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Abstract. This paper considers the problem of inferring the optimal
nested arc-annotation of a sequence given another nested arc-annotated
sequence by maximizing the weighted alignment between the bases and
arcs in the two sequences. The problem has a direct application in pre-
dicting the secondary structure of an RNA sequence given a closely re-
lated sequence whose secondary structure is already known. The cur-
rently most efficient algorithm for this problem requires O(nm3) time
and O(nm2) space where n is the length of the sequence with known
arc-annotation while m is the length of the sequence to be inferred.
We present an improved algorithm which runs in min{O(nm2 log n),
O(nm3)} time and min{O(m2 + mn), O(m2 log n)} space. The time im-
provement is achieved by applying sparsification to the dynamic pro-
gramming algorithm, while the space is reduced to a more practical
quadratic complexity by using a Hirschberg-like traceback technique to-
gether with a simple compression.

1 Introduction

Recent research shows that RNA functions as catalysts and regulators in nucleic
acid processing and gene expression in addition to its commonly known interme-
diary role in DNA transcription and translation process. It is generally known
that much of RNA’s functionalities depend on its structural features. Unfortu-
nately, although massive amount of sequence data are continuously generated,
the number of known RNA structures is still very limited since experimental
methods, such as NMR and Crystallography, require expertise and long exper-
imental time. Therefore, computational methods for predicting RNA structure
are very useful.

There exist a number of computational approaches to predict the structure
of RNA in the literature. Basically, they can be classified into three categories:
Energy Minimization, Comparative, and Structure Inferring methods. The first
approach tries to compute the structure of an RNA molecule which has the
lowest free energy. Representatives of this approach are the methods of Nussi-
nov et al [16] and Zuker et al [15, 20, 21]. Since the current energy model is not
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accurate enough and RNA may not fold into the lowest energy structure, the
prediction accuracy of this method is usually not high. For the Comparative
method, we are given a number of RNA sequences which are expected to have
similar structure called the homologous sequences. By aligning those RNA se-
quences, we compute the consensus structure. Representatives of this approach
include Maximum Weighted Matching (MWM) [3, 18] and Stochastic Context
Free Grammars (SCFGs) [8, 7, 17]. The Comparative approach is currently the
best way to predict RNA structures [9, 12]. However, when the number of ho-
mologous sequences is not large enough, the accuracy can be low. If we only have
a few homologous RNA sequences where the structure of one of the sequences is
known, the RNA structure can be predicted using the Structure Inferring method
[2, 19]. Consider two sequences S1 and S2 of length n and m. Assuming that the
secondary structure of S1 is known, this method infers the secondary structure
of S2 by aligning S1 and S2. Bafna et al [2] propose a dynamic programming
solution to this problem and solve it using O(n2m2 + nm3) time and O(n2m2)
space. Zhang [19] improves their result and gives an algorithm which runs in
O(nm3) time and O(nm2) space. In this paper, we further improve the running
time of the inference algorithm to min{O(nm2 log n), O(nm3)} and at the same
time bring down the space requirement to min{O(m2 + mn), O(m2 log n)}.

Our improvement in the running time stems from sparsification. We observe
that the entries in every row and every column in the dynamic programming
tables are monotonically increasing, enabling us to calculate less entries in the
tables without losing any information. We also designed a new recursive dy-
namic programming algorithm that gives a better worst-case space requirement
in the case of computing only the score of the alignment of S1 and S2. Finally,
by incorporating the latter into an algorithm similar to Hirschberg’s traceback
[10] together with a simple compression method, we can recover the optimal
inferred structure from the table within the stated reduced space complexity.
Note that the space improvement is critical in our application since currently
the length of a typical RNA sequence used in lab experiments is around 3K to
5K bases. Assuming that n ≈ m, the memory requirement of an O(nm2) space
algorithm could easily reach over tens of gigabytes. This memory requirement is
not impossible to meet but it is highly impractical.

