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The usual protocol for taxonomic assignment 
involves aligning the sequence reads to a set of 
reference sequences and, then, resolving any 
ambiguities (that is, a sequence being equally 
similar to more than one reference sequence) by 
assigning to a consensus sequence, such as the 
lowest common ancestor (LCA) of all the can-
didate sequences in a given taxonomy (Huson 
et al., 2007; Kunin et al., 2008; Liu et al., 2008). 
Sequence composition-based methods have 
also been used in taxonomic assignment (Diaz 
et al., 2009; McHardy et al., 2007; Wang et al., 
2007). 

Previous work on taxonomic assignment 
based on alignment has focused either on se-
quence reads of the 16S ribosomal RNA gene 
(Clemente et al., 2010, 2011; Ribeca and Valiente, 
2011), or on whole metagenomic shotgun se-
quence reads (Gerlach et al., 2009; Krause et 
al., 2008). In this note, we show for the latter that 
recent improvements to consensus methods, as 
implemented in the latest release of the TANGO 
tool (Clemente et al., 2011), bring about an ac-
curate estimate of the actual taxonomic diversity 
in a metagenomic data-set.

In the improved consensus method, ambigu-
ous sequence reads are assigned to consen-
sus sequences at a lower taxonomic rank than 
the LCA of the candidate reference sequences 
(increased specificity), at the expense of dis-
carding some candidate reference sequences 
(reduced sensitivity). This is done by optimising 
the combined precision and recall (F-measure) 
of the taxonomic assignment (Clemente et al., 
2010, 2011).

Metagenomic data-set
The complexity of the signal obtained when se-
quencing metagenomic data makes it neces-
sary to take a standardised data-set as the ba-
sis for analysis (Ribeca and Valiente, 2011). We 
have chosen the metagenomic data-set of 
Mavromatis et al. (2007), which was designed 
with the goal of simulating microbial commu-
nities of varying complexity: low-complexity 
communities, with one dominant population 
(simLC), as seen in bioreactor communities 
(García Martín et al., 2006; Strous et al., 2006); 
medium-complexity communities, with more 
than one dominant population flanked by low-
abundance populations (simMC), as seen in 
acid mine drainage biofilm (Tyson et al., 2004) 
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Introduction
The diversity and richness of microbial popula-
tions can be characterised by several ecologi-
cal indices, calculated by either grouping simi-
lar sequence reads into operational taxonomic 
units, or assigning them to the most similar taxa 
in a given taxonomy. While the former is useful 
for the study of unknown microbial communities, 
the latter is best suited when sequences and tax-
onomies of related species are already known.

Abstract
One of the main computational challenges facing 
metagenomic analysis is the taxonomic identification of 
short DNA fragments. The combination of sequence align-
ment methods with taxonomic assignment based on con-
sensus can provide an accurate estimate of the microbial 
diversity in a sample. In this note, we show how recent im-
provements to these consensus methods, as implement-
ed in the latest release of the TANGO tool, can provide an 
improved estimate of diversity in simulated datasets.
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and symbiotic microbes from eukaryotes (Woyke 
et al., 2006); and high-complexity communities, 
with no dominant population (simHC), as seen in 
agricultural soil (Tringe et al., 2005).

The Mavromatis et al. data-set was built by 
combining Sanger sequence reads selected 
at random from 113 microbial genomes. The 
phylogenetic composition of the metagenomic 
data-set, summarised in Table 1, shows a high 
abundance of Proteobacteria, Actinobacteria, 
and Firmicutes, as usual in most metagenomic 
samples (Gabor et al., 2004; Manichanh et al., 
2008).

The distribution of sequence reads in the 
metagenomic data-set, summarised in Table 2, 
shows a low-complexity microbial community, 
with one dominant population (28,861 sequence 
reads from Rhodopseudomonas palustris HaA2); 
a mediumcomplexity microbial community, with 
three dominant populations (22,956 sequence 
reads from Bradyrhizobium sp. BTAi1, 16,577 se-
quence reads from Rhodopseudomonas palus-
tris BisB5, and 10,484 sequence reads from Xylella 
fastidiosa Dixon) flanked by low-abundance 
populations; and a high-complexity microbial 
community, with no dominant population.

Aligning sequence reads
The first step in the taxonomic analysis of a 
metagenomic data-set involves aligning the 
sequence reads to a database of known se-
quences from a large set of different organ-
isms. Traditional alignment tools, such as BLAST 
(Altschul et al., 1990) or BLAT (Kent, 2002), do not 
scale up to align millions or billions of sequence 
reads to a large reference genome (Horner et 
al., 2010; Ribeca and Valiente, 2011; Trapnell and 
Salzberg, 2009). Microbial genomes are much 
shorter, though, making these tools appropriate 
for the alignment of sequence reads from envi-

Table 1. Phylogenetic distribution of the 113 microbial genomes. 

