
Finding Short Right-Hand-on-the-Wall
Walks in Graphs

Stefan Dobrev1, Jesper Jansson2,
Kunihiko Sadakane4, and Wing-Kin Sung3

1 SITE, University of Ottawa, Canada
sdobrev@site.uottawa.ca

2 Department of Computer Science and Information Systems,
The University of Hong Kong, Hong Kong

jjansson@cs.hku.hk
3 School of Computing, National University of Singapore

ksung@comp.nus.edu.sg
4 Department of Computer Science and Communication Engineering,

Kyushu University, Japan
sada@csce.kyushu-u.ac.jp

Abstract. We consider the problem of perpetual traversal by a single
agent in an anonymous undirected graph G. Our requirements are: (1)
deterministic algorithm, (2) each node is visited within O(n) moves, (3)
the agent uses no memory, it can use only the label of the link via which
it arrived to the current node, (4) no marking of the underlying graph
is allowed and (5) no additional information is stored in the graph (e.g.
routing tables, spanning tree) except the ability to distinguish between
the incident edges (called Local Orientation).

This problem is unsolvable, as has been proven in [9, 28] even for
much less restrictive setting. Our approach is to somewhat relax the
requirement (5). We fix the following traversal algorithm: “Start by taking
the edge with the smallest label. Afterwards, whenever you come to a
node, continue by taking the successor edge (in the local orientation) to
the edge via which you arrived” and ask whether it is for every undirected
graph possible to assign the local orientations in such a way that the
resulting perpetual traversal visits every node in O(n) moves.

We give a positive answer to this question, by showing how to con-
struct such local orientations. This leads to an extremely simple, mem-
oryless, yet efficient traversal algorithm.

1 Introduction

The problem of searching and exploring an unknown environment is a funda-
mental problem with applications ranging from robot navigation to searching
the WWW. As such, it has been extensively studied under many different as-
sumptions about the environment. Typically, either a geometric setting has been
assumed (see e.g. [7, 11, 29]) or the environment is modeled as a graph with moves
permitted only along the edges.

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 127–139, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

128 S. Dobrev et al.

The graph setting has been extensively investigated [1, 3, 6, 12, 13, 14, 16, 20,
25] under many different assumptions (directed vs undirected graphs, anony-
mous nodes vs nodes with distinct identities) and goals (different variants of the
exploration, focusing on time complexity, minimizing the memory requirements).

An important aspect of any solution is its memory requirements – both in the
exploring agent(s) and in the network environment itself (can the agent mark
the nodes, what is the nature of the marks and how many can be used?). Since
the desire is to have simple and cost efficient agents, and there can be many of
them independently operating in the network, it is of practical importance to
limit both the local memory of the agents, and their ability to mark the network.

An extreme case of minimizing memory requirements is to limit the agents
memory to a constant number of bits. This can be modeled as exploring a graph
using finite automata and has been intensively studied in 70’s [9, 24, 26, 28]. The
strongest result is due to Rollik [28]: No finite group of finite automata can
cooperatively explore all cubic planar graphs (see [21] for more recent results).
This means that we either have to allow the agents to use more memory, resort
to randomization or provide some structural information that restricts the set
of graphs we have to traverse.

If we do not place strict restrictions on the local memory, single pebble is
sufficient to explore the graph [5], even for anonymous directed graphs 1.

Another possibility is to drop the determinism requirement – it is known that
a random walk of length O(n3) would, with high probability, visit every node
[22]. Trying to regain determinism led into research of derandomized random
walks, searching a sequence (called Universal Traversal Sequence) of edge labels
that would traverse all graphs in a given class. While many interesting results
have been achieved [2, 4, 23, 27], the memory requirements are not always clear
and the traversal times are rather high, especially with respect to our goal of
O(n) time.

Research most closely related to our result considers using structural infor-
mation to improve the time and/or memory complexity of graph traversal. First
results (concerning exploration of a labyrinth using a compass) are due to Blum
and Kozen [8]. Later, Flocchini et al [18] introduced a more general notion of
Sense of Direction and proved that traversal can be performed using O(n) mes-
sages/agent moves [17]. Fraigniaud et al [19] have shown that interval routing
scheme can be used to achieve the same. In fact, given a spanning tree, the graph
can be traversed using O(n) moves. Pelc and Panaite [25] studied the impact of
having a map of the graph on the efficiency of graph exploration/traversal. All
these solutions, though, use quite a lot of memory – either in the network (rout-
ing tables in [19], remembering the spanning tree) or in the agent (storing Sense
of Direction and remembering visited nodes in [17], remembering the network
map in [25]).

