
Fundamenta Informaticae 56 (2003) 105–120 105

IOS Press

A Fast Algorithm for Optimal Alignment between
Similar Ordered Trees

�

Jesper Jansson
�

Department of Computer Science

Lund University, Box 118

SE-221 00 Lund, Sweden

Jesper.Jansson@cs.lth.se

Andrzej Lingas

Department of Computer Science

Lund University, Box 118

SE-221 00 Lund, Sweden

Andrzej.Lingas@cs.lth.se

Abstract. We present a fast algorithm for optimal alignment between two similar ordered trees with
node labels. Let� and� be two such trees with�� � and �� � nodes, respectively. If there exists an
optimal alignment between� and� which uses at most� blank symbols and� is known in advance,
it can be constructed in��� 	
� � � �������� � ��� time, where� � ������ �� �� �� and�����
is the maximum degree of all nodes in� and� . If � is not known in advance, we can construct an
optimal alignment in��� 	
� � ��������� ���� time, where� is the difference between the highest
possible score for any alignment between two trees having a total of �� � � �� � nodes and the score
of an optimal alignment between� and� , if the scoring scheme satisfies some natural assumptions.
In particular, if the degrees of both input trees are boundedby a constant, the running times reduce
to ��� 	
� � � ��� and��� 	
� � � ���, respectively.

1. Introduction

Let � be a rooted tree.� is called alabeled treeif each node of� is labeled by a symbol from a fixed
finite set�. � is anordered treeif the left-to-right order among siblings in� is given.

A preliminary version of this article appeared in [3].!
Address for correspondence: Department of Computer Science, Lund University, Box 118, SE-221 00 Lund, Sweden

106 J. Jansson and A. Lingas / A Fast Algorithm for Optimal Alignment between Similar Ordered Trees

The problem of determining the similarity between two labeled trees occurs in several different ar-
eas of computer science. For example, in computational biology, methods for measuring the similarity
between ordered labeled trees of bounded degree can be used in the comparison of RNA secondary struc-
tures [4, 6, 10]. The problem also occurs in evolutionary trees comparison, organic chemistry, pattern
recognition, and image clustering [4, 6, 9, 14].

The similarity between two labeled trees can be defined in various ways analogous to the ways of
defining the similarity between two strings [7, 9]. For example, one can look for the largest maximum
agreement subtree, the largest common subgraph, the smallest common supertree, the minimum tree edit
distance,etc.[4, 5, 6, 11, 14].

Jiang, Wang, and Zhang [4] generalized the concept of an alignment between strings to include
labeled trees as follows. Aninsert operationon a labeled tree adds a new node�, labeled by a blank
symbol ’�’ which does not belong to�. The operation either (1) turns the current root of the tree into
a child of � and lets� become the new root, or (2) makes� the parent of a subset of (if the tree is
unordered) or consecutive subsequence of (if the tree is ordered) children1 of an existing node�, and� a
child of �. See Figure 1.

a

b d e

a

b

ec d

−
c

Figure 1. An insert operation of type (2). The new node becomes the parent of a consecutive subsequence of
children of the node labeled by�, and then becomes a child of that node.

An alignment between two labeled treesis obtained by performing insert operations on the two trees
so they become isomorphic when labels are ignored, and then overlaying the first augmented tree on the
other one. Thescoreof the alignment is the sum of the scores of all matched pairs of labels, where the
score of a pair of labels is defined by a given function� � �� � ���	
 �� � ���	 � �

. An optimal
alignmentbetween a pair of labeled trees is an alignment between them achieving the highest2 possible
score using�. See Figure 2 for an example.

In [4], Jianget al. presented an algorithm for computing an optimal alignment between two ordered
trees and� with node labels in���� � �� � � �������	�	 time, where� � and �� � are the number of
nodes in and� , respectively, and������ is the maximum degree3 of all nodes in and� . They
also provided a polynomial time algorithm for finding an optimal alignment of twounorderedtrees in
case������ � ���	, and showed the latter problem to be MAX SNP-hard if at least one of the trees is
allowed to have an arbitrary degree.
1Observe that subsets and consecutive subsequences can consist of zero elements.
2In [4], Jianget al. defined an optimal alignment as one with thelowestpossible score.
3Thedegreeof a node is the number of its children.

J. Jansson and A. Lingas / A Fast Algorithm for Optimal Alignment between Similar Ordered Trees 107

b c d e

(a)

a

a ec

(c)

a, a()

(, a)

be −, e() (−, b)

(, −)d

(b)

a

b (c c) (e , e),

Figure 2. Let� � ��� �� �����	 and define the scoring function
 as follows: for every��� � with � �� �, let

����� � ��
����� � ��� and
����� �
����� �
����� � ��. Then the score of the alignment in (c)
between the two labeled trees shown in (a) and (b) is equal to 2.