This paper is organized as follows. Section 2 contains the formal statement
of the problem with some basic definitions. Section 3 presents the algorithm and
is divided into three parts. The first part presents the original algorithm given in
[19], noting the bottleneck of the computation. The following two parts present
our techniques to improve the running time of the algorithm. The Hirschberg-
like traceback algorithm is described in Section 4. Finally, Section 5 concludes
this paper with some possible extensions of the problem.

2 Preliminaries

We use a slightly different notation from the one in [19] where the secondary
structure of the first sequence is represented as a tree. Each internal node in the
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tree represents a base pair and the bases in the loop created by the base pair
are the children of the node.

In our algorithm, we represent an RNA sequence and its secondary struc-
ture information using the arc-annotated sequence [4]. Consider a sequence S
over a fixed alphabet Σ = {A, C, G, U}. We define S[i] to be the ith character
in S and S[i..j] to be the substring of S in positions between i and j (inclu-
sive). For any x ∈ Σ, let Complement(x) be the complementary base of x
based on the Watson-Crick base pairing. For example Complement(A) is U and
Complement(G) is C. An unordered pair of positions (i, j), where i < j, in-
dicates that S[i] and S[j] form a base pair in the RNA structure. Such pair is
called an arc. For RNA sequences, it is required that S[j] = Complement(S[i])
and vice versa. A set P of arcs is called an arc-annotation, and the pair (S, P )
is called an arc-annotated sequence. Arc-annotated sequences are well-studied
[1, 4, 6, 11, 13, 14, 19] and are commonly used in computational biology to rep-
resent the structure of RNA and protein sequences. Since we are considering
RNA secondary structures, we assume that the RNA sequences we are deal-
ing with do not have any pseudoknots. The corresponding arc-annotation con-
struct for such RNA structures is the nested arc-annotation [1, 11, 13, 14] where,
given two arcs, either one is within the other, or they are completely disjoint
(∀(i1, j1), (i2, j2) ∈ P, i1 ∈ [i2, j2] ⇔ j1 ∈ [i2, j2]). For any arc u ∈ P , we denote
ul and ur to be the left and the right endpoints of u, respectively. The size of
an arc u is denoted by |u| = ur − ul + 1. We say that position i is free if i is not
an endpoint of any arc in P . A position i is covered by an arc u if ul < i < ur

and there exist no other arc u′ such that u′
l < i < u′

r. The set of all positions
covered by u is called the arc cover of u, denoted by C(u).

Given two arc-annotated sequences (S1, P1) and (S2, P2), we can define the
similarity of the sequences by aligning the bases and the arcs in them. We need
to define a scoring function for each type of alignment. Let χ be the func-
tion to score the alignment of unpaired bases in the two sequences where, for
a, b ∈ {A, C, G, U,�}, χ(a, b) = β if a = b and 0 otherwise (’�’ denotes a blank
character). For any arc u, which represents paired bases in the RNA structure,
let δ be a scoring function for arcs alignment whose value is defined as:

δ((S1[ul], S1[ur]),(S2[j], S2[j′]))=






α1 if S1[ul]=S2[j] and S1[ur]=S2[j′]
α2 if S1[ul] �=S2[j] and S1[ur] �=S2[j′]

but S2[j]=Complement(S2[j′])
−∞ otherwise

β, α1, and α2 are positive integer constants. Usually the parameters are set such
that β ≤ α2 ≤ α1 which reflects that an arc-alignment(α1 or α2) takes prece-
dence over single base alignment(β). Moreover, an arc alignment with exactly
the same base pairs should score higher (α1) since both bases and their arc are
aligned. One can also have constraints on the arc width. For example, when
|j − j′| is less than some minimum arc width parameter, we can define δ = −∞.
Now given the definition of the arc annotation and the scoring functions, we
formally state our problem (slightly altered from the one in [19]) as follows.
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The Weighted Largest Common Substructure(WLCS) of two arc annotated
sequences (S1, P1) and (S2, P2) is defined as the maximum weighted alignment
between S1 and S2 where free bases are aligned to free bases and arcs are
aligned to arcs. The WLCS score is then defined as the sum of all bases and
arcs alignment scores. The problem we address in this paper is: Given a nested
arc-annotated sequence (S1, P1) and a plain sequence S2, infer the nested arc-
annotation P2 for S2 that maximizes their WLCS score.