1 The graph must be strongly connected and an upper bound on the number of nodes
must be known. The time complexity, while polynomial, is quite high, though.

Finding Short Right-Hand-on-the-Wall Walks in Graphs 129

In this paper we propose to use the capabilities already present in the
system – namely the ability to distinguish the links incident to a node – to store
the information allowing efficient traversal: A common requirement in point-to-
point networks is that the nodes can distinguish between incident edges (often
called Local Orientation). This is normally done by giving the edges incident to
a node v numbers 1, 2, . . . , dv, where dv is the degree v. Usually, there is no as-
sumption on how is this edge ordering chosen. In this paper we propose to choose
the local orientations in a very specific way. Whether this costs us any memory
depends on how are the lower level communication layers implemented, but it is
quite conceivable that if done at the time of network construction/initialization,
it comes essentially for free.

We fix the following traversal algorithm: “Start by taking the edge labelled 1.
Afterwards, whenever you come to a node, continue by taking the successor edge
(in the local orientation) to the edge via which you arrived” and ask whether it
is for every undirected graph possible to to choose the local orientations in such
a way that the resulting perpetual traversal visits every node in O(n) moves.

We give a positive answer to this question, by showing how to construct such
local orientations. This leads to an extremely simple, memoryless, yet efficient
traversal algorithm.

The paper is organized as follows: In Section 2 we introduce the notation used
and give basic definitions and properties. Section 3 contains the main result of the
paper. In Section 4 we discuss how to adapt to dynamically changing networks.
Section 5 contains open questions, as well as a brief comparison to Sense of
Direction.

2 Preliminaries

Let G be a simple, connected, undirected graph. Let dv denote the degree of
vertex v in G. We assume that each vertex can distinguish edges incident to it,
by having assigned unique label to each incident edge2. This labeling (denoted
πv and called local orientation) and defines cyclical ordering of the edges incident
to v. Let succv(e) denote the successor of e in πv. Denote by G the symmetric
directed graph obtained from G by replacing each undirected edge by two di-
rected edges in opposite direction. For each directed edge e = {u, v} we define
the underlying edge to be the undirected edge (u, v).

We want to find a (short, possibly non-simple) cycle C in G containing all
vertices of G and satisfying the right-hand rule: If e1 = {u, v} and e2 = {v, w}
are two successive edges of C then e2 = succv(e1). Since the local orientations
can be rotated so that the underlying edge with label 1 is used in outgoing
direction at every vertex, the algorithm “Start by using edge labelled 1 and then
follow the successor edges” traverses exactly C. We call such a cycle a witness
cycle for G.

2 More precisely, to endpoints of the edges incident to v. Each edge gets two labels,
one at each endpoint. Note that these two labels can be different and unrelated.

130 S. Dobrev et al.

d

1 2

3

.

.

.

d-1
d-2

Fig. 1. Ordering two bidirectional, two incoming and two outgoing underlying edges

Let H be a subgraph of G containing all its vertices. For a vertex v, denote
by bv, iv and ov the number underlying edges incident to v used by H in both
directions, only incoming and only outgoing, respectively. Let d′v denote the
number of underlying edges used by H, i.e. d′v = bv + iv + ov.

The overall idea is to find a graph H containing all the edges of a witness cycle
C and then to figure out how to label the edges of H to obtain single witness
cycle. The following definition captures the right-hand traversal property that
must be satisfied at each vertex of a witness cycle:

Definition 1. We say that a vertex v is RH-traversable if there exists a local
orientation πv in v such that for each directed edge of H incoming to v via an
underlying edge e there exists an outgoing edge in H leaving v via the underlying
edge that succeeds e in πv.

We call such ordering a witness ordering for v.

If bv = dv, the vertex v is said to be saturated. The following Lemma charac-
terizes the necessary local conditions for existence of the witness ordering:

Lemma 1. v is RH-traversable if and only if v is saturated or iv = ov > 0.