Inspired by the known fast method for an optimal alignment between similar strings (see Sec-
tion 3.3.4 in [9]), we present an algorithm for optimal alignment between two similar ordered trees
with node labels which is faster than the algorithm of Jianget al. when the score of an optimal align-
ment between the two input trees is high and the scoring scheme satisfies some natural assumptions.
If there is an optimal alignment between the two input ordered trees which uses at most� blank sym-
bols and� is specified in advance, then our algorithm called AlgorithmFast Scorecomputes its score
in ��� ��� � � ����� !"# � �$" time, where� % &'()*+*, *- *.. Our more general algorithm called
Algorithm Unspecified� for when no upper bound on� is provided computes the score of an optimal
alignment in��� ��� � � ����� !"# �/$" time, where (assuming that the scoring scheme satisfies certain
properties)/ is the difference between the highest possible score for anyalignment between two trees
having a total of*+ * 0 *- *nodes and the score of an optimal alignment between

+
and

-
. Furthermore,

if there exists an optimal alignment between
+

and
-

with 1 blank symbols and��1" node pairs of the
form ��,2", where� 3% 2, then (under some slightly stronger assumptions on the scoring scheme) Al-
gorithm Unspecified� runs in��� ��� � � ����� !"# � 1$" time, even if1 is not known in advance. In
particular, if the degrees of both input trees are bounded bya constant, the running times stated above
reduce to��� ��� � ��$", ��� ��� � �/$", and��� ��� � �1$", respectively. The algorithms can be modi-
fied to return an alignment corresponding to the optimal score without increasing the asymptotic running
times in the same way as for the algorithm of Jianget al.

The rest of this paper is organized as follows. In Section 2, we describe the algorithm of Jiang, Wang,
and Zhang from [4]. In Section 3, we introduce a new concept wecall �-relevance, and in Section 4, we
show how to construct�-relevant pairs of subtrees and subforests efficiently. Then, in Sections 5 and 6,
we present and analyze AlgorithmFast Scoreand AlgorithmUnspecified�.

2. The algorithm of Jiang, Wang, and Zhang

The algorithm of Jiang, Wang, and Zhang [4] for aligning two labeled, ordered trees is based on the
standard dynamic programming algorithm for the string alignment problem which calculates the scores
of optimal alignments between pairs ofprefixes(or symmetrically,suffixes) of the two input strings in

108 J. Jansson and A. Lingas / A Fast Algorithm for Optimal Alignment between Similar Ordered Trees

bottom-up order by using a two-dimensional table to store the computed scores, and then, when the
table is complete, performs a traceback to obtain an optimalalignment (see, e.g., [2, 7, 9, 13]). The
algorithm of Jianget al. computes and stores the scores of optimal alignments between pairs ofordered
subtreesof and� and between pairs ofordered subforestsof and� in a bottom-up fashion. After
the algorithm is finished, an actual optimal alignment between and� can also be recovered by doing
a traceback.

Some notation is necessary to describe the algorithm in moredetail.

Definition 2.1. For an ordered tree and a node� of , let ��� denote the ordered subtree of
rooted at� (i.e., the minimal subgraph of which includes� and all of its descendants). Let�����	
be the degree of�, and denote the children of� by ��� ������	
�� according to their left-to-right order.
��� ��� 	 refers to the ordered subforest ����� ���� ��� �, and��	 is short for��� �������		. The num-
ber of nodes in a subtree or subforest� is denoted by�� �. Finally, ����	 is defined as the maximum
degree of all nodes in.

Thus,��	 is thecomplete ordered forestobtained by removing� and all edges incident to� from
 ���. Also observe that��� �� �	 � ����.
Definition 2.2. The score of an optimal alignment between two subtrees or twosubforests� and�� is
denoted by������	.

To obtain a bottom-up ordering of the subtrees and subforests suitable for dynamic programming,
the nodes in an ordered tree with� nodes are numbered

�
through� according to postorder so that

�� �� ���� ��� ��	 will contain the score of an optimal alignment between and� . Henceforth,� rep-
resents the empty tree and�� ��	 is the label of node number� in the labeled tree.

The next lemma forms the basis of the algorithm of Jianget al.

Lemma 2.1. Let and� be two labeled ordered trees with� � and� � � . Then

1. �����	 � �
�� �����	 � ����	��	� ���� ��	��	 , ����	��	 �

�	
���
��� �� ������	

����� ���	 � ����� ��		� ������ ��		 , ����� ��		 �
�	
���
��� ����� ����	

2. �� ����� ���	 �

� !

"########$
########%

����	�� ��		 � ���� ��	��� ��		

�� �����	 � � !�&�&�	
����� ������ ���	 ��� ������	�

����� ���	 � � !�&�&�	
����� ����� ����	 ������ ����	�

J. Jansson and A. Lingas / A Fast Algorithm for Optimal Alignment between Similar Ordered Trees 109

3. For any� and� such that
� � � � �����	 and

� � � � �����	,
����� ��� 	�� �� � �� �		 �

� !

"##################$
##################%

����� ��� � �	�� �� � �� �		 ��� ��� ���	

����� ��� 	�� �� � �� � � �		������ ����	

����� ��� � �	�� �� � �� � � �		��� ��� ��� ����	

���� ��� 	��	� � !�&���	
�������� ��� � �	�� �� � ��� � �		������ 	�� �� ��� �		�

������ ���		� � !�&���	
�� ������ ��� � �	�� �� � �� � � �		 ��������� 	�� ���		�

Proof:
See [4]. ��

The algorithm of Jianget al. (Algorithm Score) is displayed in Figure 3. As the various values
of ������	 are computed using the recurrences in Lemma 2.1, they are stored in a data structure which
allows them to be retrieved in���	 time from then on.