3 Algorithm Description

This section reviews Zhang’s algorithm (presented in [19]) for inferring the RNA
secondary structure P2 for S2 that maximizes the WLCS score between (S1, P1)
and (S2, P2). Let |S1| = n and |S2| = m. Let DP(i,i′)[j, j′], where 1 ≤ i ≤
i′ ≤ n and 1 ≤ j ≤ j′ ≤ m, denotes the score of the weighted largest common
substructure between (S1[i..i′], P1) and S2[j..j′]. Note that DP(i,i′)[j, j′] = 0
whenever i > i′ or j > j′. Zhang presented an algorithm which runs in O(nm3)
time and uses O(nm2) space based on a two-step dynamic programming. Given
an arc u, the first step computes the value of DP for the arc-cover of u i.e.
computes DP(ul+1,ur−1)[j, j′] for all 1 ≤ j ≤ j′ ≤ m. Then, the next step
computes the value of DP for the whole arc u, that is DP(ul,ur)[j, j′] for all
1 ≤ j ≤ j′ ≤ m. Below are the three equations in [19] to compute the two steps
in the algorithm. Please refer to the paper for the proofs.

Lemma 1. (Lemma 4 in [19]) If either i′ is free or i′ is an endpoint of an arc
whose other endpoint is not in [i..i′ − 1],

DP(i,i′)[j, j′] = max






DP(i,i′−1)[j, j′ − 1] + χ(S1[i′], S2[j′]),
DP(i,i′−1)[j, j′] + χ(S1[i′],�),
DP(i,i′)[j, j′ − 1] + χ(�, S2[j′])

Lemma 2. (Lemma 5 in [19]) For any arc u ∈ P1 and i < ul,

DP(i,ur)[j, j′] = max
j−1≤j′′≤j′

{DP(i,ul−1)[j, j′′] + DP(ul,ur)[j′′ + 1, j′]}

Lemma 3. (Lemma 3 in [19]) For any arc u ∈ P1,

DP(ul,ur)[j, j′] = max






DP(ul+1,ur−1)[j+1, j′ − 1]+
δ((S1[ul], S1[ur]), (S2[j], S2[j′])),

DP(ul+1,ur−1)[j, j′],
DP(ul,ur)[j + 1, j′],
DP(ul,ur)[j, j′ − 1]

Definition 1. If i′ is free or i′ is a right endpoint of an arc whose left endpoint
is not in [i..i′], then given the table DP(i,i′−1), DP(i,i′) can be computed by using
Lemma 1. We define the computation of DP(i,i′) from DP(i,i′−1) as the operation
EXTEND(DP(i,i′−1)).
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WLCS(S1, P1, P2)
For every arc u ∈ P1 from the innermost to the outermost, left to right,

Step 1 : Compute DP(ul+1,ur−1) as follows.
For every i ∈ C(u) in increasing order,
– if i is free, compute DP(ul+1,i) by EXTEND(DP(ul+1,i−1)).
– if i = vr for some arc v, compute DP(ul+1,i) by

MERGE(DP(ul+1,vl−1), DP(vl,vr)).
– if i = vl, do nothing.

Step 2 : Compute DP(ul,ur) by ARC-MATCH(DP(ul+1,ur−1)).

Fig. 1. The algorithm from [19] described in terms of EXTEND, MERGE and ARC-
MATCH operations.

Definition 2. Consider any arc s. The operation MERGE(DP(i,sl−1), D
P(sl,sr)) is defined to be the computation of the table DP(i,sr) given DP(i,sl−1)

and DP(sl,sr) using Lemma 2.