Proof. The if direction: If v is saturated, any ordering of the underlying edges
will do. In the second case, choose any ordering in which bidirectional edges are
labelled 1, 2, . . . , dv, forming one compact block followed by an outgoing edge. All
remaining unidirectional edges are placed as a block preceding the bidirectional
block; the edges of this unidirectional block alternate directions, with the last
edge preceding the bidirectional block being incoming – see Figure 1.

The only if direction: First of all, note that since the successor function is
injective, iv must be equal to ev. Furthermore, note that if a bidirectional under-
lying edge is followed by an unused underlying edge, the RH-traversal property is
violated. Finally, if v is not saturated and there are no unidirectional underlying
edges, there must be such bidirectional edge. ��

Finding Short Right-Hand-on-the-Wall Walks in Graphs 131

1

1

2

1 2

2

2

1

12

3

2

3

1

Fig. 2. Each vertex is RH-traversable, but the witness orderings of the vertices define
several cycles and no cycle spans the whole graph

Note that if a witness cycle exists, each vertex is RH-traversable. The converse is
not necessarily true, as the witness orderings of the vertices might define several
cycles, none of which span the whole graph – see Figure 2.

3 Main Result

First note that if G is Hamiltonian, a Hamiltonian cycle can be chosen as witness
cycle and we get C of length n. (The RH-traversability is trivially satisfied as
each node is visited only once.) Therefore, for the rest of the paper, we assume
G is not Hamiltonian.

The main idea of our approach is to

– first find a subgraph H such that each vertex is RH-traversable and
– then figure out how to connect the edges of H to form a single witness

cycle C.

One obvious possibility is to set H = G, i.e. use all edges bidirectionally.
From Lemma 1 we know that each vertex can be made RH-traversable. Moreover,
since each node of G is of even degree, G has an Eulerian cycle. However, it is
not immediately clear how to choose the local edge orderings to satisfy RH-
traversability and simultaneously result in a single cycle. Another problem is
that the resulting cycle would be of length O(|E|), not O(n).

This forces us to take the following more refined approach:

1. Construct a directed graph H such that
(a) The undirected graph H ′ induced by the bidirectional edges of H is

connected and contains all vertices of G.
(b) Each vertex v of H is either saturated or has exactly two unidirectional

underlying edges, one incoming and one outgoing.
(c) H contains O(n) edges.

2. For each vertex of H define a witness ordering. (These orderings define one
or more cycles in H.)

3. Locally modify the orderings in some nodes in order to merge these cy-
cles into one supercycle C containing all vertices, while maintaining RH-
traversability.

132 S. Dobrev et al.

The first property of H ensures that if we connect all vertices of H into a
single cycle C, it will span the whole graph. The second property ensures that
each vertex is RH-traversable and the third guarantees that C is of size O(n).
Note again that the second property does not guarantee by itself that the witness
orderings of the vertices define single cycle spanning H (see Figure 2) – we really
need to do the third step.

3.1 Constructing Subgraph H

The following algorithm constructs the graph H:

Algorithm Construct H:
1: H ← ∅; {Unless stated otherwise, when an edge is added to H, it is added

bidirectionally}.
2: repeat
3: Find in G a cycle Ci such that it does not contain two consecutive vertices

that are both in H.
4: Add Ci to H.
5: until no such cycle Ci can be found.
6: Add to H all vertices of G not yet in H, together with all their incident

edges.
7: If H is not connected, add some bridging edges to make it connected. (Note

that because of the previous step, there is no need to add vertices.)
8: Let G̃ = (Ṽ , Ẽ) be the graph induced by all yet unused underlying edges.
9: repeat

10: repeat
11: Find a vertex v of degree 1 in G̃.
12: Add to H the edge incident to v in G̃; remove v from G̃.
13: until There is no vertex of degree 1 in G̃
14: Find in G̃ a cycle C ′

i.
15: Add C ′

i to H unidirectionally (in arbitrary direction) and remove all the
vertices of C ′

i from G̃.
16: until no such cycle C ′

i can be found.
17: Add the remaining edges of G̃ (a forest, possibly empty) to H.

Lemma 2. H uses at most 5n underlying edges.

Proof. We prove the lemma by observing the following facts:

– Fact 1. The number of edges added on lines 2. . . 5 is at most 2n−3k1, where
k1 is the number of resulting connected components.