Algorithm Scoreemploys an auxiliary procedure called Procedure 1 (not shown here) that takes as
input two subforests of the form��� �������		 and� �� ��������		, where at least one of� and � is
equal to

�
, and then computes����� ��� 	�� �� ��� �		 for all � and � such that� � � � �����	 and

� � � � �����	 by repeatedly applying Lemma 2.1.3 in a straightforward manner.
Each call to Procedure 1 is proved in [4] to take��������	 � �����		 � �����	 � �����		 time, and

the total running time of the algorithm is shown to be���� � �� � � �������	�	.
Note that for every pair of subtrees ��� and� ���, although the algorithm computes����� ��� 	�

� ��		 for all
� � � � � � �����	 and����	�� �� ��� �		 for all

� � � � � � �����	, it doesnot need
to compute the values of����� ��� 	�� �� ��� �		 for all

� � � � � � �����	 and
� � � � � � �����	.

By adding a traceback step at the end, the algorithm can be extended to return an alignment cor-
responding to the optimal score without increasing the asymptotic running time4. Hence, Jianget al.
proved the following result.

Theorem 2.1. An optimal alignment between two node-labeled, ordered trees and� can be computed
in ���� � �� � � �������	�	 time, where������ is the maximum degree of all nodes in and� .

4An optimal alignment can be recovered by recalculating the terms on the right-hand side of Lemma 2.1 for each pair of
subtrees or subforests encountered during the traceback todetermine which of the possibilities that resulted in the highest
score; alternatively, one can modify the algorithm to also record information about how each value�	
 �� is obtained as it
is computed, e.g., by saving pointers.

110 J. Jansson and A. Lingas / A Fast Algorithm for Optimal Alignment between Similar Ordered Trees

Algorithm Score
Input: Two labeled ordered trees� and� .

Output: The score of an optimal alignment of� and� .

������ �� �
for � �� � to �� � do

Initialize
��� ������ and

��������� according to Lemma 2.1.1.
endfor
for � �� � to �� � do

Initialize
����� ���� and

����� ���� according to Lemma 2.1.1.
endfor
for � �� � to �� � do

for � �� � to �� � do
for 	 �� � to
����� do

Call Procedure 1 on���� 	�
������ and� ���.
endfor
for � �� � to
����� do

Call Procedure 1 on���� and� �� ���
������.
endfor
Compute

��� ����� ���� as in Lemma 2.1.2.
endfor

endfor
return

��� ��� ���� ��� ���
End Score

Figure 3. The algorithm of Jiang, Wang, and Zhang.

3. -relevance

The main idea of our algorithm is to modify the dynamic programming algorithm of Jianget al. outlined
in Section 2 to only consider what we call�-relevant pairs of subtrees and subforests.

3.1. �-relevant pairs of subtrees

In order to introduce our slightly technical concept of�-relevance, we need some definitions.

Definition 3.1. Let be a labeled ordered tree and� a node of. When� is not the root of, ���
stands for the ordered subtree of resulting from removing ��� and the edge between� and the parent
of � from . Next,�� ���	 denotes the set of leaves in that are to the left of the leaves of ���.

Now, we are ready to define the concept of a�-relevant pair of subtrees as well as those of a�-
descendant and a�-ancestor.

Definition 3.2. Let � be a positive integer. For two ordered trees and� containing nodes� and�
respectively, the pair of subtrees� ����� ���	 is called�-relevant if and only if both of the following
conditions hold:

J. Jansson and A. Lingas / A Fast Algorithm for Optimal Alignment between Similar Ordered Trees 111

1. �� ��� � � �� ��� �� � �
2. ���� ���	� � ���� ���	�� � �

Definition 3.3. Let � be a positive integer, and let� be an ordered tree containing two nodes� and�.
� ��� is called a�-descendantof � ��� if � is a descendant of� and �� ��� � � �� ��� �� �. Symmetrically,
� ��� is called a�-ancestorof � ��� if � is an ancestor of� and �� ��� � � �� ��� � � �.

The definition of�-relevance immediately yields the following lemma.

Lemma 3.1. Let and � be two labeled ordered trees, and let� and � be two nodes in and �
respectively. If there is an alignment between and� which uses at most� blank symbols and consists
of an alignment between ��� and� ��� and an alignment between ��� and� ��� then � ����� ���	 is�-relevant for and� .

The next three lemmas will be useful for bounding the number of �-relevant pairs from above.

Lemma 3.2. If the pairs� ����� ���	 and � ����� ���	 are�-relevant for two ordered trees and� , and
� is an ancestor (or, descendant) of� in � , then� ��� is a

��-ancestor (or,
��-descendant) of� ���.