Domain Phylum Class Genomes

Bacteria Actinobacteria Actinobacteria 9

Bacteroidetes Cytophagia 1

Chlorobi Chlorobia 7

Chloroflexi Chloroflexi 1

Cyanobacteria Cyanobacteria 6

Deinococcus-Thermus Deinococci 1

Firmicutes Bacilli 13

Clostridia 8

Proteobacteria Alphaproteobacteria 17

Betaproteobacteria 13

Gammaproteobacteria 25

Deltaproteobacteria 6

Epsilonproteobacteria 1

unclassified Proteobacteria 1

Archaea Euryarchaeota Methanomicrobia 3

Thermoplasmata 1

Table 2. Distribution of sequence reads in the metagen-
omic data-set.

simLC simMC simHC

Most abundant 28,861 22,956 2,384

2nd abundant 9,277 16,577 2,248

3rd abundant 5,168 10,484 2,191

4th abundant 1,149 6,107 2,127

5th abundant 1,109 4,868 2,083

6th abundant 1,074 1,146 2,051

Rest 50,857 52,319 103,687
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ronmental samples. Nevertheless, more efficient 
tools are available for the alignment of short 
and long sequence reads obtained using high-
throughput sequencing technologies, including 
BWA (Li and Durbin, 2009), BWA/SW (Li and Durbin, 
2010), and GEM (Ribeca, 2009). 

We have used BLAST to align the 328,723 se-
quence reads to the 113 microbial genomes. 
Notice that a larger database is often used when 
the target sequences are not known before-
hand. Ambiguities arise when a sequence read 
is aligned with more than one target sequence, 
and we have taken as candidate alignments 
all those sequences with the same E-value as 
the top BLAST hit. As shown in Table 3, ambigu-
ous sequence reads represent about 20% of the 
metagenomic data-set. Sequence reads with 
no hit in the database of microbial genomes are 
the result of sequencing errors.

Assigning sequence reads
Once the sequence reads have been aligned 
to reference sequences, the second step in the 
taxonomic analysis of a metagenomic data-set 
involves resolving ambiguities by mapping those 
reads with more than one possible assignment 
to species at the closest possible taxonomic 
rank. We have chosen as taxonomic reference 
the NCBI taxonomy (Sayers et al., 2009) for the 
113 sampled microbial genomes. Again, no-

tice that a larger taxonomy is often used when 
the target sequences are not known before-
hand. Alternative taxonomies for microbial ge-
nomes include ARB-SILVA (Pruesse et al., 2007), 
Greengenes (DeSantis et al., 2006), RDP (Cole et 
al., 2009), and TOBA (Garrity et al., 2007).

We have used TANGO to assign the 328,723 
sequence reads to the 113 microbial genomes 
at the closest possible taxonomic rank. As shown 
in Table 4, the optimal consensus method, 
F-measure-based assignment, resulted in as-
signments at a lower taxonomic rank than the 
classical consensus method, LCA-based assign-
ment (Huson et al., 2007).

Taxonomic diversity
Once the sequence reads have been assigned 
a taxonomy, the third and final step in the taxo-
nomic analysis of a metagenomic data-set in-
volves describing the diversity and richness of 
the sampled microbial population by means 
of ecological indices. Some widely accepted 
notions in ecology are those of !-diversity (spe-
cies diversity within an ecosystem), "-diversity 
(change in species diversity within an ecosys-
tem), and #-diversity (phylogenetic difference 
between species in an ecosystem) (Faith, 1992; 
Whittaker, 1972). Among the latter, we have cho-
sen the Clarke-Warwick taxonomic diversity index 
(Clarke and Warwick, 1998), which measures the 

Table 3: Ambiguous sequence reads in the metagenomic data-set.

Data-set No hit One hit Ambiguous Total

simLC 59 22,956 2,384 97,495

simMC 76 16,577 2,248 114,457

simHC 100 10,484 2,191 116,771

Table 4: Taxonomic distribution of the metagenomic data-set using consensus (LCA, top) and optimal (F-measure, bottom) 
taxonomic assignment.

Data-set
Taxonomic rank

Domain Phylum Class Order Family Genus

simLC 126 104 134 56 2,785 5,295

simMC 194 176 174 101 2,784 5,219

simHC 272 219 230 111 822 11,164

simLC 1 65 46 1,236 3,241

simMC 10 90 104 1,179 3,191

simHC 12 145 77 414 6,847
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average distance in the taxonomic reference 
between the sampled species.

As shown in Table 5, the closer the meas-
ured taxonomic diversity in the metagenomic 
data-set is to the actual taxonomic diversity in 
the sampled population, the more accurate the 
assignment is: that is, when classical consen-
sus (LCA) is replaced by the optimal consensus 
(F-measure) method.

Conclusion
The combination of sequence alignment meth-
ods with taxonomic assignment based on con-
sensus provides an accurate estimate for the 
composition of a sample of sequence reads of 
the 16S ribosomal RNA gene. We have shown that 
for sequence reads of whole microbial genom-
es, recent improvements to consensus methods 
also bring about an accurate estimate of the mi-
crobial diversity in a metagenomic sample.
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