Definition 3. Consider any arc s. The operation ARC-MATCH(DP(sl+1,sr−1))
is defined to be the computation of the table DP(sl,sr) given DP(sl+1,sr−1) using
Lemma 3.

Fig. 1 describes the procedure WLCS(S1, P1, S2) which computes DP(1,n)[j, j′]
for all 1≤ j ≤ j′ ≤m based on the algorithm in [19]. As analyzed in the latter,
EXTEND takes O(m2) time. There are O(n) free bases in S1; thus, all calls to
EXTEND require a total of O(nm2) time. The procedure MERGE will need to
fill O(m2) entries in the combined table, each requires O(m) time to compute
because we need to find the maximum over O(m) sums, in the worst case. Since
MERGE is only invoked on arcs and the number of arcs in P1 could reach O(n);
in total, all calls to MERGE require O(nm3) time. ARC-MATCH computes the
term in Lemma 3 over O(m2) (j, j′) pairs for each arc in P1. Based on a similar
argument on the number of arcs in P1, ARC-MATCH requires O(nm2) time.
As for the space requirement, assuming the standard traceback for inferring
the secondary structure of the sequence S2, we must store all intermediary DP
tables computed by WLCS(S1, P1, S2). The cardinality of the latter is bounded
by O(n) as the number of free bases and arcs are both bounded by O(n). In
conclusion, the time and space complexity of the whole algorithm is O(nm3)
and O(nm2), respectively.

3.1 The Sparsification Technique –
Monotonically Increasing Property of DP

The previous section shows that the bottleneck of the computation of the WLCS
score is in the procedure MERGE. Here, we describe how to speed up the com-
putation of MERGE by taking advantage of the properties of DP(i,i′).

Observation 1 For any i ≤ i′, DP(i,i′) satisfies the following properties.
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1. In every row j of DP(i,i′), the entries are monotonically increasing, i.e.,
DP(i,i′)[j, j′] ≤ DP(i,i′)[j, j′ + 1].

2. In every column j′ of DP(i,i′), the entries are monotonically decreasing, i.e.,
DP(i,i′)[j, j′] ≥ DP(i,i′)[j + 1, j′].

The observations above motivate the following definitions.

Definition 4. [5] For every row j of DP(i,i′), a position j∗ satisfying j ≤ j∗ ≤
m is defined to be a row interval point if DP(i,i′)[j, j∗−1] < DP(i,i′)[j, j∗]. The set
of row interval points j∗ in the jth row of DP(i,i′) is denoted by RowIPj(DP(i,i′)).

Definition 5. [5] For every column j of DP(i,i′), a position j∗ satisfying 1 ≤
j∗ ≤ j is defined to be a column interval point if DP(i,i′)[j∗, j] > DP(i,i′)[j∗ +
1, j]. The set of column interval points j∗ in the jth column of DP(i,i′) is denoted
by ColIPj(DP(i,i′)).

Lemma 4. Let α = max{β, α1, α2}. Then there are at most (min{α(i′ − i +
1), (m − j + 1)}) row interval points in any row j of DP(i,i′).

Proof. (Sketch) The total number of row interval points (which are all distinct)
in any row j of DP(i,i′) is bounded by the minimum of the maximum (integer)
score and the number of columns in the row. 
�
Corollary 1. There are at most (min{α(i′ − i + 1), j′}) column interval points
in any column j′ of DP(i,i′).

In [19], for every (j, j′) pair where j ≤ j′, the procedure MERGE(DP(i,i′),
DP(i′+1,i′′)) tries every possible j′′ ∈ [j − 1..j′] to compute the one that maxi-
mizes

DP(i,i′)[j, j′′] + DP(i′+1,i′′)[j′′ + 1, j′] (1)

The following lemma states that it is unnecessary to consider all j′′ ∈ [j − 1..j′]
to find the maximum of (1).