Proof:
Since� ����� ���	 is �-relevant, it holds that�� ��� � � �� ��� �� � � and hence� ��� � � �� ��� � � �, which
gives us�� ��� �� �� ��� � � ��. Suppose that� ��� is not a

��-ancestor of� ���, i.e., �� ��� ���� ��� � � ��.
Then we have�� ��� � � � ��� � � �� ��� � � �� ��� �� �� ��� �� � ��� � � ��� ���	 � �, which contradicts
the�-relevance of� ����� ���	. ��

Lemma 3.3. For a node� of an ordered tree, the number of�-ancestors of ��� is at most�.
Proof:
Assume that the number of�-ancestors of ��� is greater than�. By the pigeonhole principle there exists
a�-ancestor ���� whose root�� is located at distance greater than� from �. But then� ���� ��� ��� � � �,
which is a contradiction. ��

Lemma 3.4. Let �� ����� ����	����� be a sequence of distinct�-relevant pairs in two ordered trees and
� such that for any� � ��� � �, �� is not a descendant of�� �Then,� � �� holds.

Proof:
We may assume without loss of generality that the sequence isordered according to the left-right order
in � . Since � ����� ����	 is �-relevant, ���� ���	� � ���� ����	�� � �. On the other hand, we have
���� ����	� � ���� ����	� � �. Thus, if � � �� then ��� ���	� � ���� ����	� � ��� ���	� � ���� ����	��
���� ����	� � ���� ����	� � ���	� �� � �, which contradicts the�-relevance of� ����� ����	. ��

By combining the three lemmas above, we obtain an upper boundon the number of�-relevant pairs
of subtrees.

Theorem 3.1. For two ordered trees and� and a node� of , the number of distinct�-relevant pairs
of subtrees in which� participates is����	.

112 J. Jansson and A. Lingas / A Fast Algorithm for Optimal Alignment between Similar Ordered Trees

Proof:
Let �� ����� ����	����� be a maximal sequence of distinct�-relevant pairs of subtrees for two ordered
trees and � such that for each� � � � � there is no�-relevant pair� ����� ���	, where� is a
descendant of��. It follows from Lemma 3.2 that for each�-relevant pair� ����� ���	, it either belongs
to the sequence or� ��� is a

��-ancestor of a member in the sequence. Hence, the number of�-relevant
pairs in which� participates is at most��� � �	 � �� � �	

by Lemma 3.3. Now, it is sufficient to observe
that � cannot exceed

�� by Lemma 3.4. ��

Corollary 3.1. There are��� ���	 �-relevant pairs of subtrees for and� , where� � ������� �� ��.

3.2. �-relevant pairs of subforests

The algorithm of Jianget al. computes scores not only between pairs of subtrees of the input trees, but
also between certain pairs of subforests of the trees. Therefore, in order to modify the algorithm, we have
to generalize the concepts of�-relevance,�-descendants, and�-ancestors for pairs of nodes inducing full
subtrees to include pairs of subforests of the form���� ��� 	�� �� ��� �		.
Definition 3.4. Let ��� ��� 	 be an ordered forest in an ordered tree. When� is not the root of,
��� ��� 	 stands for the ordered subtree of obtained by removing��� ��� 	 and all edges incident to
��� ��� 	 from . ����� ��� 		 denotes the set of leaves in that are to the left of the leaves of��� ��� 	.
Definition 3.5. Let � be a positive integer. For two ordered trees and� containing nodes� and�
respectively, the pair of ordered subforests���� ��� 	�� �� ��� �		 is called�-relevantif and only if both
of the following conditions hold:

1. ����� ��� 	� � �� �� ��� �	�� � �
2. ������� ��� 		� � ���� �� ��� �		�� � �

Definition 3.6. Let � be a positive integer, and let� be an ordered tree containing two nodes� and
�. � ����� � ��	 is called a�-descendantof � �� ��� �	 if � is a descendant of�, � ����� � ��	 is con-
tained in� �� ��� �	, and �� �� ��� �	� � �� ����� � ��	� � �. Symmetrically,� ����� � ��	 is called a�-
ancestorof � �� ��� �	 if � is an ancestor of�, � �� ��� �	 is contained in� ����� � ��	, and �� ����� � ��	� �
�� �� ��� �	� � �.

The definition of�-relevance of subforests yields the following lemma analogous to Lemma 3.1.

Lemma 3.5. Let and� be two labeled ordered trees, and let��� ��� 	 and� �� ��� �	be ordered forests
in and� respectively. If there is an alignment between and� which uses at most� blank symbols
and consists of an alignment between��� ��� 	 and� �� ��� �	 and an alignment between��� ��� 	 and
� �� ��� �	 then ���� ��� 	�� �� ��� �		 is �-relevant for and� .

The next three lemmas will be useful for bounding the number of �-relevant pairs of subforests from
above. Their proofs are analogous to the corresponding proofs of Lemmas 3.2–3.4.

Lemma 3.6. If the pairs���� ��� 	�� ��		 and ���� ��� 	�� ��		 are�-relevant for two ordered trees
and� , and� is an ancestor (or, descendant) of� in � , then� ��	 is a

��-ancestor (or,
��-descendant) of

� ��	.