Proof: We charge the cost of each cycle to its new vertices. Since at least
half of the vertices of the cycle are new, each one of them is charged at most
2 edges. In addition, the vertices of the first cycle (of size at least 3) in each
component are charged 1 edge each (as they are all new).

– Fact 2. The number of edges added on line 6 is at most 2n − 2.

Finding Short Right-Hand-on-the-Wall Walks in Graphs 133

Proof: Let us divide those edges into E1 – the edges between nodes added in
line 6 and E2 – the edges between the new and the “old” (added before line 6)
nodes. The graph induced by edges in E1 does not contain cycle, otherwise
a cycle of all-new vertices would have been found in line 3. Similarly, the
graph induced by the edges in E2 does not contain cycle, otherwise that
cycle (containing exactly half new vertices) would have been found in line 3.

– Fact 3. The number of edges added on line 7 is at most k2 < k1, where k2

is the number of connected components after line 6.

Proof: Straightforward.
– Fact 4. The number of edges added on lines 9. . . 17 is at most n.

Proof: For each edge that is added to H one vertex is removed from G̃. ��
Let us call the cycles added in line 15 relief cycles.

Lemma 3. H is connected, contains all vertices of G and each vertex is either
saturated or it lies on exactly one relief cycle.

Proof. The first two properties follow by construction from lines 6 and 7. If
node v does not lie on a relief cycle, then either it has never been in G̃ or it was
removed from there in lines 10. . . 13 or 17. Either case can happen only if v is
(or becomes) saturated. v cannot be in more then once relief cycle, because it is
removed from G̃ when its relief cycle is added to H. ��
Lemma 4. The complexity of Algorithm Construct H is O(n3).

Proof. We will show how to implement line 3 (finding a cycle that does not
contain consecutive old vertices) in time O(n2). This straightforwardly results
in O(n3) time for the loop on lines 2..5.

The loop on lines 9..16 can be executed only O(n) times, and the statements
in its body can easily be implemented in O(n2) time. As the remaining steps can
be easily implemented in O(n2) time, the overall complexity would be O(n3).

The line 3 can be implemented in O(n2) in the following way: Define graph
G′ = (V ′, E′) as follows: (1) V ′ contains all old vertices (the vertices inH)
and one vertex for each connected component of the graph induced by the new
vertices. (2) An edge (u, v) ∈ E′ where u is an old vertex and v corresponds
to a connected component of new vertices if and only if there is an edge in G
connecting u to a vertex from the connected component corresponding to v.

Note that a cycle in G′ defines a cycle in G satisfying the requirements of
line 3. Since O(n2) time is sufficient for constructing G′ as well as for finding a
cycle in it, line 3 can be implemented in time O(n2). ��

3.2 Constructing Witness Cycle C

Once we have H, the local ordering of underlying edges in each vertex is initial-
ized according to the construction from the proof of Lemma 1. We know (from
Lemmas 3 and 1) that such witness ordering exists for each vertex v; however, we

134 S. Dobrev et al.

C1

C2

3

4

2= x2

1= x1

C3
5= x3

6

1

2

3

4

5

6

Fig. 3. Applying rule Merge3

may not get a single cycle spanning all vertices (see Figure 2). In the next step,
we combine the resulting cycles until we get one such cycle, while maintaining
RH-traversability. To achieve that, we use the following rules:

Rule Merge3: Let v be a node incident to at least three different cycles C1,
C2 and C3. Let x1, x2 and x3 be underlying edges in v containing incoming
edges for cycles C1, C2 and C3, respectively (x1, x2 and x3 can be unidirectional
or bidirectional). The ordering of the edges in v which makes the successor
of x2 become the successor of x1, successor of x3 become the successor of x2

and successor of x1 become successor of x3 and keeps the relative order of the
remaining edges the same (see Figure 3) connects the cycles C1, C2 and C3

into one cycle, while remaining a witness ordering for v (because the original
ordering was).

Rule EatSmall: Fix an arbitrary ordering γ of the cycles. Let C1 be the smallest
non-simple cycle in this ordering and let v be a vertex appearing in C1 at least
twice which is also incident to a different cycle C2 such that γ(C1) < γ(C2).
Let x and y be underlying edges containing incoming edges of C1 and C2 in v,
respectively; let z be the underlying edge containing the incoming edge by which
C1 returns to v after leaving via the successor of x. If z is successor of y, choose
a different x. Modify the ordering of the edges in v as follows: (1) the successor
of x becomes the new successor of y, (2) the old successor of y becomes the new
successor of z, (3) the old successor of z becomes the new successor of x and (4)
the order of the remaining edges does not change – see Figure 4.

