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A Faster and More Space-Efficient Algorithm
for Inferring Arc-Annotations of RNA Sequences

through Alignment

Jesper Jansson,1 See-Kiong Ng,2 Wing-Kin Sung,1,3 and Hugo Willy1

Abstract. The nested arc-annotation of a sequence is an important model used to represent structural
information for RNA and protein sequences. Given two sequences S1 and S2 and a nested arc-annotation P1

for S1, this paper considers the problem of inferring the nested arc-annotation P2 for S2 such that (S1, P1)

and (S2, P2) have the largest common substructure. The problem has a direct application in predicting the
secondary structure of an RNA sequence given a closely related sequence with known secondary structure.
The currently most efficient algorithm for this problem requires O(nm3) time and O(nm2) space where n
is the length of the sequence with known arc-annotation and m is the length of the sequence whose arc-
annotation is to be inferred. By using sparsification on a new recursive dynamic programming algorithm and
applying a Hirschberg-like traceback technique with compression, we obtain an improved algorithm that runs
in min{O(nm2 + n2m), O(nm2 log n), O(nm3)} time and min{O(m2 + mn), O(m2 log n + n)} space.

Key Words. RNA secondary structure, Arc annotations, Sequence structure alignment, Sparsification
technique.

1. Introduction. Recent research shows that RNA functions as catalysts and regulators
in nucleic acid processing and gene expression in addition to its commonly known
intermediary role in DNA transcription and translation processes. It is generally known
that much of RNA’s functionalities depend on its structural features. Unfortunately,
although massive amounts of sequence data are continuously generated, the number of
known RNA structures is still very limited since experimental methods, such as NMR and
Crystallography, require expertise and long experimental time. Therefore, computational
methods for predicting RNA structures are very useful.

In the literature there exist a number of computational approaches to predict the struc-
ture of RNA. Basically, they can be classified into three categories: Energy Minimization,
Comparative, and Structure Inferring methods. The first approach tries to compute the
structure of an RNA molecule with the lowest free energy. Representatives of this ap-
proach are the methods of Nussinov and Jacobson [17] and Zuker and coworkers [16],
[21], [22]. Since the current energy model is not accurate enough and RNA may not fold
into the lowest energy structure, the prediction accuracy of this method is usually not
high. For the Comparative method, we are given a number of RNA sequences that are
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expected to share a similar structure (called homologous sequences). By aligning those
RNA sequences, we can compute the consensus structure. Representatives of this ap-
proach include Maximum Weighted Matching (MWM) [3], [19] and Stochastic Context
Free Grammars (SCFGs) [8], [9], [18]. The Comparative approach is currently the best
way to predict RNA structures [10], [13]. However, when the number of homologous se-
quences is not large enough, the accuracy can be low. If we only have a few homologous
RNA sequences (which is usually the case) where the structure of one of the sequences
is known, the RNA structure can be predicted using the Structure Inferring method [2],
[20]. Consider two sequences S1 and S2 of length n and m, respectively. Assuming that
the secondary structure of S1 is known, this method infers the secondary structure of S2

by aligning S1 and S2.
The formal definition of the problem is given in Section 2. Bafna et al. [2] propose a

dynamic programming solution to this problem and solve it using O(n2m2+ nm3) time
and O(n2m2) space. Zhang [20] improves their result and gives an algorithm that runs
in O(nm3) time and O(nm2) space. In this paper we further improve the running time
to min{O(nm2 + n2m), O(nm2 log n), O(nm3)} and at the same time bring down the
space requirement to min{O(m2 + mn), O(m2 log n + n)}.

Our algorithmic improvement in the running time stems from a sparsification tech-
nique. We observe that the entries in every row in the dynamic programming tables are
monotonically increasing, enabling us to fill in a smaller number of entries in the tables
without losing any information. We also present a new recursive dynamic programming
algorithm that gives a better worst-case space requirement for the case of computing only
the score of the optimal alignment of S1 and S2. Finally, by incorporating the latter into
an algorithm similar to Hirschberg’s traceback [11] together with a simple compression
method, we can recover the optimal inferred structure from the table within the stated
reduced space complexity. Note that the space improvement is critical in our application
since currently the length of RNA sequences used in lab experiments can reach thousands
of bases. Assuming that n ≈ m, the memory requirement of an O(nm2) space algorithm
could easily reach over tens of gigabytes. This memory requirement is not impossible to
meet but it is highly impractical.

This paper is organized as follows. Section 2 contains the formal statement of the
problem with some basic definitions. Section 3 presents the algorithm and is divided into
three parts. The first part presents the original algorithm given in [20] in a slightly different
notation, noting the bottleneck of the computation. The remaining two parts present our
main results that improve the running time of the algorithm. Section 4 discusses a
recursive dynamic programming algorithm that has a better space complexity compared
with the original algorithm in [20] in the case where only the score of the alignment
is required. The Hirschberg-like traceback algorithm is described in Section 5, making
use of the score-only recursive algorithm described in the preceding section. Finally,
Section 6 concludes this paper with some comments and possible future extensions of
the problem.

2. Preliminaries. In our algorithm we represent an RNA sequence and its secondary
structure information using the arc-annotated sequence [4]. Let [a..b] represents a dis-
crete interval bounded by the integers a and b where a ≤ b. When a = b, the interval



A Faster and More Space-Efficient Algorithm for Inferring Arc-Annotations of RNA Sequences 225

can be written as [a]. Consider a sequence S over a fixed alphabet � = {A,C,G,U }.
We define S[i] to be the i th character in S and S[i.. j] to be the substring of S in positions
between i and j (inclusive). For any x ∈ �, let Complement(x) be the complemen-
tary base(s) of x according to the Watson–Crick or Wobble (G-U) base pairing. There-
fore, Complement(A) = {U }, Complement(C) = {G}, Complement(U ) = {A,G}, and
Complement(G) is {C,U }. An unordered pair of positions (i, j), where i < j , indicates
that S[i] and S[ j] form a base pair in the RNA structure. Such a pair is called an arc. For
RNA sequences, we require that, for any (i, j), S[ j] ∈ Complement(S[i]) and vice versa.
A set P of arcs is called an arc-annotation, and the pair (S, P) is called an arc-annotated
sequence. Arc-annotated sequences are well-studied [1], [4], [5], [7], [12], [14], [15],
[20] and are commonly used in computational biology to represent the structure of RNA
and protein sequences.

Since we are considering RNA secondary structures, we assume that the RNA se-
quences we are dealing with do not have any pseudoknots. The corresponding type of
arc-annotation for RNA structures without pseudoknots is the nested arc-annotation [1],
[12], [14], [15] where, for any two arcs, either one is within the other, or they are com-
pletely disjoint (∀(i1, j1), (i2, j2) ∈ P, i1 ∈ [i2.. j2] ⇔ j1 ∈ [i2.. j2]). For any arc
u ∈ P , we denote ul and ur to be the left and the right endpoints of u, respectively. The
size of an arc u is denoted by |u| = ur − ul + 1. We say that position i is free if i is not
an endpoint of any arc in P . A position i is covered by an arc u if ul < i < ur and there
exists no other arc u′ such that ul < u′l < i < u′r < ur . The set of all positions covered
by u is called the arc cover of u, denoted by C(u).

Consider two arc-annotated sequences (S1, P1) and (S2, P2). Let |S1| = n and |S2| =
m where S2 is the plain sequence whose arc-annotation P2 is to be inferred. Given
two arc-annotated sequences, we can define the similarity of the sequences by aligning
the bases and the arcs in them. We need to define a scoring function for each type of
alignment. Let χ be the function to score the alignment of unpaired bases in the two
sequences where, for a, b ∈ {A,C,G,U,} (“” denotes a blank character),

χ(a, b) =
{
β if a = b, a �= , b �= ,
0 otherwise.