J. Jansson and A. Lingas / A Fast Algorithm for Optimal Alignment between Similar Ordered Trees 113

Lemma 3.7. For a node� of an ordered tree, the number of�-ancestors of the form��	 of the
forest��	 is at most�.
Lemma 3.8. Let ����� ��� 	�� ��� 	����� be a sequence of distinct�-relevant pairs in two ordered trees
 and� such that for any� � �� ���� � �, ��� is not a descendant of����. Then,� � �� holds.

By combining Lemmas 3.6–3.8, we obtain an upper bound on the number of�-relevant pairs���	�
� �� ��� �		 and ���� ��� 	�� ��		 like in Theorem 3.1.

Theorem 3.2. For two ordered trees and� and a node� of , the number of distinct�-relevant pairs
of the form ���� ��� 	�� ��		 is ���� � �����		�	. Symmetrically, for a node� of � , the number of
distinct�-relevant pairs of the form���	�� �� ��� �		 is ���� � ������ 		�	.
Corollary 3.2. There are��������������	�	 �-relevant pairs of subforests of the form���	�� �� ��� �		
and ���� ��� 	�� ��		 for and� , where� � � !���� �� ��.

4. Constructing the-relevant pairs

The test for�-relevance for a pair of subtrees can easily be accomplishedin constant time after appropri-
ate preprocessing. However, in order to speed up the quadratic time algorithm of Jiangat al., we cannot
afford testing each possible pair of subtrees for�-relevance. Instead, we proceed as follows.

First, we compute all vectors��� ��� �� ���� ��� �	, where� � � . Figure 4 demonstrates how this can
be done recursively in���� �	 time by using the Euler tour technique [12]. The algorithm isstarted by
calling

����� � ��� ������ �	. We assume that as the values of�� ��� �and ���� ���	� for various nodes�
are computed, they are stored in a tree� � which is isomorphic to� and equipped with the necessary
auxiliary data fields.

We then fetch the vectors��� ��� �� ���� ��� �	 one at a time by traversing� �, and insert them into a
standard data structure for two-dimensional range search,e.g., a layered range tree [8]. The construc-
tion of the data structure takes���� � � ��� �� �	 time. Then, for all� in we compute the vectors
�� ��� �� ��� ���	�	 in linear time in the same way as above. For each� in , we query the range search
data structure with the square centered at�� ��� �� ��� ���	�	 having side length

��. Each query takes
����� �� �� �	 time, where� is the number of reported vectors. Since each of the returnedvectors is
in one-to-one correspondence with a node� such that the pair����	 is �-relevant,� � ����	 holds by
Theorem 3.1.

Putting everything together, we obtain the following theorem.

Theorem 4.1. For two ordered trees on at most� nodes each and a non-negative integer�, all �-relevant
pairs of subtrees can be reported in��� � ���� � � ��		 time.

We can use the same technique to precompute all pairs of�-relevant subforests. In fact, for our
purposes it is sufficient to report all pairs of�-relevant subforests where at least one of the subforests is
complete, i.e., is of the form��	 or � ��	� To report all�-relevant pairs of the form���	�� �� ��� �		,
the number of vectors to insert into the layered range tree is���� � � �������	�	 since���������	�	
ordered forests of the form� �� ��� �	 originate from each node� in � . Thus, the construction time
becomes���� � � �������	� � ������ � � �������	�		 � ��� � �������	� � ��� �	. The number of

114 J. Jansson and A. Lingas / A Fast Algorithm for Optimal Alignment between Similar Ordered Trees

Algorithm Euler Tour
Input: Node�, integer����.
Output: Integer�������, integer��������.

���� ����� �� ����
������� �� �
if � is a leaf then

�������� �� �
else

�������� �� �
for all children� of � in left-to-right order do

�� ��� �� ����� � ��� �� � ���� � ���������
�������� �� ��������� ��
������� �� �������� ��

endfor
endif
�� ��� � �� �������
return ����������������

End Euler Tour

Figure 4. The Euler tour algorithm for computing the vectors��� ��� �� ���� ��� ��, where� 	 � .

queries to the data structure is����	, and the query time is�������� �� �������	�	��	 � ����� ���	
time, where the sum of the�’s over is ��� � �� � �������	�	 by Corollary 3.2. The reporting of�-
relevant pairs of the form���� ��� 	�� ��		 can be done symmetrically within the same (in terms of�)
preprocessing and query time bounds.

Summing up, we obtain:

Theorem 4.2. For two ordered trees on at most� nodes each and a non-negative integer�, all �-relevant
pairs of subforests, where at least one subforest is complete, can be reported in��� ��������	� ����� ����		 time.

5. Algorithm Fast Score

Our AlgorithmFast Scorefor computing the score of an optimal alignment between two labeled, ordered
trees and � is displayed in Figure 5. It works under the assumption that there exists an optimal
alignment which uses at most� blank symbols, for some specified positive integer�.

First, we compute all�-relevant pairs of subtrees of and� , and as each�-relevant pair is reported,
we insert it into a balanced binary search tree
�. Next, all �-relevant pairs of subforests in which at
least one subforest is complete are computed and inserted into two balanced binary search trees
� and

�. According to Corollaries 3.1 and 3.2, there are��� � �� � �������	�	 �-relevant pairs of subtrees or
subforests where at least one subforest is complete, so thispreprocessing takes��� ��������	� ����� ����	�� ��� � �������	�	 ������ ��� � �������	�		 � ��� ��� � � �������	� ���	 time by Theorems 4.1

J. Jansson and A. Lingas / A Fast Algorithm for Optimal Alignment between Similar Ordered Trees 115

Algorithm Fast Score
Input: Two labeled ordered trees� and� , positive integer�.