Lemma 5. The equation from Lemma 2 can be computed by

DP(i,ur)[j, j′] =

max
j∗∈RowIPj(DP(i,ul−1))∪{j−1}

j∗≤j′

{DP(i,ul−1)[j, j∗] + DP(ul,ur)[j∗ + 1, j′]}

which checks at most (min{α(ul − i) + 1, (j′ − j + 1)}) candidates of j∗.

Proof. (Sketch) Let F (j′′)= DP(i,i′)[j, j′′]+DP(i′+1,i′′)[j′′+1, j′]. By Lemma 2,
DP(i,ur)[j, j′] = max{F (j − 1), maxj′′∈[j..j′] F [j′′]}. For each j′′ ∈ [j..j′], we
observe that there exists a j∗ ∈ RowIPj(DP(i,ul−1)) such that j∗ ≤ j′′ and
DP(i,ul−1)[j, j∗] = DP(i,ul−1)[j, j′′]. Furthermore, since j∗ ≤ j′′, we have
DP(ul,ur) [j∗+1, j′] ≥ DP(ul,ur)[j′′+1, j′]. Hence, for such j∗ we have F [j∗] ≥
F [j′′] resulting in maxj′′∈[j..j′] F [j′′] = maxj∗∈RowIPj(DP(i,ul−1))

F [j∗]. 
�



308 Jesper Jansson et al.

Corollary 2. The equation from Lemma 2 can be computed by

DP(i,ur)[j, j′] =

max
j∗+1∈ColIP

j′ (DP(ul,ur))∪{j′+1}
j∗+1≥j

{DP(i,ul−1)[j, j∗] + DP(ul,ur)[j∗ + 1, j′]}

which checks at most (min{α|u| + 1, (j′ − j + 1)}) candidates of j∗.

By Lemma 5 and Corollary 2, the time complexity of MERGE(DP(i,i′−1),
DP(i′,i′′)) is improved to O(min{α(i′′−i′)m2, α(i′−i)m2, m3}).

3.2 The Recursive Dynamic Programming Algorithm

We now introduce a new algorithm WLCSr(S1, P1, S2) which computes the table
DP(1,n) using a carefully designed recursive dynamic programming algorithm.
This improved algorithm guarantees that each MERGE operation is applied only
on arcs whose size is at most half of its parent’s1.

Let us start with some definitions. The followings are with respect to a nested
annotated structure. An arc u is a parent of an arc v (denoted by Parent(v))
if ul < vl < vr < ur and there is no arc w such that ul < wl < vl < vr < wr < ur.
Conversely, v is referred as the child of the arc u. The set of children of an arc
u is denoted by Child(u). A core-arc, with respect to an arc u, is a child of u
which has the biggest size (denoted as core-arc(u)). All other children of u are
named side-arcs and form the set side-arcs(u). A terminal-arc is defined to be
an arc which has no child. For any arc u ∈ P1, the core-path CP (u) is an ordered
set of core-arcs {c1, c2, · · · , c�}, where c1 = u and for any ci, ci+1 is core-arc(ci)

WLCSr(S1, S2) first finds the largest arc u in [1..n] and processes every core-
arc c ∈ CP (u) from the innermost to the outermost. For terminal arcs t, DP(tl,tr)

can be computed by using EXTEND operations only. For the remaining arcs c,
DP(cl,cr) is obtained using a two-part computation. Let c′ be core-arc(c). Due
to the bottom-up ordering, DP(c′

l
,c′r) will have been computed at this point of

time. We first compute the value of DP(cl+1,c′
l
−1) (the LEFT Part phase) using

EXTEND and MERGE operations. Given DP(cl+1,c′
l
−1), we proceed using EX-

TEND and MERGE to compute DP(c′
l
,cr−1)(the RIGHT Part phase). In both

phases, whenever we encounter a side-arc s, we first compute DP(sl,sr) by recur-
sively calling WLCSr(S1[sl..sr], S2). Next, we apply MERGE on DP(cl+1,c′

l
−1)

and DP(c′
l
,cr−1) to compute DP(cl+1,cr−1). Finally, DP(cl,cr) is obtained by ap-

plying ARC-MATCH(DP(cl+1,cr−1)). If (1, n) ∈ P1, then u = (1, n) and we
are done. Otherwise, we need to compute DP(1,n) using the same two-part

