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Abstract. The maximum rooted resolved triplets consistency problem
takes as input a set R of resolved triplets and asks for a rooted phylo-
genetic tree that is consistent with the maximum number of elements
in R. This paper studies the polynomial-time approximability of a gen-
eralization of the problem where in addition to resolved triplets, the
input may contain fan triplets and forbidden triplets. To begin with,
we observe that the generalized problem admits a 1/4-approximation
in polynomial time. Next, we present a polynomial-time approximation
scheme (PTAS) for dense instances based on smooth polynomial integer
programming. Finally, we generalize Wu’s exact exponential-time algo-
rithm in [19] for the original problem to also allow fan triplets, forbidden
resolved triplets, and forbidden fan triplets. Forcing the algorithm to
always output a k-ary phylogenetic tree for any specified k ≥ 2 then
leads to an exponential-time approximation scheme (ETAS) for the gen-
eralized, unrestricted problem.

Keywords: Bioinformatics · Approximation algorithms · Phylogenetic
tree · Rooted triplet · Smooth integer program

1 Introduction

Phylogenetic trees are used by scientists to describe treelike evolutionary his-
tory for various kinds of objects such as biological species, natural languages,
manuscripts, etc. [7]. Inferring an accurate phylogenetic tree from experimental
data can be a difficult task; for example, computationally expensive methods
like maximum likelihood that are known to yield good trees may be impractical
for large data sets [6]. One potential remedy is the divide-and-conquer approach:
first apply some expensive method to obtain a collection of highly reliable trees
for small, overlapping subsets of the leaf labels, and then use a computationally
cheaper method to merge these trees into a phylogenetic supertree [6,10,15].
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A concept that captures the combinatorial aspects of the smallest meaningful
building blocks of a phylogenetic supertree in the rooted case is rooted triplets
consistency. Given a set R of possibly contradicting rooted phylogenetic trees
with exactly three leaves each (so-called rooted triplets), the maximum rooted
triplets consistency problem asks for a tree that contains as many of the rooted
triplets in R as possible as embedded subtrees. Most previous work on the topic
(e.g., [1,4,5,8,16,18,19]) has focused on the case where all the given rooted
triplets are resolved triplets, meaning that they are binary. This paper considers
a more general problem variant where R may also contain non-binary triplets
(called fan triplets) that should preferably be included in the output tree as well
as forbidden triplets that should be avoided.

1.1 Definitions

A (rooted) phylogenetic tree is a rooted, unordered tree with no internal nodes of
degree 1 and whose leaves are distinctly labeled. To simplify the presentation, we
identify each leaf in a phylogenetic tree with the unique element that labels it.
The set of all leaf labels in a phylogenetic tree T is denoted by Λ(T ). For any
x, y ∈ Λ(T ), lcaT (x, y) is the lowest common ancestor in T of x and y.

Suppose that T is a phylogenetic tree. For any x, y, z ∈ Λ(T ), define the
following four types of constraints on T :

1. xy|z, specifying that lcaT (x, y) should be a proper descendant of lcaT (x, z)
(or equivalently, that lcaT (x, y) should be a proper descendant of lcaT (y, z)).

2. x|y|z, specifying that lcaT (x, y) = lcaT (x, z) = lcaT (y, z) should hold.
3. ¬xy|z, specifying that lcaT (x, y) should not be a not proper descendant of

lcaT (x, z) (or equivalently, that lcaT (x, y) should not be a proper descendant
of lcaT (y, z)).

4. ¬x|y|z, specifying that the same node should not be the lowest common
ancestor of a and b for all pairs a, b ∈ {x, y, z}.

The maximum rooted triplets consistency problem (MTC) is: given a set S of
leaf labels and a set R of constraints as defined above, output a phylogenetic
tree T with Λ(T ) = S that satisfies as many constraints from R as possible.
In this paper, the special case of MTC where all constraints in R are of type 1
is called the maximum rooted resolved triplets consistency problem (MRTC),
and the special case where all constraints are of type 1 or type 3 is called the
maximum mixed rooted resolved triplets consistency problem (MMRTC).1

To express the size of an instance of MTC, we write n = |S| and m = |R|. An
instance (S,R) of MTC is complete if, for every S′ ⊆ S with |S′| = 3, R contains
at least one constraint involving the three elements in S′ only. It is called dense
if it contains Ω(n3) constraints. Note that any complete instance is dense.