Output: The score of an optimal alignment of� and� (assuming there exists an optimal alignment with at
most� blank symbols).

Compute all�-relevant pairs of subtrees of� and� as described in Section 4.
As each�-relevant pair is reported, insert it into a balanced binarysearch tree��.

Compute all�-relevant pairs of subforests of� and� of the form����� 	�� ��� ���� and������� �� ��� ���,
and insert them into two balanced binary search trees�� and��.
������ �� �
for � �� � to �� � do

Initialize
��� ������ and

��������� according to Lemma 2.1.1.
endfor
for � �� � to �� � do

Initialize
����� ���� and

����� ���� according to Lemma 2.1.1.
endfor
for all �-relevant pairs of subtrees�� ����� ����, determined by doing an inorder traversal of�� do

for 	 �� � to
����� do
if ����� 	�
�������� ���� is �-relevant (i.e., belongs to��) then

Call Procedure 1� on ���� 	�
������ and� ���.
endif

endfor
for � �� � to
����� do

if ������� �� ���
������� is �-relevant (i.e., belongs to��) then
Call Procedure 1� on ���� and� �� ���
������.

endif
endfor

Compute
��� ����� ���� as in Lemma 2.1.2, only considering�-relevant pairs of subtrees on the right

hand side of the expression.

endfor
return

��� ��� ���� ��� ���
End Fast Score

Figure 5. The fast algorithm for computing the score of an optimal alignment between two ordered trees which
uses at most� blank symbols.

and 4.2. The scores for pairs containing an empty subtree or subforest are also precomputed, which takes
����� �� �	 � ���	 time.

We then modify the algorithm of Jianget al. to only evaluate scores for�-relevant pairs of subforests
and scores for pairs of subforests where one of the subforests is empty. Whenever one of the formulas
in Lemma 2.1.2 or Lemma 2.1.3 is to be applied, we test each of the components of the right hand side
which is not a pair containing an empty subtree or an empty subforest for membership in
�,
�, or
�.
Such a membership query takes����� �	 time. If the test is positive, we fetch the score for the argument

116 J. Jansson and A. Lingas / A Fast Algorithm for Optimal Alignment between Similar Ordered Trees

pair which should be evaluated by this time, otherwise we setthat score to minus infinity. We conclude
that the cost of determining the score for a�-relevant pair on the left hand side in Lemma 2.1 from the
scores for�-relevant pairs occuring on the right hand side does not exceed the cost of determining the
score for that pair based on the scores of pairs occuring on the right hand side multiplied by����� �	.
Procedure 1� referred to in Figure 5 is the same as Procedure 1 with such tests for �-relevance included.
Therefore, each call to Procedure 1� takes����� � � ������	 � �����		 � �����	 � �����		 time. Below,
we denote the running time of one call to Procedure 1� by P1�.

For each�-relevant pair of subtrees� ����� ���	, the algorithm tests�����	 and then�����	 pairs
of subforests for�-relevance and makes at most this many calls to Procedure 1�. Next, it evaluates
�� ����� ���	 by testing�����	� �����	 pairs of subtrees and one pair of subforests on the right hand
side of the relation in Lemma 2.1.2 for�-relevance. Thus, each�-relevant pair of subtrees contributes
�������	 � ���� � �

P1�
	������	 � ���� � �

P1�
	� ������	������		 � ��� �	 � ����� � � ������	�

�����		� � �����	 � �����		 to the total running time. Summing over all�-relevant pairs of subtrees, we
see that the entire main loop takes

�
�
-relevant pairs of

subtrees�� ����� ���
����� � � ������	������		� � �����	 � �����		

� ����� � � �������	� � �
�
-relevant pairs of

subtrees�� ����� ���
�����		

� ����� � � �������	� � ����
�

� � �
and�� ����� ���

is
�
-relevant

�����		

� ����� � � �������	� � ����
�� � �����		

� ��� ��� � � �������	� � ��	

time by using Theorem 3.1 and the fact that
�
��� �

����	 � �.

Including the preprocessing, the algorithm’s running timeis��� ��� � ��������	� ������� ���� �
�������	� � ��	 � ��� ��� � � �������	� � ��	, which gives us the following theorem.

Theorem 5.1. If there exists an optimal alignment between and� which uses at most� blank symbols
and� is given, we can compute its score in��� ��� � � �������	� � ��	 time.

We remark that AlgorithmFast Scorecan be modified to return an optimal alignment without increas-
ing the asymptotic running time by adding a traceback step just like for the algorithm of Jianget al. (see
Section 2). Thus, we can construct an optimal alignment between and� in ��� ��� � � �������	� ���	
time if there exists an optimal alignment between and� which uses at most� blank symbols and� is
known in advance.

Also note that if������ � ���	, the running time of AlgorithmFast Scorebecomes��� ��� � ���	.