For any pair of position (u1, u2) in S1 and (v1, v2) in S2, let δ be a scoring function for
arc alignment whose value is defined as

δ((S1[u1], S1[u2]), (S2[v1], S2[v2]))

=




−∞ if S1[u1] /∈ Complement(S1[u2]) or

S2[v1] /∈ Complement(S2[v2]),

α1 if S1[u1] = S2[v1] and S1[u2] = S2[v2],

α2 if S1[u1] = S2[v1] and S1[u2] �= S2[v2] or

S1[u1] �= S2[v1] and S1[u2] = S2[v2],

α3 if S1[u1] �= S2[v1] and S1[u2] �= S2[v2].
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β, α1, α2, and α3 are positive integer constants. Usually the parameters are set so that
β < α3 < α2 < α1 which reflects that an arc alignment (α1, α2 or α3) takes precedence
over a single base alignment (β). Moreover, an arc alignment with exactly the same base
pairs should score higher (α1) since both the bases and their arcs are aligned. One can
also have constraints on the arc width, for example, when |u| or |v| is less than some
minimum arc width parameter, we can define δ = −∞. Now given the definition of the
arc annotation and the scoring functions, we formally state our problem as follows.

The common substructure of two arc-annotated sequences (S1, P1) and (S2, P2) is
defined as the alignment between S1 and S2 where free positions in S1 are aligned to
free positions in S2 and (both endpoints of) arcs in P1 are aligned to (both endpoints
of) arcs in P2. The common substructure score is the weighted sum of all bases’ and
arcs’ individual alignment scores. The Weighted Largest Common Substructure (WLCS)
score is then defined as the maximum common substructure score among all possible
common substructures. The problem we address in this paper is: Given a nested arc-
annotated sequence (S1, P1) and a plain sequence S2, infer the nested arc-annotation P2

for S2 that maximizes their WLCS score.

3. Algorithm Description. This section reviews Zhang’s algorithm (presented in [20])
for inferring the RNA secondary structure P2 for S2 that maximizes the WLCS score
between (S1, P1) and (S2, P2). Recall that |S1| = n and |S2| = m. Let DP(i,i ′)[ j, j ′],
where 1 ≤ i ≤ i ′ ≤ n and 1 ≤ j ≤ j ′ ≤ m, denote the optimal WLCS score between
(S1[i..i ′], P1) and (S2[ j.. j ′], P2) among all possible P2. Note that DP(i,i ′)[ j, j ′] = 0
whenever i > i ′ or j > j ′. Zhang presented an algorithm to compute DP(1,n)[1,m] that
runs in O(nm3) time and uses O(nm2) space based on a two-step dynamic programming.
Below are the three equations used to compute the two steps of the algorithm. Please
refer to [20] for the correctness proofs.

LEMMA 1 (Lemma 4 in [20]). If i ′ is free,

DP(i,i ′)[ j, j ′] = max




DP(i,i ′−1)[ j, j ′ − 1]+ χ(S1[i ′], S2[ j ′]),
DP(i,i ′−1)[ j, j ′]+ χ(S1[i ′],),
DP(i,i ′)[ j, j ′ − 1]+ χ(, S2[ j ′]).

LEMMA 2 (Lemma 5 in [20]). For any arc u ∈ P1 and i < ul ,

DP(i,ur )[ j, j ′] = max
j−1≤ j ′′≤ j ′

{DP(i,ul−1)[ j, j ′′]+ DP(ul ,ur )[ j ′′ + 1, j ′]}.

LEMMA 3 (Lemma 3 in [20]). For any arc u ∈ P1,

DP(ul ,ur )[ j, j ′]=max




DP(ul+1,ur−1)[ j+1, j ′−1]+δ((S1[ul],S1[ur ]),(S2[ j],S2[ j ′])),
DP(ul+1,ur−1)[ j, j ′],
DP(ul ,ur )[ j + 1, j ′],
DP(ul ,ur )[ j, j ′ − 1].
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WLCS(S1, P1, S2)

For every arc u ∈ P1 from the leftmost to the rightmost,

Step 1: Compute DP(ul+1,ur−1) as follows.
For every i ∈ C(u) in increasing order,
• if i is free, compute DP(ul+1,i) by EXTEND(DP(ul+1,i−1)).
• if i = vr for some arc v, compute DP(ul+1,i) by MERGE(DP(ul+1,vl−1),

DP(vl ,vr )).
• if i = vl , do nothing.

Step 2: Compute DP(ul ,ur ) by ARC−MATCH(DP(ul+1,ur−1)).

Fig. 1. The algorithm from [20] described in terms of EXTEND, MERGE and ARC-MATCH operations.

Below we define three operations over the whole table DP(i,i ′), namely, EXTEND,
MERGE, and ARC-MATCH.

DEFINITION 1. If i ′ is free then given the table DP(i,i ′−1), DP(i,i ′) can be computed by
using Lemma 1. We define the computation of DP(i,i ′) from DP(i,i ′−1) as the operation
EXTEND(DP(i,i ′−1)).

DEFINITION 2. Consider any arc s. The operation MERGE(DP(i,sl−1),DP(sl ,sr )) is de-
fined to be the computation of the table DP(i,sr ) given DP(i,sl−1) and DP(sl ,sr ) using
Lemma 2.

DEFINITION 3. Consider any arc s. The operation ARC−MATCH(DP(sl+1,sr−1)) is
defined to be the computation of the table DP(sl ,sr ) given DP(sl+1,sr−1) using Lemma 3.

Figure 1 describes the procedure WLCS(S1, P1, S2) that computes DP(1,n)[ j, j ′] for
all 1 ≤ j ≤ j ′ ≤ m. It is actually the algorithm in [20] expressed in terms of our defined
operations on the DP tables. Given DP(1,n)[ j, j ′] and all its intermediary DP tables, an
optimal alignment can then be retrieved via the standard traceback procedure.

The time and space complexity of WLCS(S1, P1, S2) is analyzed by computing the
contributions of the operations EXTEND, ARC-MATCH, and MERGE separately. First
we analyze the time complexity of the algorithm. An EXTEND operation involves
computing DP(i,i ′)[ j, j ′] from DP(i,i ′−1)[ j, j ′] for all 1 ≤ j ≤ j ′ ≤ m. Since there
are O(m2) ( j, j ′) pairs to compute, each EXTEND operation takes O(m2) time. Next,
because EXTEND is applied only on free positions, whose number is bounded by O(n),
the total cost for all EXTEND operations is O(nm2). The analysis for the ARC-MATCH
operation is similar to the one for EXTEND above except that ARC-MATCH is invoked
only on arcs whose cardinality is also bounded by O(n) (since we assumed nested
arc-annotation). Thus, it also takes O(nm2) time for all ARC-MATCH calls. Each call
to MERGE requires computing the maximum DP(i,i ′)[ j, j ′] by summing the values
DP(i,i ′′)[ j, j ′′] and DP(i ′′+1,i ′)[ j ′′ + 1, j ′] where i ′′ is fixed and j ′′ is chosen from the
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range [ j.. j ′]. In the worst case, one would require O(m) time to compute DP(i,i ′)[ j, j ′]
for a particular ( j, j ′). This yields O(m3) time for a MERGE operation. Observing
that the algorithm only invokes MERGE on arcs, the total contribution of MERGE is
O(nm3). In total, the running time of the algorithm is O(nm3).

It is straightforward to see that EXTEND(DP(i,i ′−1)) requires O(m2) space as we only
need O(m2) space to store both DP(i,i ′−1) and the resulting DP(i,i ′). The same argument
also applies to ARC-MATCH and MERGE (as for MERGE, we need space for three
DP tables instead of two). However, since [20] uses the standard traceback for inferring
the secondary structure of the sequence S2, one must store all intermediary DP tables
computed by WLCS(S1, P1, S2). The size of the latter is bounded by O(nm2) as the
number of free positions and arcs are both bounded by O(n) and each DP table contains
O(m2) entries.

3.1. The Sparsification Technique—Monotonically Increasing Property of DP. The
previous section shows that the bottleneck of the computation of the WLCS score is in
the procedure MERGE. Here, we describe how to speed up the computation of MERGE
by taking advantage of the properties of DP(i,i ′).

OBSERVATION 1. For any i ≤ i ′, DP(i,i ′) satisfies the following properties:

1. In every row j of DP(i,i ′), the entries are monotonically increasing, i.e., DP(i,i ′)[ j, j ′] ≤
DP(i,i ′)[ j, j ′ + 1].

