a), leaf a is
never connected with the same edge; nevertheless, the clade abc is represented in two trees
out of three. Considering only edge frequency, a might be connected to the root in Figure 2
(d), leaving clade abc unresolved in Figure 2 (e). The clade frequency suggests a preference
for the edge (abc, a) as it contributes to including the clade abc.

The last attribute to be attached to the super-graph is average edge length. It describes
the average length of a given edge across every tree of S that includes the edge. Other trees
are omitted because they do not hold relevant information about the length of the edge. The
formula to compute average edge length is defined as follows:

D(u, v) =

∑
T∈S (u,v)

distT (u, v)

W(u, v)
, (4)
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Figure 2: This small example outlines how edge and clade frequencies were utilized to retain
topological information in PrimConsTree. (a) Three input trees, with already named internal
nodes (with root abcd as R); (b) Construct a super-graph encompassing all nodes, incorpo-
rating edge and clade frequencies; (c) Derive the Maximum Spanning Tree (MST) from the
super-graph, with a focus on internal vertices; (d) Establish connections between leaves and
internal vertices based on edge and clade frequencies; (e) The consensus tree is obtained by
PrimConsTree by removing unnecessary internal nodes from the MST. In (d, e), red edges
outline how ignoring clade frequency could lead to the loss of an important information on
the clade abc.

where S (u,v) ⊆ S is the subset of trees containing an edge between u and v, such as
S (u,v) = {T ∈ S |(u, v) ∈ ET }, distT (u, v) is the length of this edge in T and W(u, v) is the edge
frequency of the (u, v) from Equation 2.

In the context of our analysis, the potential impact of outliers is minimized by the cluster-
ing. Therefore, every tree should have its importance in the result and the average is the most
appropriate metric because it takes every tree into account.

Lemma 1 (Connectivity of the super-graph) Let G be the super-graph resulting from the
dynamic trees union operation, applied on the set of input trees S . The graph G is connected
and the subgraph G[I(G)] restricted to internal vertices is also connected.

Figure 2 describes the process used to build the super-graph. Initially, the super-graph G
is empty, first, we include the set of leaves such that L(G) = L(S ), and then, we sequentially
incorporate information from each tree T ∈ S . When adding a tree T , the graph internal
vertices are updated as I(G) = I(G) ∪ I(T ) and the graph edges are updated as E(G) =
E(G) ∪ E(T ). For each edge (u, v) ∈ E(T ), the edge frequency is increased by one and the
average length is incremented by distT (u, v). The clade frequency F(u) of each node u ∈ T is
also increased by one. Finally, the average length of each edge is divided by its frequency.
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At the end of the first phase, the main properties of the input trees are retained in the
super-graph: 1) Tree topologies are retained firstly in the graph topology and secondly in its
attributes, including edge frequencies W and clade frequencies F and 2) Branch length data
is retained in the average edge length attribute D.

4.3 Consensus tree construction from the super-graph

In the following phase, depicted in Figure 1(d,e), the analysis involves the super-graph G,
including edge and clade frequency and average edge length. Figure 1d builds a specific
Maximum Spanning Tree (MST) of the super-graph and uses the MST as a base to generate a
consensus tree Tc. Indeed, an MST is a straightforward and efficient way to find a tree struc-
ture that maximizes the values of its attributes (i.e., edge and clade frequency), consequently
maximizing the accordance of its topology with the input trees. Another advantage of the
MST is that it directly takes edges from the super-graph, which already retains branch length
data.

In the context of a consensus tree, the resulting consensus tree must have the same set of
leaves as the phylogenetic trees used as input. To ensure that the MST does not compromise
this condition, we divide its construction into two main steps. The first step utilizes the
subgraph G[I(G)] restricted to internal vertices only, and yields its Maximum Spanning Tree
(MST). Indeed, constructing the MST from all vertices could lead to the conversion of leaf
vertices into internal nodes within the MST, a scenario deemed undesirable. In the second
step, the vertices in L(G) are connected to the MST using the function AttachLeaves.

The process of Figure 1e follows the course of the original algorithm of Prim. It starts
by including the root vertex in the MST. Then, at each iteration, it looks for every edge that
has exactly one endpoint included in the MST and includes the one of higher weight. Sub-
sequently, the process repeats until all vertices are included in the MST. The particularities
of our modified Algorithm of Prim lie in two points. Firstly, the set of leaf vertices L(G) is
connected independently after the rest of the vertices. Secondly, in addition to the weight
(i.e., edge frequency), the clade frequency is used to choose the optimal edge.