J. Jansson and A. Lingas / A Fast Algorithm for Optimal Alignment between Similar Ordered Trees 117

6. Algorithm Unspecified

Here, we extend AlgorithmFast Scorefrom Section 5 to compute the score of an optimal alignment
between the two input trees even if no upper bound on the number of blank symbols in an optimal
alignment is given. We show that under some natural assumptions on the scoring scheme, the resulting
method is faster than the algorithm of Jianget al. for problem instances consisting of similar trees
(i.e., instances in which the score of an optimal alignment is high). The technique we employ stems from
Section 3.3.4 in [9], where it is applied to compute the scoreof an optimal alignment between two strings
of equal length by using an algorithm which only evaluates a band of specified width around the main
diagonal of the dynamic programming matrix.

Write � � ������� �� �� and� � � !���� �� ��. The algorithm of Jianget al. runs in��� � � �
�������	�	 time, regardless of the number of insertions required by an optimal solution (see Section 2).
On the other hand, by Theorem 5.1, AlgorithmFast Scoreruns in��� ��� � � �������	� � ��	 time,
where� is the maximum number of insertions allowed. Thus, Algorithm Fast Scoreis asymptotically
faster than the algorithm of Jianget al. if � is small5. The drawback is that AlgorithmFast Scoreneeds
a value of� to be specified beforehand; the running time may be much worsethan that of the algorithm
of Jianget al. if no sufficiently strong upper bound on� is known6. One way to overcome this difficulty
is by running AlgorithmFast Scorewith successively larger values of� until a certain stop condition is
satisfied, as explained below.

Let � be the maximum value of���� �	 over all pairs of symbols��� �	 belonging to�
�, and let�
be the maximum value of���� �	 over all pairs��� �	 in ��
���	 � ����
�	, i.e., all pairs where

precisely one of� and
�

is equal to the blank symbol. Assume that� � � and
� � �.

Lemma 6.1. For any positive integer�, if an alignment between and� uses at least� � �
blank

symbols then its score is at most�� � �	�� � ��������� ��.

Proof:
Let � be an alignment between and� with at least� � �

blank symbols. Then the total number of
nodes in and� which can be paired off with each other is at most� �� �� � � �� � �	

. The maximum
possible score of� is achieved when all such pairs of nodes have score�; thus, the score of� is at
most �� � �	�� � �� ���� ������� ��. ��

For any positive integer�, let �� be the value returned by AlgorithmFast Scoreon input ��� ��	.
As � increases,�� increases or remains the same while the value of����	�� � ��������� �� decreases
because

� � � and� � �. Thus, by gradually increasing�, �� eventually becomes larger than or equal
to �� � �	�� � ��������� ��. This yields a useful stop condition because when it occurs,Lemma 6.1
ensures that all alignments containing more blank symbols than the current value of� will have scores
which are lower than or equal to�� and therefore do not need to be considered.

5More precisely, if	
 �� ���� �������� �.
6For example, just plugging in the trivial upper bound	
 �
 � � �� � � �� does not help here.

118 J. Jansson and A. Lingas / A Fast Algorithm for Optimal Alignment between Similar Ordered Trees

The algorithm is called AlgorithmUnspecified� and is listed in Figure 6. Initially, it sets� to
�� ��	 � �

since all alignments between and� use at least� �� blank symbols. It then finds the
score of an optimal alignment by doubling� until the stop condition is satisfied.

Algorithm Unspecified�
Input: Two labeled ordered trees� and� .

Output: The score of an optimal alignment between� and� .

� �� � � � �
�� �� Fast Score���� ���
while

�� � �� � ���� � ��������	�
�
 do

� �� � � �
�� �� Fast Score���� ���

endwhile
return

��
End Unspecified�

Figure 6. An algorithm for computing the score of an optimal alignment between two ordered trees when no
upper bound on the number of blank symbols is provided.

We now analyze the running time of AlgorithmUnspecified�. Denote the algorithm’s final value of�
by

��. The first call to AlgorithmFast Scoretakes��� ��� � � �������	� � ����� �	�	
time, the second

one��� ��� � � �������	� � ���� �� � �		�	
time, etc., and the last one��� ��� � � �������	� � ���	

time. Since

�� � ���	� � ��	� � ���	� � ��� � ��� � �� �
��
�� ��� �
���

���	� � ��� ���� �

the running time is��� ��� � � �������	� � � ��� � �� �� � �	�		
.

We then proceed as in [9] to obtain a nontrivial upper bound on
�� in terms of�, �, �,

�
, and�,

where� is the score of an optimal alignment between and� . When the algorithm stops, there are two
possibilities:

� If � �� � � ���� then� � � ����. The inequality� ���� � � ��� � �	�� � ����� ������ �� (due to the

algorithm not finishing in the previous iteration) then implies that
�� � ������������� � �

.

� If � �� � � ���� then any optimal alignment contains�
��� blank symbols so that by Lemma 6.1,

� � � ��� � �	�� � ����� ������ ��. Rearranging gives us
�� � ������������� � �

.