2. In every column j ′ of DP(i,i ′), the entries are monotonically decreasing, i.e.,
DP(i,i ′)[ j, j ′] ≥ DP(i,i ′)[ j + 1, j ′].

The above observation motivates the following definition.

DEFINITION 4. [6] For every row j of DP(i,i ′), a position j∗ satisfying j ≤ j∗ ≤ m is
called a row interval point if DP(i,i ′)[ j, j∗ − 1] < DP(i,i ′)[ j, j∗]. (See Figure 2.)

DEFINITION 5. The set of row interval points j∗ in the j th row of DP(i,i ′) that satisfy
j∗ ≤ j ′ is denoted by RowIP(i,i; j, j ′).

LEMMA 4. For every p ∈ [ j.. j ′], there exists a j∗ ∈ RowIP(i,i ′; j, j ′) such that
DP(i,i ′)[ j, j∗] = DP(i,i ′)[ j, p] and j∗ ≤ p.

PROOF. We know that the entries in any row of DP(i,i ′) are monotonically increasing.
Hence each new distinct entry will be greater than the entry preceding it. By its definition,
we can see that RowIP(i,i ′; j, j ′) covers all distinct entries in the interval [ j.. j ′].

LEMMA 5. Letα = max{β, α1, α2, α3}. Then |RowIP(i,i ′; j, j ′)| ≤ min{α(i ′−i+1), ( j ′−
j + 1)}.

PROOF. Since the row interval points are distinct, |RowIP(i,i ′; j, j ′)| is clearly bounded
above by j ′− j+1. Moreover, as we assume integer scores, the number of distinct interval
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points is also bounded above by the highest score possible from aligning S1[i..i ′] with
S2[ j.. j ′], which is equal to min{α(i ′ − i + 1), α( j ′ − j + 1)}. By combining the terms,
the lemma follows.

In [20], for every ( j, j ′) pair where j ≤ j ′, the procedure MERGE(DP(i,ul−1),

DP(ul ,ur )) tries every possible j ′′ ∈ [( j − 1).. j ′] to compute the one that maximizes
the sum

DP(i,ul−1)[ j, j ′′]+ DP(ul ,ur )[ j ′′ + 1, j ′].(1)

Given Lemma 5, we can see that there are at most (min{α(i ′ − i + 1), (m− j + 1)}) row
interval points in any row j of DP(i,i ′). The following lemma implies that it is unnecessary
to consider all j ′′ ∈ [( j − 1).. j ′] to find the maximum of (1).

LEMMA 6. The equation from Lemma 2 can be computed using the following equation:

DP(i,ur )[ j, j ′] = max
j∗∈{RowIP(i,ul−1; j, j ′)∪{ j−1}}

{DP(i,ul−1)[ j, j∗]+ DP(ul ,ur )[ j∗ + 1, j ′]}.

PROOF. Let us separate the range [( j − 1).. j ′] into [( j − 1)..( j − 1)] and [ j.. j ′]. The
lemma can be proven if we can show that, for every j ′′ ∈ [ j.. j ′], there exists a j∗ ∈
RowIP(i,ul−1; j, j ′) such that DP(i,ul−1)[ j, j ′′]+DP(ul ,ur )[ j ′′ + 1, j ′] ≤ DP(i,ul−1)[ j, j∗]+
DP(ul ,ur )[ j∗ + 1, j ′]. Note that, by Lemma 4, for each j ′′ ∈ [ j.. j ′], there exists a j∗ ∈
RowIP(i,ul−1; j, j ′) such that DP(i,ul−1)[ j, j∗] = DP(i,ul−1)[ j, j ′′] and j∗ ≤ j ′′ ≤ j ′. It
follows that

DP(i,ul−1)[ j, j ′′]+ DP(ul ,ur )[ j ′′ + 1, j ′] = DP(i,ul−1)[ j, j∗]+ DP(ul ,ur )[ j ′′ + 1, j ′]

≤ DP(i,ul−1)[ j, j∗]+ DP(ul ,ur )[ j∗ + 1, j ′]

since, by property 2 of Observation 1, we know that DP(ul ,ur )[ j∗+1, j ′] ≥ DP(ul ,ur )[ j ′′+
1, j ′].

It is straightforward to see that the set RowIP(i,ul−1; j, j ′) can be computed in O( j ′ − j)
time from the j th row of DP(i,ul−1). Hence before filling the entries of the new ta-
ble DP(i,ur ), we precompute the sets RowIP(i,ul−1; j,m) for 1 ≤ j ≤ m from the table
DP(i,ul−1), incurring an O(m2) time and space overhead. Lemma 6 speeds up the compu-
tation time of DP(i,ur )[ j, j ′] since we only consider distinct values for the DP(i,ul−1)[ j, j∗]
terms. We further improve the time complexity of MERGE by also considering only dis-
tinct values of DP(ul ,ur )[ j∗ + 1, j ′]. We start with the following definitions.

DEFINITION 6. We define the set

S(i,i ′,i ′′; j, j ′) = { j∗ ∈ RowIP(i,i ′; j, j ′) ∪ { j − 1} | j ′ ∈ RowIP(i ′+1,i ′′; j∗+1, j ′) ∪ { j∗}},
S′(i,i ′,i ′′; j, j ′) = {RowIP(i,i ′; j, j ′) ∪ { j − 1}} − S(i,i ′,i ′′; j, j ′).
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Based on the set S and S′ above, we define the following tables:

P(i,i ′,i ′′)[ j, j ′]

=



max
j∗∈S(i,i ′ ,i ′′ ; j, j ′)

{DP(i,i ′)[ j, j∗]+ DP(i ′+1,i ′′)[ j∗ + 1, j ′]} if S(i,i ′,i ′′; j, j ′) �= ∅,

0 otherwise,

P ′(i,i ′,i ′′)[ j, j ′]

=
{

max
j∗∈S′

(i,i ′ ,i ′′ ; j, j ′)
{DP(i,i ′)[ j, j∗]+ DP(i ′+1,i ′′)[ j∗ + 1, j ′]} if S′(i,i ′,i ′′; j, j ′) �= ∅,

0 otherwise.

The set S(i,i ′,i ′′; j, j ′) is actually a subset of the set RowIP(i,i ′; j, j ′)∪{ j−1}where for each
of its element j∗, j ′ is in the set RowIP(i ′+1,i ′′; j∗+1, j ′)∪{ j∗}. Figure 2 illustrates the defini-
tion of the set S(i,i ′,i ′′; j, j ′). Given Definition 6 above, we can rewrite the equation in Lemma
6 into DP(i,ur )[ j, j ′] = max{P(i,ul−1,ur )[ j, j ′], P ′(i,ul−1,ur )

[ j, j ′]}. In the following lemma
we claim that we only need to compute the value of DP(i,i ′)[ j, j∗]+DP(i ′+1,i ′′)[ j∗+1, j ′]
over j∗ ∈ S(i,i ′,i ′′; j, j ′) instead of the whole RowIP(i,i ′; j, j ′) for each j ′ ∈ [ j..m].

LEMMA 7. When P(i,ul−1,ur )[ j, j ′] ≤ P ′(i,ul−1,ur )
[ j, j ′], we have DP(i,ur )[ j, j ′] =

DP(i,ur )[ j, j ′ − 1].