1 The routine WLCS(S1, P1, P2) given in [19] computes the DP tables according to
the postorder of the nodes in their tree representation. The problem of this approach
is that we may need to perform MERGE on arcs with large sizes causing an Ω(nm2)
space requirement even if we only wish to compute the WLCS score of (S1, P1) and
S2. We shall prove this claim in the full version of this paper.
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WLCSr(S1, P1, S2) /* |S1| = n, |S2| = m */

– Let u be biggest arc in P1 and CoreArcs = CP (u).
– Let DP(i,i′) be the m × m score matrix of DP(i,i′)[j, j

′], 1 ≤ j ≤ j′ ≤ m.
– For the terminal-arc t ∈ CoreArcs,

• For k = tl + 1 to tr − 1
� Compute DP(tl+1,k) using EXTEND(DP(tl+1,k−1)).

• Compute DP(tl,tr) by ARC-MATCH(DP(tl+1,tr−1)).
– For every core-arc c ∈ CoreArcs in bottom-up order, c′ = core-arc(c)

• LEFT Part
For k = cl + 1 to c′l − 1 where k ∈ C(c),
◦ If k is free,

� Compute DP(cl+1,k) using EXTEND(DP(cl+1,k−1)).
◦ If k = sr for some s ∈ side-arcs(c),

� Compute DP(sl,sr) recursively by WLCSr(S1[sl..sr], P1, S2).
� Compute DP(cl+1,k) using MERGE(DP(cl+1,sl−1), DP(sl,sr)).

• RIGHT Part
For k = c′r + 1 to cr − 1 where k ∈ C(c),
◦ If k is free,

� Compute DP(c′
l
,k) using EXTEND(DP(c′

l
,k−1)).

◦ If k = sr for some s ∈ side-arcs(c),
� Compute DP(sl,sr) recursively by WLCSr(S1[sl..sr], P1, S2).
� Compute DP(c′

l
,k) using MERGE(DP(c′

l
,sl−1), DP(sl,sr)).

• Compute DP(cl+1,cr−1) by MERGE(DP(cl+1,c′
l
−1), DP(c′

l
,cr−1)).

• Compute DP(cl,cr) using ARC-MATCH(DP(cl+1,cr−1)).
– If u �= (1, n)

• Compute DP(1,ul−1) by the LEFT Part computation.
• Compute DP(ul,n) by the RIGHT Part computation.
• Compute DP(1,n) by MERGE(DP(1,ul−1), DP(ul,n)).

Fig. 2. The algorithm WLCSr(S1, P1, S2).

computation technique: first compute DP(1,ul−1), followed by DP(ul,n), and
then obtain DP(1,n) by MERGE(DP(1,ul−1), DP(ul,n)). Our complete algorithm
WLCSr(S1, P1, S2) is listed in Fig. 2.

Lemma 6. WLCSr(S1, P1, S2) runs in min{O(αnm2 log n), O(nm3)} time.

Proof. To obtain the execution time of WLCSr(S1, P1, S2), we analyze the total
execution time of the EXTEND, MERGE, and ARC-MATCH operations sep-
arately. The time required by EXTEND and ARC-MATCH operations is still
the same as in [19], namely O(nm2), as they are still applied at most once on
every free bases and arcs, respectively. Note that MERGE is now invoked on all
arcs which belong to the set side-arc(u) for some arc u ∈ P1 and on the merg-
ing of the LEFT part and the RIGHT part of all non-terminal arcs. For any
side-arc s, merging the table DP(sl,sr) into some table DP(i,sl−1) takes at most
O(min{α|s|m2, α(sl − i)m2, m3}) which is at most O(min{α|s|m2, m3}) time.
In the second type of MERGE invocations, we execute MERGE(DP(cl+1,c′

l
−1),
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DP(c′
l
,cr−1)) for all non-terminal arcs c where c′ =core-arc(c). The latter requires

O(min{α(c′l − cl)m2, α(cr − c′l)m
2, m3}) ≤ O(min{α(c′l − cl)m2, m3}). Let r be

an imaginary arc where r = (0, n + 1) and T (S1) be the total execution time for
all MERGE operations in WLCSr(S1, P1, S2).