Lemma 5. Applying the rule EatSmall results in transfer of one loop of edges
from cycle C1 to C2, while maintaining RH-traversability.

Proof. Straightforward from construction. ��
The overall strategy of applying these rules is as follows:

Finding Short Right-Hand-on-the-Wall Walks in Graphs 135

1

C2

after

5

2

3

4

6

C1

before

3

4
1

2=z

5=y

C1

C26=x

Fig. 4. Applying rule EatSmall

Algorithm MergeCycles:
1: repeat
2: while rule Merge3 can be applied do
3: Apply rule Merge3.
4: end while
5: Apply rule EatSmall.
6: until neither Merge3 nor EatSmall can be applied
7: (Optional) remove all simple cycles

Lemma 6. The algorithm MergeCycles terminates in O(n3) time.

Proof. Note that initially there are at most 10n/3 cycles (H has at most 10n
edges and each cycles has at lest 3 edges). Since rule Merge3 decreases the
number of cycles by 2 and rule EatSmall does not increase the number of cycles,
rule Merge3 can be applied at most 5n/3 times during the whole execution of
algorithm MergeCycles.

Since rule EatSmall transfers come edges from the smallest non-simple cycle
to a bigger (in γ) cycle, it can be successively (without intervening Merge3)
applied only O(n) times (remember, the number of edges is at most 10n). This
means that the rule EatSmall can be applied only O(n2) times.

In order to apply rule Merge3, we need to find a vertex incident to three
different cycles. In order to apply rule EatSmall, we need to find the smallest
non-simple cycle and a repeated vertex on this cycle which is incident to a bigger
cycle. Both tests can be straightforwardly done in O(n) time by traversing and
marking the different cycles, resulting in O(n3) overall complexity for algorithm
MergeCycles. ��

Lemma 7. If neither Merge3 nor EatSmall can be applied, H consists of a
single non-simple cycle spanning all the vertices and of a set of pairwise vertex
disjoint simple cycles.

136 S. Dobrev et al.

Proof. Before proceeding with the proof, let us remind you that the graph H ′

consisting of bidirectional edges of H is connected and contains all vertices of
H. (Follows directly from lines 6 and 7 of the construction of H.)

Let C1 be the smallest non-simple cycle at the moment when neither rule can
be applied. Let E′ be the set of all underlying edges which are not used by C1,
but are incident to C1. Each edge of E′ is used by a single cycle, otherwise rule
Merge3 could be applied.

Assume first that all these edges are unidirectional. Then all edges of H ′

are used by C1, because H ′ is connected and E′ would separate it. Since H ′

contains all vertices, C1 does as well. No underlying bidirectional edges outside
C1 means that all other cycles are pairwise edge-disjoint. However, they must be
also vertex disjoint, because the rule Merge3 cannot be applied and C1 contains
all vertices. Similarly, all other cycles are simple, since C1 contains all vertices
and rule EatSmall cannot be applied.

To complete the proof, we prove by contradiction that there is no bidirectional
edge incident to C1, but not belonging to C1. Assume the opposite. From the
properties of H ′ we get that either there is a vertex v ∈ C1 incident to both
an external bidirectional edge and a bidirectional edge in C1 (contradiction, as
that would allow rule EatSmall to apply, since the outside bidirectional edge can
only belong to a larger non-simple cycle) or that each of the vertices of C1 is
incident to an outside bidirectional edge (in such case either C1 is simple cycle
or EatSmall can be applied – contradiction in both cases). ��

Now we are ready for the main theorem:

Theorem 1. There exists a witness cycle C of length at most 10n covering all
vertices of G.

Proof. From Lemma 6 we know that eventually no rule can be applied. From
Lemma 7 we get that at that moment there exists single non-simple cycle (which
we choose as C) covering all vertices. Since this cycle uses each directed edge of
H at most once, from Lemma 2 we get the length property. ��
Note 1: We can remove from H all the remaining simple cycles to get a graph
containing only C. The RH-traversability will obviously not be violated.