DP
(i,i')

1 21 2 43

21 2 43

1 1 32

0 21

65

65

54

43

21

1
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1

1 2 3 4 5 6 7 8

1
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6
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8

j
j'
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10

1

1
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3

4

5
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7

8

1 2 3 4 5 6 7 8j
j'

Fig. 2. Illustration of the set S. From the figure we can see that RowIP(i,i ′;2,8) = {2, 3, 5, 6, 7, 8} ( j = 2,
j ′ = 8). Then, as defined, we have S(i,i ′,i ′′;2,8) = {3, 5, 6, 7, 8} since j ′ = 8 and, ∀x ∈ {3, 5, 6, 7}, 8 ∈
RowIP(i ′+1,i ′′;x+1,8).
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PROOF. Given P(i,ul−1,ur )[ j, j ′] ≤ P ′(i,ul−1,ur )
[ j, j ′], we have DP(i,ur )[ j, j ′] =

P ′(i,ul−1,ur )
[ j, j ′]. To prove this lemma we shall show that DP(i,ur )[ j, j ′ − 1] ≤

P ′(i,ul−1,ur )
[ j, j ′] and P ′(i,ul−1,ur )

[ j, j ′] ≤ DP(i,ur )[ j, j ′ − 1]. The first one is trivial since,
by property 1 of Observation 1, DP(i,ur ) [ j, j ′ − 1] ≤ DP(i,ur )[ j, j ′] = P ′(i,ul−1,ur )

[ j, j ′].
Then we need to show that P ′(i,ul−1,ur )

[ j, j ′] ≤ DP(i,ur )[ j, j ′ − 1]. By its definition,
∀ j∗ ∈ S′(i,ul−1,ur ; j, j ′), we have j∗ < j ′ and j ′ /∈ RowIP(ul ,ur ; j∗+1, j ′). It follows that
∀ j∗ ∈ S′(i,ul−1,ur ; j, j ′), we have

DP(ul ,ur )[ j∗ + 1, j ′]=DP(ul ,ur )[ j∗ + 1, j ′ − 1], hence

DP(i,ul−1)[ j, j∗]+DP(ul ,ur )[ j∗ + 1, j ′]=DP(i,ul−1)[ j, j∗]+DP(ul ,ur )[ j∗ + 1, j ′ − 1].

Since RowIP(i,ul−1; j, j ′−1)=RowIP(i,ul−1; j, j ′)−{ j ′}, S′(i,ul−1,ur ; j, j ′)⊆RowIP(i,ul−1; j, j ′) and
j ′ /∈ S′(i,ul−1,ur ; j, j ′), we have S′(i,ul−1,ur ; j, j ′) ⊆ RowIP(i,ul−1; j, j ′−1). Hence P ′(i,ul−1,ur )

[ j, j ′]
≤ DP(i,i ′)[ j, j ′ − 1]. The lemma follows trivially.

COROLLARY 1. We can compute the value of DP(i,ur )[ j, j ′] in Lemma 2 using the fol-
lowing equation:

DP(i,ur )[ j, j ′] = max{P(i,ul−1,ur )[ j, j ′],DP(i,ur )[ j, j ′ − 1]}.

The following lemma analyzes the complexity of the new MERGE operation.

LEMMA 8. The complexity of the new MERGE operation is in O(min{α(ul − i),m} ·
min{α|u|,m} · m)+ O(m2) time and O(m2) space.

PROOF. By Corollary 1, we can compute DP(i,ur )[ j, j ′] in constant time given that we
have already computed the value of P(i,ul−1,ur )[ j, j ′]. A straightforward way to compute
P(i,ul−1,ur )[ j, j ′] is, for a particular j ′, compute the set S(i,ul−1,ur ; j, j ′) and use it to compute
the former based on Definition 6. This would take O(min{α(ul−i), ( j ′− j)}·min{α(ur−
ul), ( j ′− j)}) time. Taking all possible j and j ′, the running time will be in O(min{α(ul−
i), ( j ′ − j)} ·min{α(ur − ul), ( j ′ − j)}m2), which is unacceptable.

To avoid the need of computing S(i,ul−1,ur ; j, j ′), we reverse the computational order-
ing of j∗ and j ′. Instead of computing the values of j∗ for each j ′; for each j∗ ∈
RowIP(i,ul−1; j,m) ∪ { j − 1}, we get the j ′ ∈ RowIP(ul ,ur ; j∗+1,m) ∪ { j∗} and, for all
such j ′, update the value of P(i,ul−1,ur )[ j, j ′] whenever DP(i,ul−1)[ j, j∗]+DP(ul ,ur )[ j∗+
1, j ′] > P(i,ul−1,ur )[ j, j ′]. Effectively, for each j ′ ∈ RowIP(ul ,ur ; j∗+1, j ′) for some j∗ ∈
RowIP(i,ul−1; j, j ′), the updating will compute the maximum value of DP(i,ul−1)[ j, j∗]+
DP(ul ,ur )[ j∗+1, j ′] over all possible j∗. Note that we have to initialize the values in the
table P(i,ul−1,ur ) to zero beforehand.

The number of such ( j∗, j ′)pair is bounded by |RowIP(i,ul−1; j, j ′)|·|RowIP(ul ,ur ; j∗+1,m)|
which is less than min{α(ul − i),m} · min{α|u|,m}. For each ( j∗, j ′) pair, the sum
DP(i,i ′)[ j, j∗]+DP(i ′+1,i ′′)[ j∗ + 1, j ′] will only be computed once taking constant time.
As there are m rows in P(i,ul−1,ur ), its time complexity will then be in O(min{α(ul −
i),m} ·min{α|u|,m} · m).
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MERGE(DP(i,ul−1),DP(ul ,ur ))

1 Set P(i,ul−1,ur )[ j, j ′] = 0 for 1 ≤ j ≤ j ′ ≤ m
2 for j = 1 · · ·m
3 for j∗ ∈ RowIP(i,ul−1; j,m) ∪ { j − 1}
4 for j ′ ∈ RowIP(ul ,ur ; j∗+1,m) ∪ { j∗}
5 P(i,ul−1,ur )[ j, j ′] = max{P(i,ul−1,ur )[ j, j ′],DP(i,ul−1)[ j, j∗]

+DP(ul ,ur )[ j∗+1, j ′]}
endfor

endfor
6 for j ′ = j · · ·m
7 DP(i,ur )[ j, j ′] = max{P(i,ul−1,ur )[ j, j ′], DP(i,ur )[ j, j ′ − 1]}

endfor
endfor

Fig. 3. The pseudocode for the new MERGE operation.

The size of P(i,ul−1,ur ) is clearly in O(m2). Once we have computed P(i,ul−1,ur ), we
can compute the whole table of DP(i,ur ) in O(m2) time and space. By combining the
complexity of the computation of both P(i,ul−1,ur ) and DP(i,ur ), the lemma follows.

A MERGE operation can then be computed using the pseudocode in Figure 3.

3.2. Complexity Analysis of the Improved MERGE Operation. As the sparsification
technique only optimized the MERGE operations, the computational resources required
by all EXTEND and ARC-MATCH operations remain the same as in Zhang’s algorithm
(Figure 1), i.e., O(nm2) for both time and space.

The previous section shows that each of the new MERGE(DP(i,ul−1),DP(ul ,ur )) op-
erations requires O(min{α(ul − i),m} · min{α|u|,m} · m) + O(m2) time and O(m2)

space. We now consider the total time complexity of all MERGE operations. We start
with some definitions to assist the analysis. The following is with respect to a nested
arc-annotated structure.

DEFINITION 7. An arc u is a parent of an arc v (denoted by Parent(v)) if ul < vl <

vr < ur and there is no arc w such that ul < wl < vl < vr < wr < ur . Conversely,
v is referred to as the child of the arc u. The set of children of an arc u is denoted by
Children(u).

DEFINITION 8. A terminal-arc is defined to be an arc that has no child. A core-arc, with
respect to an arc u, is a child of u that has the biggest size (arbitrarily breaking ties).
The latter is denoted as core-arc(u). All other children of u are named the side-arcs and
form the set side-arcs(u).

DEFINITION 9. For any arc u ∈ P1, the core-path C P(u) is an ordered set of core-arcs
{c1, c2, . . . , c�}, where c1 = u and for any ci , ci+1 is core-arc(ci ) (refer to Figure 4).
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Fig. 4. The core-path C P(c1) is the ordered set {c1, c2, c3}.

LEMMA 9. For any arc u ∈ P1, the time required by the MERGE operations on all
of its children in Children(u) is in min{O(α(|u| − |c|)xum) + O(|Children(u)|m2),
O(|Children(u)|m3)} where c is the core-arc of u and xu = min{α|u|,m}.

PROOF. The first observation is that MERGE only takes place when we encounter an
arc as we try to extend the current DP table. Thus, the time required for applying MERGE
on all arcs in Children(u) is (by Lemma 8)∑

u′∈Children(u)

{O(min{α(u′l − ul),m} ·min{α|u′|,m} · m)+ O(m2)}.