T (S1) =
∑

c∈CP (r)

( ∑

s∈side-arcs(c)

T (S1[sl..sr])+O(min{α|s|m2, m3}
)
+

∑

c∈CP (r)

O(min{α(c′l − cl)m2, m3}) (2)

=
∑

s∈side-arcs(c)
c∈CP (r)

T (S1[sl..sr])+
∑

s∈side-arcs(c)
c∈CP (r)

O(min{α|s|m2, m3})+

∑

c∈CP (r)

O(min{α(c′l−cl)m2, m3}) (3)

=
∑

s∈side-arcs(c)
c∈CP (r)

T (S1[sl..sr]) + O(min{αnm2, m3}) (4)

Both the second and the third summation terms in (3) sum up to O(min{αnm2,
m3}) since all side-arcs s ∈ side-arcs(c) as well as the ranges [c′l..cl] for c ∈
CP (r) are non overlapping. Based on the fact that

∑ |s| ≤ |c| and |s| ≤ |c|
2 , by

inspection, the solution of the recurrence is O(αnm2 log n) if min{αnm2, m3} =
αnm2 or O(nm3) otherwise. Combining the running time of the three operations,
the lemma follows. 
�

4 Traceback Using a Hirschberg-Based Technique

Using the standard traceback algorithm, one is required to store all DP tables
corresponding to any arc u ∈ P1. Alternatively, we can make use of the re-
cursive technique introduced by Hirschberg in [10] and use WLCSr(S1, P1, S2)
only to compute the WLCS score. We shall refer to the latter as the score-only
WLCSr(S1, P1, S2).

Lemma 7. Computing the score-only WLCSr(S1, P1, S2) requires
min{O(m2 log n), O(m2 + αmn)} space.

Proof. To compute the score-only WLCSr(S1, P1, S2), since we do not have
to traceback, we can just store the information needed to compute the align-
ment score. This corresponds to O(m2) space for the EXTEND and ARC-
MATCH operations. As for the MERGE operations, when there is no recursive
call involved (the second type of MERGE), the space requirement is also in
O(m2). Otherwise, referring back to Fig. 2, when we invoke the recursive call
WLCSr(S1[sl..sr], P1, S2), we observe that we need to store DP(i,sl−1) for some
fixed i. Storing only the row interval points takes O(min{α(sl − i)m, m2}) space
(by Lemma 4). Since recursive calls are only applied on side-arcs, we have at
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3 of the original region.

Lemma 9. We can always partition a gapped region into at most 4 non-overlap-
ping subregions, where at most one of them is continuous. Every subregion’s size
is at most 2

3 of the original region.

F i g. 3. The recursion on the partitioned continuous region by Lemma 8.

most O(log n) recursion levels giving an upper bound of O(m2 log n) on the space
complexity. We further claim that the space required is smaller than O(αnm)
since, in each recursion level x, we only store DP(ix,slx−1) where all of the inter-
vals [ix..slx−1] are disjoint. Hence,

∑
x O(α(slx − ix)m) ≤ O(αnm). Combining

the three terms, the lemma follows. 
�
Following the idea of Hirschberg in [10], we compute the WLCS alignment

between (S1, P1) and S2 as follows,

1. Divide S1 into a constant number of non-overlapping regions S11, S12, ..S1c.
2. For each region S1i, find the region S2i in S2 such that the optimal WLCS

alignment will align S1i to S2i.
3. Recursively compute the optimal WLCS alignments between S1i and S2i for

i = 1, 2, .., c.