1 MRTC is called MAX-LEVEL-0 in [4], MaxRTC in [5], MILCT in [8,12], MaxCL-
0-Dense in [11], MTC in [16], and MCTT in [18,19]. MMRTC is called MMTT
in [9].
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Remark 1. Phylogenetic trees with exactly three leaves are commonly referred
to as rooted triplets in the literature. A rooted triplet t is either a binary or a
non-binary tree. In the former case, t is a resolved triplet and always satisfies a
constraint of type 1, and if this constraint is also satisfied in a phylogenetic tree T
then t and T are said to be consistent. Similarly, if t is non-binary then t is called
a fan triplet and always satisfies a constraint of type 2; if it is also satisfied in a
phylogenetic tree T then t and T are consistent. Thus, an equivalent formulation
of MTC is: given two sets C and F of rooted triplets, output a phylogenetic
tree T with Λ(T ) =

⋃
t∈C∪F Λ(t) maximizing |T (C)| − |T (F)|, where T (X ) for

any set X of rooted triplets is the subset of X consistent with T . In analogy with
this terminology, constraints of type 1, 2, 3, and 4 are called resolved triplets,
fan triplets, forbidden resolved triplets, and forbidden fan triplets from here on.

1.2 Previous Results

Aho et al. [1] presented a polynomial-time algorithm that determines if there
exists a phylogenetic tree consistent with all of the resolved triplets in a given
set, and if so, outputs such a tree. Its time complexity was improved from O(mn)
to min{O(n + mn1/2), O(m + n2 log n)} by Henzinger et al. [10]. He et al. [9]
extended Aho et al.’s algorithm to the case where the input also contains forbid-
den resolved triplets, and the resulting running time to determine if there exists
a phylogenetic tree that satisfies all the input constraints is O((m + n)n log n).

In comparison, the optimization versions of rooted triplets consistency turn
out to be harder. MRTC is NP-hard [3,12,19], even if restricted to dense problem
instances [11]. Furthermore, MRTC in the non-dense case is APX-complete [4].
The supplementary version of MRTC in which the objective is to remove as few
elements as possible from the input R so that there exists a phylogenetic tree con-
sistent with the resulting R is W [2]-hard and cannot be approximated within c ln n
for some constant c > 0 in polynomial time, unless P = NP [5]. As for positive
results for MRTC, Ga̧sieniec et al. [8] presented a top-down, polynomial-time 1/3-
approximation algorithm, and Wu [19] gave a bottom-up, polynomial-time heuris-
tic that was shown experimentally to perform well in practice. Byrka et al. [5]
later modified Wu’s heuristic to guarantee that it too achieves an approxima-
tion ratio of 1/3. Other heuristics for MRTC (with unknown approximation
ratios) have been published in [16,18]. An exact algorithm for MRTC running
in O(3n(m + n2)) time and O(2n) space was given by Wu in [19]. Finally, we
remark that the 1/3-approximation algorithm for MRTC in [8] was generalized
to a polynomial-time 1/3-approximation algorithm for MMRTC in [9].

The unrooted analogue of a resolved triplet, called a quartet [17], is an
unrooted tree with two internal nodes and four distinctly labeled leaves. The cor-
responding maximum quartets consistency problem is MAX SNP-hard [14,17],
but the complete version of the problem admits a PTAS [14]. In an unpublished
manuscript [13], we have outlined how to obtain a similar PTAS for dense MRTC.

See the survey in Sect. 2 in [5] for references to other rooted triplets
consistency-related problems in the literature involving enumeration, ordered
trees, phylogenetic networks, multi-labeled phylogenetic trees (MUL-trees), etc.
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1.3 Our Contributions

We first show how any known polynomial-time 1/3-approximation algorithm
for MRTC (e.g., [5,8]) can be applied to obtain a polynomial-time 1/4-
approximation algorithm for MTC (Sect. 2).

The APX-completeness of MRTC [4] (and hence, MTC) rules out the pos-
sibility of finding a PTAS for MTC in the general case. Nevertheless, we make
further progress on the approximation status of MTC by presenting a PTAS
for MTC restricted to dense instances based on smooth polynomial integer pro-
gramming, using some ideas from [14] and generalizing our unpublished work
in [13] (Sect. 3).

Next, we extend Wu’s exact exponential-time algorithm for MRTC [19] to
MTC (Sect. 4). We let the algorithm take an additional parameter k ≥ 2 as input
and force the output to be a phylogenetic tree in which every internal node has
at most k children. The resulting algorithm runs in O(2(n+1) log2(k+1)(m + n))
time. This may be Ω(nn) if k is unrestricted, but the running time is single-
exponential in n when k = O(1), and we use this fact to design an exponential-
time approximation scheme (ETAS) for MTC with no restrictions on k.