Note 2: In each vertex we can rotate the edges in such way that the edge labelled
1 will always be in C.

From Lemmas 4 and 6 we get the main complexity theorem:

Theorem 2. Witness cycle of length at most 10n covering all vertices of G can
be constructed in time O(n3).

4 Adapting to Dynamic Topology Changes

In previous section we described how to initialize the network so that the RH-
traversal leads to an efficient traversal. In this section we show how to maintain

Finding Short Right-Hand-on-the-Wall Walks in Graphs 137

u
v

newly added edge

Fig. 5. Adding an edge connecting two unsaturated vertices

this property even in the case of topology changes. More precisely, we show how
to modify the local orientations in case of adding new vertices and edges to the
network.

In order to simplify the algorithm, we assume the only topology changes are
(1) connecting a new vertex to the existing graph by a single edge, and (2)
adding an edge between two existing vertices. More complex changes can easily
be implemented using a sequence of these basic operations.

If a new edge (u, v) connects two unsaturated vertices, it can be inserted
between the outgoing and incoming underlying edges without violating RH-
traversability – see Figure 5. However, if one of the vertices is saturated, we
have to use the new edge in both directions. Inserting the edge at position 1
ensures that it is a successor for some incoming edge, and that it has a successor
outgoing edge, i.e. both u and v remain RH-traversable. However, this might
result in splitting C into two cycles. That can be easily corrected by applying
rule EatSmall while possible, as we known that Merge3 is not applicable. Note
that it is sufficient to perform the test only at node u, as we know that if there
are indeed two cycles, they meet at u and v.

Algorithm Adapt:
1: { Edge (u, v) (and possibly a new vertex v) has been added.}
2: if either u or v are saturated then
3: Insert (u, v) as a an edge used bidirectionally in C to location 1 in the

local orientations of u and v.
4: else
5: Insert (u, v) as an edge unused in C to a place between outgoing and

incoming underlying edges in u and v – see Figure 5.
6: end if
7: Apply rule EatSmall at u while possible.
8: (Optional) Remove all non-Hamiltonian simple cycles from.

By construction and from Lemma 7 we get:

Theorem 3. Applying algorithm Adapt after each topology change will main-
tain C as the witness cycle containing every node of the graph. Moreover, at
most 2 directed edges are added to C for each edge newly added to G.

138 S. Dobrev et al.

After adding n′ new vertices and m′ new edges, the resulting witness cycle
is guaranteed to grow by no more then 2m′ edges. If m′ becomes too high,
recomputing the witness cycle might be necessary to bring the length back to
O(|V |). Our approach does not handle vertex and/or edge removal, as the graph
could become disconnected and/or severe non-local changes might be needed.

5 Conclusions

We have shown that for every connected simple undirected graph the local ori-
entations in the vertices can be chosen in a way that creates a right-hand rule
cyclical walk of length at most 10n covering all vertices. Moreover, we have
shown how to maintain this property even when more vertices and edges are
added to the graph. Still, several questions remain unanswered:

– Can the length of the walk be further reduced? What is the lower bound?
– Can the time complexity of finding a witness cycle of length O(n) be reduced

from O(n3)? How?
– What is the time complexity of finding the shortest witness cycle? How to

find it?
– The only property of the walk we were interested in was its length. Suppose

we want to use these walks for mutual search [10] instead of traversal. How
do we design the local orientations so that performing RH-walk leads to
efficient mutual search?

– How to compute the local orientations in a distributed manner? What can
be done if the nodes are anonymous?

– How to react to node or edge removal?

We can view our construction as a way to create globally consistent edge
labelling. Comparing it to another globally consistent edge labelling, namely
Sense of Direction, we observe that our approach uses minimal number of differ-
ent labels and allows much simpler and more memory efficient graph traversal.
However, Sense of Direction is more general and can be used in ways our con-
struction cannot (e.g. avoiding entering a node - see [15].)

References

1. S. Albers and M. R. Henzinger. Exploring unknown environments. SIAM Journal
on Computing, 29:1164–1188, 2000.

2. N. Alon, Y. Azar, and Y. Ravid. Universal sequences for complete graphs. Discrete
Appl. Math., 27(1-2):25–28, 1990.

3. B. Awerbuch, M. Betke, and M. Singh. Piecemeal graph learning by a mobile robot.
Information and Computation, 152:155–172, 1999.