To do the first step, since S1 is arc-annotated, we must divide S1 in such a
way that we do not break any arc in P1. The solution is to divide S1 into inner
and outer regions. Given two points i1 and i2, 1 ≤ i1 ≤ i2 ≤ n, the inner region
with respect to i1 and i2 is S1[i1..i2] and the outer region is the concatenation
of S1[1..(i1 − 1)] and S1[(i2 + 1)..n] (see Fig. 3). The latter is also referred as a
gapped region since it has a discontinuous interval (S1[i1..i2] is removed). Let �
be a special character that denotes the gap in the sequence such that the gapped
region can be written as S1[1..(i1 − 1)] � S1[(i2 + 1)..n]. If a region has no gap
in it, we say it is continuous. We shall show that we can bound the size of each
region by φn for some constant φ, 0 < φ < 1. Due to space constraints, the
proofs of the following lemmas will appear in the journal version of this paper.

Lemma 8. We can always partition a continuous region into 2 non-overlapping
subregions, where one of them is continuous and the other is gapped. Every
subregion’s size is at most 2
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After dividing S1 into at most 4 subregions, where each is denoted by S1i for
i ≤ 4, we now need to compute the regions S2i in S2 to which the subregions
S1i is aligned by the optimal WLCS alignment.

Lemma 10. For any 1 ≤ i1 ≤ i2 ≤ n, we can compute 1 ≤ j1 ≤ j2 ≤ m, such
that the optimal alignment between (S1, P1) and S2 aligns S1[i1..i2] to S2[j1..j2],
within the same time and space complexity of the score-only WLCSr(S1, P1, S2).
Lemma 11. For any 1 ≤ i1 ≤ i2 ≤ i3 ≤ i4 ≤ n, we can compute 1 ≤ j1 ≤ j2 ≤
j3 ≤ j4 ≤ m, such that the optimal alignment between (S1, P1) and S2 aligns
S1[i1..i2] � S1[i3..i4] to S2[j1..j2] � S2[j3..j4], within the same time and space
complexity of the score-only WLCSr(S1, P1, S2).

By Lemmas 10 and 11, the second step of this algorithm can be executed
within the same time and space complexity of the score-only WLCSr(S1, P1, S2)
since the number of the subregions is constant. Next, we proceed by applying the
algorithm recursively on each pair (S1i, S2i). While applying the algorithm on
the continuous region is straightforward, the gapped region needs a bit of extra
care. In this case, � in S1i must be aligned to � in S2i because they represent
the subregion pair(s) computed in the other recursive call(s). To implement such
constraint, we add into the base scoring function the following cases: χ(�, �) = 0
and χ(�, x) = χ(x, �) = −∞ for x ∈ {A, C, G, U,�}. This way, the optimal
alignment between the two sequences is forced to align � in the first sequence to
� in the second in order to have a non-negative score.

Lemma 12. Our new algorithm can recover the optimal WLCS alignment in
min{O(αnm2 log n), O(nm3)} time and min{O(m2 log n) , O(m2+αmn)} space.

5 Concluding Remarks

Consider two homologous RNA sequences S1 and S2 where S1 has a known
structure. This paper presents an improved algorithm to solve the problem of
inferring the structure of S2 such that the WLCS score between the two struc-
tures are maximized. The same algorithm can easily be applied to the longest
arc-preserving common subsequence problem (LAPCS) (see, e.g., [4, 11]). In par-
ticular, we improve the time and space complexity of LAPCS (nested, plain)
problem from O(nm3) and O(nm2)[11] to min{O(nm2 log n), O(nm3)} and
min{O(m2 + mn), O(m2 log n)}.

One interesting extension of the problem discussed in this paper is to incorpo-
rate a more realistic, non-linear scoring function into the base and arc matching
function. Another possible direction is to attempt some special cases of crossed
arc-annotation structures, which can represent pseudoknotted structures in RNA
sequences, by applying the algorithm iteratively.
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