The sum of the second term, O(m2), yields O(|Children(u)|m2) while the sum of the
first term (O(min{α(u′l−ul),m} ·min{α|u′|,m} ·m)) gives several possible cases. When
both min{α(u′l − ul),m} = m and min{α|u′|,m} = m, the first term is equal to O(m3).
Summing over all children of u gives O(|Children(u)|m3).

Otherwise, let xu=min{α|u|,m}. We need to show that the summation of the first term
is equal to O(α(|u|−|c|)xum). It is easy to show that O(min{α(u′l−ul),m}·min{α|u′|,m}·
m) is bounded above by O(α|u′|xum). Summing the value over Children(u) only gives
the bound of O(α|u|xum). To have a tighter bound, we separately consider the following
cases:

1. The case when |c| ≤ |u|/2. For this case, |u|− |c| > |u|/2. Hence, 2(|u|− |c|) > |u|
and we have O(α|u|xum) = O(α(|u| − |c|)xum).

2. When |c| > |u|/2, applying MERGE on DP(ul+1,cl−1) and DP(cl ,cr ) will take at
most O(α(|u| − |c|)xum) time since min{(cl − ul),m} ≤ min{(|u| − |c|),m} and
min{|c|,m} ≤ xu . The remaining MERGE operations on the side-arcs will re-
quire at most O(α(|u| − |c|)xum) time too since their total size is bounded by
|u| − |c|. Hence, in this case, the total time required is also bounded by
O(α(|u| − |c|)xum).

LEMMA 10. The time required by all MERGE operations during the execution of
WLCS(S1, P1, S2) is in min{O(α2n2m + nm2), O(αnm2 log n), O(nm3)}.

PROOF. For convenience of notation, we include an imaginary arc r = (0, n + 1)
into P1. Since the string S1 is indexed from 1 to n, S1[0] and S1[n + 1] are undefined
and hence r will never be matched to any position in S2. Note that r is the outermost
arc and |r | = O(n). Next, we define the set Arc(y), where y ∈ P1, to be the set
{u ∈ P1|yl < ul < ur < yr }, that is, the set of all arcs in P1 whose span is within
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[yl ..yr ]. Finally, based on Lemma 9, the time complexity T (y) of all MERGE operations
during the computation of WLCS(S1[yl ..yr ], P1, P2) can be computed by

T (y) =
∑

u∈ Arc(y)
c=core-arc(u)

min{O(α(|u| − |c|)xum)(2)

+ O(|Children(u)|m2), O(|Children(u)|m3)}
=

∑
u∈C P(y)

s∈side-arcs(u)

T (s)(3)

+
∑

u∈C P(y)
c=core-arc(u)

min{O(α(|u| − |c|)xum)

+ O(|Children(u)|m2), O(|Children(u)|m3)},
where xu = min{α|u|,m}. We can derive (3) from (2) using the fact that

Arc(y) = C P(y) ∪


 ⋃

u∈C P(y)
s∈side-arcs(u)

Arc(s)


 .

Next we need to examine the following possible values of min{O(α(|u|−|c|)xum) +
O(|Children(u)|m2), O(|Children(u)|m3)}.
1. min{O(α(|u|−|c|)xum)+O(|Children(u)|m2), O(|Children(u)|m3)} = O(α(|u|−
|c|)xum)+ O(|Children(u)|m2). For this case we have

T (y) =
∑

u∈C P(y)
s∈side-arcs(u)

T (s)+
∑

u∈C P(y)
c=core-arc(u)

O(α(|u| − |c|)xum)(4)

+
∑

u∈C P(y)

O(|Children(u)|m2)

≤
∑

u∈C P(y)
s∈side-arcs(u)

T (s)+
∑

u∈C P(y)
c=core-arc(u)

O(α(|u| − |c|)xym)

+
∑

u∈C P(y)

O(|Children(u)|m2)

=
∑

u∈C P(y)
s∈side-arcs(u)

T (s)+ O(α|y|xym)+
∑

u∈C P(y)

O(|Children(u)|m2).(5)

We derive (5) from (4) by summing the telescoping series∑
u∈C P(y),c=core-arc(u)

O(α(|u| − |c|)xym).

Next, depending on xy :
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(a) xy = α|y|,
T (y) =

∑
u∈C P(y)

s∈side-arcs(u)

T (s)+ O(α2|y|2m)+
∑

u∈C P(y)

O(|Children(u)|m2).

Since |s| ≤ |y|/2 and
∑

s |s| < |y|, the recurrence yields a decreasing geometric
series that sums up to O(α2|y|2m) time complexity.

(b) xy = m,

T (y) =
∑

u∈C P(y)
s∈side-arcs(u)

T (s)+ O(α|y|m2)+
∑

u∈C P(y)

O(|Children(u)|m2).

As |s| ≤ |y|/2, the depth of recursion tree for the recurrence above is at most
O(log|y|). Since

∑
s |s| < |y|, each level in the recursion tree will require

less than O(α|y|m2) time. Thus, in total, the time complexity of this case is
O(α|y|m2 log|y|).

2. min{O(α(|u| − |c|)xum) + O(|Children(u)|m2), O(|Children(u)|m3)} =
O(|Children(u)|m3). In this case,

T (y) =
∑

u∈C P(y)
s∈side-arcs(u)

T (s)+
∑

u∈C P(y)

O(|Children(u)|m3),(6)

which, by inspection, yields T (y) = O(|y|m3).

By taking y to be the (imaginary) arc r and combining all cases above, we conclude
that T (r) = min{O(α2n2m + nm2), O(αnm2 log n), O(nm3)}.

LEMMA 11. Using the new MERGE operation, WLCS(S1, P1, S2) runs in
min{O(α2n2m + nm2), O(αnm2 log n), O(nm3)} time and O(nm2) space.

PROOF. As explained earlier, the operations EXTEND and ARC-MATCH both re-
quire O(nm2) time while the time complexity of MERGE is min{O(α2n2m + nm2),

O(αnm2 log n), O(nm3)} by Lemma 10. Combining them will yield the time complexity
stated in the lemma.

For the space complexity, assuming standard traceback, we have shown that EXTEND
and ARC-MATCH operations will need O(nm2) space. A single MERGE operation will
need O(m2) space as proven in Lemma 8. As MERGE is only applied on arcs, the total
number of tables resulting from all MERGE operations is at most O(n). The lemma thus
follows.

4. Improving the Space Complexity for Computing WLCS Score. In some cases
one is only interested to find the WLCS score. In this case one would naturally expect
a more space-efficient version of the WLCS routine as it is unnecessary to store old DP
tables for traceback. We name such procedure as the score-only WLCS(S1, P1, S2). It
turns out that, using the original algorithm of Zhang [20], the space complexity is still
bounded by �(nm2) which is shown by the following lemma.
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Fig. 5. An example of arc-annotation on which the algorithm in [20] requires �(nm2) space to compute the
score-only WLCS(S1, P1, S2). Note that the post-ordering forces the algorithm to compute the DPs for all the
leaves before the internal nodes.

LEMMA 12. Using the original algorithm in [20] combined with the newly improved
MERGE operation, the score-only WLCS(S1, P1, S2) requires �(nm2) space in the
worst case.

PROOF. To compute the score-only WLCS(S1, P1, S2), we only have to provide the
space to perform the DP table operations, namely EXTEND, ARC-MATCH, and MERGE
and keep only the most current tables. As explained in Section 3, computing DP(i,i ′) =
EXTEND(DP(i,i ′−1)) only requires O(m2) space provided that DP(i,i ′−1) is already avail-
able when EXTEND is invoked. This condition is true for EXTEND and ARC-MATCH
as we always compute DP(i,i ′−1) before DP(i,i ′) and DP(ul+1,ur−1) before DP(ul ,ur ).

However, this is not quite the same for MERGE operations. As described in [20],
the routine WLCS(S1, P1, P2) computes the DP tables according to the post-order of
the nodes in the tree representing the sequence with the secondary structure. Given the
post-order, whenever we execute MERGE(DP(i,i ′−1),DP(i ′,i ′′)), we would have com-
puted DP(i,i ′−1) but not DP(i ′,i ′′). While computing the latter, one must temporarily store
DP(i,i ′−1) in order to be able to finish the execution of the MERGE operation later. Note
that the same kind of event could also take place during the computation of DP(i ′,i ′′). In
the case of a skewed tree (see Figure 5), the number of temporarily stored DP tables can
reach �(n) (around n/3). Hence, �(nm2) space is required.