4. A. Bar-Noy, A. Borodin, M. Karchmer, N. Linial, and M. Werman. Bounds on
universal sequences. SIAM J. Comput., 18:268–277, 1989.

5. M. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan. The power of a pebble:
Exploring and mapping directed graphs. In Proc. of STOC 98, pages 269–287, 1998.

Finding Short Right-Hand-on-the-Wall Walks in Graphs 139

6. M. Bender and D. K. Slonim. The power of team exploration: two robots can learn
unlabeled directed graphs. In Proc. of FOCS 94, pages 75–85, 1994.

7. A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric terrain.
SIAM Journal on Computing, 26:110–137, 1997.

8. M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier
to search than graphs). In Proc. of FOCS 78, pages 132–142, 1978.

9. L. Budach. Automata and labyrinths. Math. Nachrichten, pages 195282, 1978.
10. Harry Buhrman, Matthew Franklin, Juan A. Garay, Jaap-Henk Hoepman, John

Tromp, and Paul Vitányi. Mutual search. J. ACM, 46(4):517–536, 1999.
11. X. Deng, T. Kameda, and C. H. Papadimitriou. How to learn an unknown envi-

ronment i: The rectilinear case. Journal of the ACM, 45:215–245, 1998.
12. X. Deng and C. H. Papadimitriou. Exploring an unknown graph. Journal of Graph

Theory, 32(3):265–297, 1999.
13. A. Dessmark and A. Pelc. Optimal graph exploration without good maps. In Proc.

10th European Symposium on Algorithms (ESA’02), pages 374–386, 2002.
14. K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree exploration with little

memory. Journal of Algorithms, 51:38–63, 2004.
15. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Finding a black hole in an

arbitrary network: optimal mobile agents protocols. In Proc. of PODC 2002, pages
153–162, 2002.

16. C.A Duncan, S.G. Kobourov, and V.S.A Kumar. Optimal constrained graph explo-
ration. In 12th ACM-SIAM Symposium on Discrete Algorithms (SODA’01), pages
807–814, 2001.

17. P. Flocchini, B. Mans, and N. Santoro. On the impact of sense of direction on
communication complexity. Information Processing Letters, 63(1):23–31, 1997.

18. P. Flocchini, B. Mans, and N. Santoro. Sense of direction: definition, properties
and classes. Networks, 32(3):165–180, 1998.

19. P. Fraigniaud, C. Gavoille, and B. Mans. Interval routing schemes allow broadcast-
ing with linear message-complexity. Journal of Distributed Computing, 14(4):217–
229, 2001.

20. P. Fraigniaud and D. Ilcinkas. Digraph exploration with little memory. In 21st
Symp. on Theoretical Aspects of Computer Science (STACS’04), 2004.

21. P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by a
finite automaton. In Proc. of MFCS 2004, pages 451–462, 2004.

22. U. Friege. A tight upper bound on the cover time for random walks on graphs.
Random Structures and Algorithms, 6(1):51–54, 1995.

23. S. Hoory and A. Wigderson. Universal traversal sequences for expander graphs.
Inf. Process. Lett., 46(2):67–69, 1993.

24. D. Kozen. Automata and planar graphs. In Proc. of Fundations Computatial The-
ory (FCT 79), pages 243–254, 1979.

25. P. Panaite and A. Pelc. Impact of topographic information on graph exploration
efficiency. Networks, 36.

26. M.O. Rabin. Maze threading automata. Technical Report Seminar Talk, University
of California at Berkeley, October 1967.

27. O. Reingold. Undirected st-connectivity in log-space. Electronic Colloquium on
Computational Complexity, 94, 2004.

28. H.A. Rollik. Automaten in planaren graphen. Acta Informatica, 13:287–298, 1980.
29. N. Roo, S. Hareti, W. Shi, and S. Iyengar. Robot navigation in unknown ter-

rains: Introductory survey of length,non-heuristic algorithms. Technical Report
ORNL/TM12410, Oak Ridge National Lab., 1993.

	Introduction
	Conclusions
	Preliminaries
	MainResult
	Constructing Subgraph H
	Constructing Witness Cycle C

	Adapting to Dynamic Topology Changes
	References