Thus, in both cases we have the upper bound�� � � ��� ��	� � ��
� � �� � ��

(1)

J. Jansson and A. Lingas / A Fast Algorithm for Optimal Alignment between Similar Ordered Trees 119

The score of an optimal alignment between and� is at most� ��. Therefore,� � ���� ��.
By inequality (1), if the score of an optimal alignment between and� is high (so that� is close to���� ��) then

�� is small. Assuming that� � ��
is a constant, we can express the running time of

Algorithm Unspecified� as follows.

Theorem 6.1. If � � ��
is a constant and

� � �, � � � then AlgorithmUnspecified� computes
the score of an optimal alignment between and� in ��� ��� � � �������	� � ��	 time, where� ����� �� � � and� is the score of an optimal alignment between and� .

We also note the following:

Corollary 6.1. If there exist constants�, �, and� such that� � �, � � �, � � � and for every��� � � with � �� � it holds that�����	 � �, �����	 � �����	 � �, and�����	 � �, and if
there exists an optimal alignment between and� with � blank symbols and���	 node pairs of the
form ����	with � �� �, then AlgorithmUnspecified� runs in��� ��� � � �������	� � ��	 time.

Proof:
Write � � � � � � � � � � ��������� � �, where� is the number of node pairs����	 with � �� � and
��� � �. Combining this with inequality (1) yields

�� � � ���	��
����	��	��
 � ��
. Now, � � ���	

implies that
�� � ���	. ��

In particular, if������ � ���	 then the running times given in Theorem 6.1 and Corollary 6.1
reduce to��� ��� � � ��	 and��� ��� � � ��	, respectively.

Finally, as mentioned at the end of Section 5, it is possible to modify Algorithm Fast Score(and
hence also AlgorithmUnspecified�) to return an optimal alignment by performing a traceback with no
increase in the asymptotic running time.

7. Final remarks

An optimal alignment between two strings whose score is at most � apart from that of a perfect align-
ment between the first string and its copy can be constructed in ����	 time [9]. Since a string can be
interpreted as a line ordered tree with node labels, a natural question arises: is it possible to lower the
time complexity of our method, especially the exponent

�
of �?

Our method does not seem to generalize to include unordered trees directly. For example, the proof
of Lemma 3.4 relies on the ordering of the trees (i.e., on the sets��). It is an interesting open problem
whether a substantial speed-up in the construction of an optimal alignment between similar unordered
trees of bounded degree is achievable.

In the construction of the�-relevant pairs, we could use more sophisticated and more asymptotically
efficient data structures for two dimensional range search on an integer grid [1]. However, this would not
lead to an improvement of the asymptotic total time complexity of our alignment algorithm.

120 J. Jansson and A. Lingas / A Fast Algorithm for Optimal Alignment between Similar Ordered Trees

References

[1] Alstrup, S., Brodal, G., Rauhe, T.: New Data Structures for Orthogonal Range Searching,Proceedings of the
41�

�
Annual Symposium on Foundations of Computer Science(FOCS 2000), 2000.

[2] Gusfield, D.:Algorithms on Strings, Trees, and Sequences : Computer Science and Computational Biology,
Cambridge University Press, 1997.

[3] Jansson, J., Lingas, A.: A Fast Algorithm for Optimal Alignment between Similar Ordered Trees,Proceed-
ings of the 12

��
Annual Symposium on Combinatorial Pattern Matching(CPM 2001), 2001.

[4] Jiang, T., Wang, L., Zhang, K.: Alignment of trees – an alternative to tree edit,Theoretical Computer
Science, 143, 1995, 137–148, A preliminary version appeared inProceedings of the 5

��
Annual Symposium

on Combinatorial Pattern Matching(CPM’94), pages 75–86, 1994.

[5] Keselman, D., Amir, A.: Maximum agreement subtree in a set of evolutionary trees – metrics and efficient
algorithms,Proceedings of the 35

��
Annual Symposium on Foundations of Computer Science(FOCS ’94),

1994.

[6] Le, S.-Y., Nussinov, R., Maizel, J.: Tree graphs of RNA secondary structures and their comparisons,Com-
puters and Biomedical Research, 22, 1989, 461–473.

[7] Pevzner, P.:Computational Molecular Biology : An Algorithmic Approach, The MIT Press, Massachusetts,
2000.

[8] Preparata, F., Shamos, M.:Computational Geometry, Springer-Verlag, New York, 1985.

[9] Setubal, J., Meidanis, J.:Introduction to Computational Molecular Biology, PWS Publishing Company,
Boston, 1997.

[10] Shapiro, B.: An algorithm for comparing multiple RNA secondary structures,Computer Applications in the
Biosciences, 4, 1988, 387–393.

[11] Tai, K.-C.: The tree-to-tree correction problem,Journal of the ACM, 26(3), 1979, 422–433.

[12] Tarjan, R., Vishkin, U.: An efficient parallel biconnectivity algorithm, SIAM Journal on Computing, 14(4),
1985, 862–874.

[13] Waterman, M.:Introduction to Computational Biology : Maps, Sequences, and Genomes, Chapman & Hall,
London, 1995.

[14] Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems,
SIAM Journal on Computing, 18(6), 1989, 1245–1262.