4.1. Space Complexity Improvement by a Recursive Dynamic Programming Algorithm.
This subsection introduces a more-space efficient algorithm WLCSr (S1, P1, S2) that
computes the WLCS score using a carefully designed recursive dynamic programming
algorithm. This improved algorithm guarantees that each MERGE operation is applied
only to side-arcs where, by definition, the size of each side arc is at most half of the size
of its parent.

WLCSr (S1, S2) first finds the largest arc u in [1..n] and processes every core-arc c ∈
C P(u) from the innermost to the outermost. As a special case, for the innermost core-arc
t ∈ C P(u) (which is a terminal arc), DP(tl ,tr ) can be computed without the MERGE oper-
ation. For the remaining core-arcs c, DP(cl ,cr ) will be computed using a two-partition com-
putation. Let c′ be core-arc(c) for an arc c. Due to the bottom-up ordering, DP(c′l ,c′r ) is com-
puted before DP(cl ,cr ). We first compute the value of DP(cl+1,c′l−1) (the LEFT Part phase)
using EXTEND and MERGE operations. Given DP(cl+1,c′l−1), we proceed to compute
DP(c′l ,cr−1) (the RIGHT Part phase). In both phases, whenever we encounter a side-arc
s, we first compute DP(sl ,sr ) by recursively calling WLCSr (S1[sl ..sr ], P1, S2). Then we



A Faster and More Space-Efficient Algorithm for Inferring Arc-Annotations of RNA Sequences 237

apply MERGE to combine DP(sl ,sr ) into the currently computed DP table. Having com-
pleted the computation of both phases, we apply MERGE on DP(cl+1,c′l−1) and DP(c′l ,cr−1)

to compute DP(cl+1,cr−1).4 Finally, DP(cl ,cr ) is obtained by ARC-MATCH(DP(cl+1,cr−1)).
If (1, n) ∈ P1, then the largest arc u must be (1, n) and we are done. Other-

wise, we need to compute DP(1,n) using the same two-part computation technique:
first compute DP(1,ul−1), followed by DP(ul ,n), and then obtain DP(1,n) by
MERGE(DP(1,ul−1),DP(ul ,n)).

LEMMA 13. Computing WLCSr (S1, P1,S2) requires min{O(α2n2m + nm2),

O(αnm2 log n), O(nm3)} time.

PROOF. As EXTEND and ARC-MATCH are still applied on free positions and arcs in
S1, respectively, the running time complexity of both operations are still the same as the
one in Lemma 11 which are both in O(nm2).

Note that MERGE is now invoked on all arcs that belong to the set side-arc(u)
for some arc u ∈ P1 and on the merging of the LEFT part and the RIGHT part of
all non-terminal arcs. Lemma 8 has showed that MERGE(DP(i,ul−1),DP(ul ,ur )) takes
O(min{α(ul−i),m}·min{α|u|,m}·m)+O(m2) time to compute. Include an imaginary
arc r = (0, n+1) into P1. Defining T (u) (u ∈ P1) as the total time complexity of MERGE
during the computation of WLCSr (S1[ul ..ur ], P1, P2), we can compute the total time
complexity of all MERGE invocation in WLCSr (S1, P1, S2) by

T (r) =
∑

c∈C P(r)
s∈side-arc(c)

{T (s)+ O(min{α(sl − cl),m} ·min{α|s|,m} · m)+ O(m2)}(7)

+
∑

c∈C P(r)
c′ =core-arc(c)

O(min{α(c′l − cl),m} ·min{α(cr − c′l),m} · m)+ O(m2)

≤
∑

c∈C P(r)
s∈side-arc(c)

T (s)+
∑

s∈side-arc(c)
c∈C P(r)

O(min{αn,m} ·min{α|s|,m} · m)(8)

+
∑

c∈C P(r)
c′ =core-arc(c)

O(min{α(c′l − cl),m} ·min{αn,m} · m)

+
∑

s∈side-arc(c)
c∈C P(r)

O(m2)+
∑

c∈C P(r)

O(m2)

= min{O(α2n2m + nm2), O(αnm2 log n), O(nm3)}.(9)

In (7), the first term computes the time to compute DP(sl ,sr ) of side-arc s recursively
and to apply MERGE(DP(i,sl−1), DP(sl ,sr )). The second term then computes the
time for MERGE(DP(cl ,c′l−1),DP(c′l ,cr )). To obtain (9) from (8), we make use of the

4 Note that, here, MERGE is applied on DP(c′
l
,cr−1) while (cl + 1, cr − 1) is not an arc. Although this does not

properly meet the definition of MERGE, the operation is still valid as MERGE basically combines any two
DP tables without any specific requirement on the entries in any of the input tables.
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following facts:

1.
∑

s∈side-arc(c),c∈C P(r) |s| =
∑

c∈C P(r),c′=core-arc(c)(c
′
l−cl) = O(n) since, in all recursion

levels, all side-arcs s ∈ side− arc(c), where c ∈ C P(r), and the ranges [cl ..c′l] are
non-overlapping. Hence, the sums of the term

∑
s∈side-arc(c),c∈C P(r)O(min{αn,m} ·

min{α|s|,m} · m) and
∑

c∈C P(r),c′=core-arc(c)O(min{α(c′l − cl),m} · min{αn,m} · m)
in all recursion levels would both be bounded by min{O(α2n2m), O(αnm2 log n),
O(nm3)} (following a similar proof as in Lemma 10).

2. We can see that
∑

s∈side-arc(c),c∈C P(r)m
2 +∑c∈C P(r)m

2 =∑c∈C P(r)|Children(c)|m2.
Summing the term

∑
c∈C P(r)|Children(c)|m2 over all recursion levels will yield the

bound of O(nm2).

LEMMA 14. WLCSr (S1, P1, S2) uses min{O(m2 log n), O(m2+αmn)}+O(n) space.

PROOF. Referring back to Lemma 12, we only need O(m2) to store the information
needed to accomplish all EXTEND and ARC-MATCH operations. As for the MERGE
operations, when there is no recursive call involved (the execution of MERGE on the
LEFT and RIGHT parts), the space requirement is also in O(m2). In the recursive
call we have now managed to enforce a new computational ordering instead of us-
ing the original post-order (Lemma 12). Using the ordering given by the core-path
in the annotation tree, Lemma 13 had shown that the latter guarantees O(log n) re-
cursion level. Hence the number of temporarily stored DP(i, sl − 1) (s is a side-arc)
during the recursive call to compute DP(sl ,sr ) will not exceed O(log n) as well. Stor-
ing only the row interval points takes O(min{α(sl − i)m,m2}) space (by Lemma 5)
(with O(m2) time overhead for computing the set RowIP from/to the DP table). When
O(min{α(sl − i)m,m2}) = O(m2), the space complexity is O(m2 log n). For the other
case, we further claim that the space required is smaller than O(αnm) since, in each re-
cursion level x , we only store DP(ix ,slx−1) where all of the intervals [ix ..slx−1] are disjoint.
Hence,

∑
x O(α(slx − ix )m) ≤ O(αnm). Combining the two cases along with the space

complexity of EXTEND and ARC-MATCH, we have min{O(m2 log n), O(m2+αmn)}.
Finally, we add the space needed to store S1, S2, and P1 which is in O(n+m). The lemma
follows.

5. Hirschberg-Like Traceback Algorithm. The previous section presents an al-
gorithm WLCSr (S1, P1, S2) to compute the WLCS score in min{O(α2n2m + nm2),

O(αnm2 log n), O(nm3)} time and min{O(m2 log n + n), O(m2 + αmn)} space. Fol-
lowing the idea of Hirschberg in [11], this section presents an algorithm that computes
the optimal WLCS alignment between (S1, P1) and (S2, P2) among all possible P2 within
the same time and space complexity. The outline of the algorithm is as follows:

1. Divide S1 into a constant number of non-overlapping regions S11, S12, . . . , S1c.
2. For each region S1i , find the region S2i in S2 such that the optimal WLCS alignment

will align S1i to S2i .
3. Recursively compute the optimal WLCS alignments between S1i and S2i for i =

1, 2, . . . , c.
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Fig. 6. The recursion on the partitioned continuous region by Lemma 16.