Let (u, v) be a candidate edge at a given iteration, where u ∈ I(G) is included in the MST,
v ∈ I(G) is not included in the MST and (u, v) ∈ E(G). To choose the optimal edge, Figure
2b first finds the edge of highest edge frequency W(u, v). Indeed, edges give the most precise
insights into the topology so edge frequency must be considered in priority.

In case multiple candidates of maximal edge frequency are available, clade frequencies of
the edge endpoints are taken into account. First, the algorithm considers the clade frequency
of the vertex that is not included in the MST, in other words, it maximizes F(v). Then, if
multiple optimal edges are still available, the clade frequency of the vertex included in the
MST, F(u), is maximized.

Then, Figure 2d is used to connect each leaf vertex to the most suitable internal node. This
is done in a very similar way to the rest of the MST. Given an internal vertex u ∈ I(G) and a
leaf vertex v ∈ L(G) the criteria are maximized in the following order: first edge frequency
W(u, v), and then clade frequency of the internal vertex F(u).

The final step is to use the MST as a base to create a valid consensus tree Tc that respects
the following conditions. Firstly, its edges must be directed and must have edge length at-
tached. Secondly, every internal node must have at least two children. Finally, the set of
leaves must be equal to the initial set of leaves such that L(Tc) = L(S ).

The consensus tree is directed by positioning the root as the root vertex. For each edge
(u, v) in the MST, the edge is added E(Tc), pointing away from the root. At the same time,
the length distTc (u, v) = D(u, v) is attached to the edge.
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Finally, we define two types of extra nodes that must be removed in order to get a proper
consensus tree: unnecessary internal nodes and redundant internal nodes. Any internal node
u ∈ I(G) that became a leaf in the MST, is considered unnecessary and can easily be removed
because it does not have children. On the other hand, an internal node is redundant if it has
only one child (leaf or internal node). Let u be a redundant node, p(u) is its parent, and c(u)
is its unique child. Then the node u is deleted and a new edge (p(u), c(u)) is added. The
length of the new edge is the total length of the previous path such that distTc (p(u), c(u)) =
distTc (p(u), u)+distTc (u, c(u)). At the end of this phase, a proper consensus tree Tc is returned.

We would like to emphasize that the output of PrimConsTree version 2 is not necessar-
ily a binary tree. While the recursive edge selection process might initially suggest a binary
structure, the inclusion of non-binary relationships remains possible. Specifically, during
the node removal step, internal nodes with multiple children that do not contribute to dis-
tinct clades can lead to the emergence of non-binary nodes in the final consensus tree. The
node removal process ensures that non-binary structures can be maintained when internal
nodes with multiple children fail to contribute uniquely to the topology. This step allows
for flexibility, supporting non-binary consensus trees when appropriate, reflecting ambigu-
ous or weakly supported evolutionary relationships. The AttachLeaves plays a critical role
in handling terminal edges for taxa represented by single nodes, ensuring that each taxon is
properly attached to the consensus tree. This step is essential in maintaining both binary and
non-binary relationships, especially when dealing with taxa that form terminal clades.

5 Conclusions

In this paper, we extended PrimConsTree version 1, a graph-based approach for constructing
consensus trees with balanced branch lengths. To achieve this, we clustered the input trees
and proposed new key criteria, such as clade frequency, to derive the maximum spanning tree.
We provide a detailed description of the supergraph construction and an enhanced version of
the well-established Prim algorithm.

For future research directions, we propose exploring the extension of the applicability of
PrimConsTree version 2 to address the supertree problem, particularly in situations where
the number of leaves in gene trees may vary. Furthermore, there is potential for additional
refinements to enhance the ability of the algorithm to generate a consensus tree that closely
aligns with the gene trees. Experimental results related to a study of the evolution of Archae-
bacteria and the simulation analysis will be reported in the full version of this paper. These
results will include reconstructions of evolutionary scenarios, with a focus on the detection
of horizontal gene transfer and recombination events. The simulation analysis will evaluate
the accuracy and performance of PrimConsTree version 2 under varying conditions, such as
differences in the number of leaves and tree topologies. A detailed comparison with other
methods will also be included to examine the characteristics and potential challenges of the
algorithm. These findings will provide insights into the evolutionary processes underlying
the history of Archaebacteria. Due to space constraints, the proof of the theorem will also be
provided in the full version of this paper.
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