To do the first step, since S1 is arc-annotated, we divide S1 in such a way that we do
not break any arc in P1. The solution is to divide S1 into inner and outer regions so that,
for any particular arc, both of its endpoints are in the same region. Given two points i1

and i2, 1 ≤ i1 ≤ i2 ≤ n, the inner region with respect to i1 and i2 is S1[i1..i2] and the
outer region is the concatenation of S1[1..(i1−1)] and S1[(i2+1)..n] (see Figure 6). The
latter is also referred to as a gapped region since it has a discontinuous interval (S1[i1..i2]
is removed). Let � be a special character that represents the gap in the sequence such
that the gapped region can be written as S1[1..(i1 − 1)] � S1[(i2 + 1)..n]. If a region has
no gap in it, we say it is continuous. We shall show that we can bound the size of each
region by ϕn for some constant ϕ, 0 < ϕ < 1.

LEMMA 15. Given a nested arc-annotated sequence S1 of length n, we can compute
two positions i1 and i2, 1 ≤ i1 ≤ i2 ≤ n in O(n) time and space, such that i1 and i2

satisfy:

1. n/3 ≤ i2 − i1 + 1 ≤ 2n/3,
2. i1 and i2 are covered by the same arc u, or both are not covered by any arc,
3. i1 is either a free position or the left endpoint of some arc u′ ∈ Children(u),
4. i2 is either a free position or the right endpoint of some arc u′′ ∈ Children(u).

PROOF. Define an imaginary arc r = (0, n+ 1). Find a pair of core-arcs c, c′ ∈ C P(r)
such that c′ = core-arc(c), |c′| ≤ 2n/3, and |c| > 2n/3 (c could be r ). When c is a
terminal arc, i1 and i2 can be computed directly by choosing any two positions with
distance at least n/3 and at most 2n/3 in [cl ..cr ].

Otherwise, if n/3 ≤ |c′| ≤ 2n/3, then we can use c′l and c′r as i1 and i2 (they are
both covered by the core-arc c, i1 is a left endpoint, and i2 is a right endpoint). Else if
|c′| < n/3, we first set i1 and i2 to c′l and c′r and increase the range [i1..i2] by either
increasing i2 or decreasing i1. Let us consider the case of increasing i2. Suppose i2+1 is a
free position, then we can increase i2 by 1. Else if i2+1 is a left endpoint of some side-arc
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s ∈ side-arc(c), then setting i2 = sr will increase i2 by |s|. Since |s| < |c′| < n/3, we
guarantee that |s| + |c′| < 2n/3.

Within this level of granularity, we can always extend the range [i1..i2] until we have
n/3 ≤ i2 − i1 + 1 ≤ 2n/3. At the same time, we will satisfy the remaining constraints
since i2 are chosen only from C(c) and i2 is never the left endpoint of any arc. The
case of decreasing i1 can be proven similarly. The time required by the steps above
is at most O(|C P(r)|) + O(|c|) = O(n) since finding c and c′ takes O(|C P(r)|),
finding i1 and i2 takes O(|c|) time and both O(|C P(r)|) and O(|c|) are at most in O(n).
All these operations can be performed in O(n) space since we only need to store S1

and P1.

LEMMA 16. We can always partition a continuous region into two non-overlapping
subregions, where one of them is continuous and the other is gapped, in O(n) time and
space. Every subregion’s size is at most two-thirds of the original region.

PROOF. The proof of this lemma follows directly from Lemma 15.

DEFINITION 10. Let the ancestors of an arc u be defined as the ordered set A(u) =
{u1, u2, u3, . . . , u�}where u1 = u and ui+1 = Parent(ui ). Let the least common ancestor
of the arcs u and v, denoted by LC A(u, v), be the arc w ∈ A(u) ∩ A(v) where |w| is
minimal.

LEMMA 17. We can always partition a gapped region into at most four non-overlap-
ping subregions in O(n) time and space. Every subregion’s size is at most two-thirds of
the original region.

PROOF. Let S1[i1..i2] be a gapped region. First, as in Lemma 16, we compute the
points i ′1 and i ′2 such that (i2 − i1 + 1)/3 ≤ i ′2 − i ′1 + 1 ≤ 2(i2 − i1 + 1)/3. Having
computed such i ′1 and i ′2, we can guarantee that the size of (i2− i1+ 1)− (i ′2− i ′1+ 1) ≤
2(i2 − i1 + 1)/3. Let c and c′ be the core-arcs where c′ = core-arc(c) and cl < i ′1 ≤
c′l < c′r ≤ i ′2 < cr . Further, let the position of the special gap character “�” in S1[i1..i2]
be denoted by g. Based on several possible positions of g with respect to i ′1, i ′2, and c;
we have the following possible cases:

• i ′1 ≤ g ≤ i ′2. We have two gapped subproblems, S1[i ′1..i
′
2] with g in it and S1[i1..(i ′1−

1)] � S1[(i ′2 + 1)..i2].
• cl < g < i ′1 or i ′2 < g < cr . We will have one continuous region and two gapped

regions. It is quite clear that the continuous region is S1[i ′1..i
′
2]. As for the gapped

region, we first consider the case where cl < g < i ′1. If g ∈ C(c), that is, g is
a free position covered by c, then we have the gapped region S1[g..(i ′1 − 1)] and
S1[i1..(g− 1)] � S1[(i ′2 + 1)..i2]. Else, if g is covered by some arc s, that is g ∈ C(s),
we find the ancestor of s that is a child of c. The latter is the arc s ′ such that s ′ ∈
A(s)∩Children(c). Then the first gapped region will be S1[s ′l ..(i

′
1−1)] and the second

will be S1[i1..(s ′l − 1)] � S1[(i ′2 + 1)..i2]. The case where i ′2 < g < cr can be handled
similarly.
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• g < cl or g > cr . In this case we will have one continuous region, S1[i ′1..i
′
2]. In

addition, we have three gapped regions. Suppose g < cl . Let s be the arc that covers
the position g. Let c′′ = LCA(s, c). It is clear that c′′ is a core-arc too. Next, let c′′′ =
core-arc(c′′) and s ′ be the arc in A(s)∩Children(c′′). Now, we can readily define the
gapped subproblems to compute in the next recursion. They are S1[c′′′l ..(i

′
1 − 1)] �

S1[(i ′2 + 1)..c′′′r ], S1[s ′l ..(c
′′′
l − 1)] and S1[i1..(s ′l − 1)] � S1[(c′′′r + 1)..i2]. Again, the

case where g > cr can be computed in the same fashion. Figure 7 illustrates the
partitioning of S1 in the case of g > cr .

The running time of this case is still bounded by O(n) since finding i ′1,i ′2, and the
LCA of any two arcs requires at most O(n) and they are executed in a constant number
of times. For the space requirement, again we will only need O(n) space to store S1

and P1.

From Lemmas 16 and 17, we can conclude that the computational complexity of the
first step of our new algorithm is O(n). After dividing S1 into at most four subregions,
where each is denoted by S1i for i ≤ 4, we now need to compute the regions S2i in
S2 to which the subregions S1i is aligned by the optimal WLCS alignment. To do that,
we will compute the positions in S2 where the boundaries of each region are aligned to.
We shall first show that we can compute such an alignment for one single position p in
S1. By definition, DP(i,i ′)[ j, j ′] is the WLCS score produced by the optimal alignment
between S1[i..i ′] and S2[ j.. j ′]. Now, for each entry DP(i,i ′)[ j, j ′] in the table DP(i,i ′)
where i ≤ p ≤ i ′, we compute the position q, j ≤ q ≤ j ′, such that either p is aligned
to q or p is aligned to “” and [i..p − 1] is aligned to [ j..q]. We store such positions in
a two-dimensional table Ap

(i,i ′) which is defined as follows:

DEFINITION 11. For i ≤ p ≤ i ′ and j ≤ q ≤ j ′, we define

Ap
(i,i ′)[ j, j ′] =




q if p is aligned to q by DP(i,i ′)[ j, j ′],
−q if p is aligned to  and [i..p−1] is aligned to [i..q]

by DP(i,i ′)[ j, j ′],
0 if DP(i,i ′)[ j, j ′] does not align [i..p] to any position

in S2[ j.. j ′].
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During the computation of WLCS, the only time we will align a position p with
some position q in S2 is when we apply either χ(S1[p], S2[q]) (when p is free),
δ((S1[p], ..), (S2[q], ..)), or δ((. . . , S1[p]), (. . . , S2[q])) (when p is an arc endpoint).

LEMMA 18. If p is free, then, for all 1 ≤ j ≤ j ′ ≤ m, we have

Ap
(i,p)[ j, j ′]=




j ′, DP(i,p)[ j, j ′] = DP(i,p−1)[ j, j ′ − 1]
+ χ(S1[p], S2[ j ′]),

− j ′, DP(i,p)[ j, j ′] = DP(i,p−1)[ j, j ′]+ χ(S1[p],),
Ap
(i,p)[ j, j ′ − 1], DP(i,p)[ j, j ′]=DP(i,p)[ j, j ′ − 1]+χ(, S2[ j ′]).

PROOF. The first case in the recurrence is quite obvious since the optimal score
DP(i,p)[ j, j ′] is obtained by adding DP(i,p−1)[ j, j ′−1] with the score of aligning p with
j ′ (by applying χ(S1[p], S2[ j ′])). As for the second case, we know that p is aligned to
 and the alignment between S1[i..p] and S2[ j..q] is actually the alignment correspond-
ing to the score DP(i,p−1)[ j, j ′]. By Definition 11, we have Ap

(i,p)[ j, j ′] = − j ′. Lastly,
since the current j ′ is not included in the alignment, we must find the alignment of p in
S2[ j.. j ′−1].

The case when p is not free (ARC-MATCH operation) can be handled similarly.
Finally, for the case of the MERGE operation and the case where i < p < i ′, Ap

(i,i ′)[ j, j ′]
is equal to Ap

(i ′′,i ′′′)[ j ′, j ′′] where we have i ≤ i ′′ ≤ p ≤ i ′′′ ≤ i ′ and DP(i,i ′)[ j, j ′] =
DP(i ′′,i ′′′)[ j ′′, j ′′′]+ X for X equals some (probably empty) term that does not involve p
(e.g., the χ(S1[i ′], S2[ j ′]), δ((S1[i], S1[i ′]), (S2[ j], S2[ j ′])), or DP(i ′′′+1,i ′)[ j ′′′ + 1, j ′]).

LEMMA 19. Given any position p, 1≤ p≤n, we can compute the position q , 1≤q≤m,
such that the optimal alignment between (S1, P1) and S2 aligns either S1[1..p] to S2[1..q]
or S1[1..p− 1] to S2[1..q], within the same time and space complexity of the score-only
WLCSr (S1, P1, S2).

PROOF. Observe that the operation to compute the entry Ap
(i,i ′)[ j, j ′] can be done imme-

diately after the computation of one particular DP(i,i ′)[ j, j ′]. Next, the recurrences above
show that Ap

(i,i ′)[ j, j ′] can be computed in constant time. Hence computing Ap
(1,n)[1,m]

yields the same time complexity as computing DP(1,n)[1,m] which is the time complexity
of WLCSr .

As we only need to compute the value Ap
(1,n)[1,m] for each position p, we do

not have to store all of the intermediary tables Ap
(i,i ′). Instead, as in the case of the

score-only WLCSr (S1, P1, S2), we only store those needed in the computation of the
current Ap

(i,i ′)[ j, j ′]. Consider the EXTEND operation. In computing DP(i,p) =
EXTEND(DP(i,p−1)), we need to store DP(i,p−1). Correspondingly, computing
Ap
(i,p)[ j, j ′] only requires the values in Ap

(i,p−1). This also applies on the ARC-MATCH
and MERGE operations.

Since, at any point of time, we only need the entries Ap
(i,i ′)[ j, j ′] from a constant

number of (i, i ′) pairs (one pair for EXTEND and ARC-MATCH, two pairs for MERGE),
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we only need to store a constant number of such tables. Hence, the space needed by the
Ap
(i,i ′) table is also O(m2).

Lemma 19 had shown that finding the alignment of a single point can be done within
the same time and space complexity of the score-only WLCSr (S1, P1, S2). Therefore,
as the number of points to compute is at most a constant, the complexity of the second
step of our algorithm is equal to the score-only WLCSr (S1, P1, S2)’s.

While applying the third step of our new algorithm (the recursive call) on the con-
tinuous region is straightforward, the gapped region needs a bit of extra care. In this
case, � in S1i must be aligned to � in S2i because they represent the subregion pair(s)
computed in the other recursive call(s). To implement such constraint, we add into the
base scoring function the following cases: χ(�, �) = 0 and χ(�, x) = χ(x, �) = −∞
for x ∈ {A,C,G,U,}.

LEMMA 20. Our new algorithm can recover the optimal WLCS alignment in
min{O(α2n2m+nm2), O(αnm2 log n), O(nm3)} time and min{O(m2 log n) , O(m2+
αmn)} + O(n) space.

PROOF. Let T (n,m) be the time complexity of the new algorithm. Let Ri denote the
i th region in S1 on which the algorithm is recursively applied. Along with each region
Ri , define R′i to be the region in S2 it is aligned to. We have earlier shown that the
time complexity of the first and second step of our algorithm is in min{O(α2n2m +
nm2), O(αnm2 log n), O(nm3)}, hence we can formulate the recurrence

T (n,m) =
∑

i

T (|Ri |, |R′i |)+min{O(α2n2m+nm2), O(αnm2 log n), O(nm3)}(10)

≤
∑

i

T ( 2
3 n, |R′i |)+min{O(α2n2m+nm2), O(αnm2 log n), O(nm3)},

where
∑

i |R′i | = m. By inspection, we can see that the time complexity is still bounded
by min{O(α2n2m + nm2), O(αnm2 log n), O(nm3)}.

As for the space complexity, we define S(n,m) to denote the space requirement of the
algorithm. Each time after the second step of our algorithm, we must store the alignments
computed in the latter. This requires a dedicated O(n) space that can be accessed from all
recursive calls. Observe that the space used by the current recursive level can be reused
in the next level as we are only interested in the alignments of the regions that are being
stored. Therefore,

S(n,m) = max

{∑
i

S(|Ri |, |R′i |),min{O(m2 log n), O(m2 + αmn)} + O(n)

}
(11)

≤ max

{∑
i

S( 2
3 n, |R′i |),min{O(m2 log n), O(m2 + αmn)} + O(n)

}
.

Again, by inspection, we show that the complexity of S(n,m) = min{O(m2 log n),
O(m2 + αmn)} + O(n). The lemma thus follows.



244 J. Jansson, S.-K. Ng, W.-K. Sung, and H. Willy

6. Concluding Remarks. Suppose we are given two homologous RNA sequences
S1 and S2 where S1 has a known structure. This paper studies the problem of inferring
the structure of S2 such that the WLCS score between the two structures is maximized.
In the case of positive integer scoring, we designed an algorithm using the dynamic
programming sparsification technique that gives better time and space complexity than
the brute-force approach.

Our techniques presented in this paper can be applied to the longest arc-preserving
common subsequence problem (LAPCS) (see, e.g., [4], [5], and [12]). Assuming similar
scoring scheme (with the arc matching case removed, as the plain sequence would
have no arc), we can also solve the LAPCS(nested, plain) problem in min{O(nm2 +
n2m), O(nm2 log n), O(nm3)} time and min{O(m2 + mn), O(m2 log n + n)} space,
thus improving the currently best-known time and space complexity bounds for this
problem (O(nm3) and O(nm2), respectively [12]).

One interesting extension of the problem discussed in this paper is to incorporate a
more realistic, non-linear scoring function on the base and arc matching function. An-
other possible direction is to attack some special case of crossed arc-annotation struc-
tures, which can represent pseudoknotted structures in RNA sequences, by applying the
algorithm iteratively.
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