Finally, we describe how to adapt our algorithms to the weighted case, where
nonnegative weights are assigned to the triplet constraints and the objective is
to construct a phylogenetic tree that maximizes the sum of the weights of the
satisfied constraints (Sect. 5). In case of our PTAS and our ETAS, we have to
additionally assume that the ratio between the largest and the smallest con-
straint weights is bounded by a constant.

2 A 1/4-Approximation Algorithm for MTC

The maximum rooted resolved triplets consistency problem (MRTC) admits
a 1/3-approximation algorithm running in polynomial time [5,8]. The algo-
rithms in [5,8] always output a binary tree, so they also yield (at least) a 1/3-
approximation when in addition to resolved triplets, forbidden fan triplets are
included in the input. We use this fact to design a 1/4-approximation algorithm
for the maximum rooted triplets consistency problem (MTC) as follows.

Algorithm 1
Input: A set R of m triplet constraints over an n-element set S.
Output: A phylogenetic tree with n leaves distinctly leaf-labeled by S.

1. If R contains at least m/4 fan triplets and forbidden resolved triplets then
output a tree whose root has n children, each of them a leaf with a distinct
label in S, and stop.

2. Extract the set R′ of all resolved triplets and forbidden fan triplets from
R and apply any known polynomial-time 1/3-approximation algorithm for
MRTC (e.g., [5] or [8]) to R′. Output the tree produced by the latter.

Theorem 1. Algorithm 1 is a polynomial-time 1/4-approximation algorithm for
MTC.
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Proof. We need to show that the algorithm outputs a phylogenetic tree satisfying
at least 1/4 of the input triplet constraints. There are two cases:

If R contains at least m/4 fan triplets and forbidden resolved triplets then the
star phylogenetic tree output in the first step satisfying all the fan triplets and
all the forbidden resolved triplets satisfies at least m/4 input triplet constraints.

Otherwise, R contains at least 3m/4 resolved triplets and forbidden fan
triplets. The 1/3-approximation algorithm run on them in the second step yields
a phylogenetic tree satisfying at least 1

3 · 3m
4 = m/4 input triplet constraints. ��

3 A PTAS for Dense MTC

Analogously to [14] for the unrooted case, we first show that any rooted phylo-
genetic tree T with a leaf label set S = Λ(T ) can be represented approximately
by a decomposition tree consisting of:

1. a bounded-size subtree (termed kernel) K of T on non-leaf nodes, and
2. subsets of S (forming a partition of S) in one-to-one correspondence with the

leaves of K, where the elements of each subset are children of the correspond-
ing leaf of K.

In particular, an optimal tree Topt for a given instance of MTC can be approxi-
mately represented by such a decomposition tree which preserves enough of the
original triplet constraints to serve as a good approximation. More precisely, the
number of input triplet constraints satisfied by the approximate tree differs from
that of Topt by an arbitrarily small fraction, depending on the number of subsets
in the partition. We find an approximate solution by enumerating all possible
kernels, and for each one, finding the approximately best partition of S.

Recall that an instance of MTC is dense if the input set of triplet constraints
has Ω(n3) elements. The analysis of the accuracy of our approximate solution
relies on the fact that for a dense instance, the number of input triplet constraints
satisfied by Topt is Ω(n3), since it is at least 1/4 of the number of the constraints
by Theorem 1.

Let k be a fixed integer, and let S1, S2, ..., Sk be a partition of the set S.
A subset Si is termed a bin. For each bin Si, there is a non-leaf node of degree
|Si| + 1 in the decomposition tree, termed a bin root, connected by an edge to
each element in the bin. Algorithm 2, given below, transforms an input tree into
its decomposition tree by joining adjacent subtrees of T until the bin is large
enough, for some given maximum bin size b. If a bin is smaller than b/2, and
there is another bin also smaller than b/2 in an adjoining subtree, the two small
bins may be joined into one single bin. The resulting kernel K is the subtree of
the output decomposition tree induced by remaining non-leaf nodes, with the
subtrees defining the bins removed. The output decomposition tree Tk consists
of the kernel K, with the bin roots as leaves of K, and the elements in each bin
being children of its respective bin root.

Algorithm 2. k-bin decomposition(T )
Input: A phylogenetic tree T with n leaves.
Output: A decomposition tree Tk of T .
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– Traverse T , and for every node v visited, check if the size of the subtree T (v)
of T rooted at v is less or equal to 6n/k. If so, v is denoted a bin root (unless
v is a leaf), and all internal edges of T (v) except for edges incident to a leaf
are contracted, so that T (v) becomes a tree of height 1. If the size of T (v) is
larger than 6n/k, continue traversing T at a child of v.

– For a single leaf l that is not in a bin, the edge between l and its parent is
subdivided to create a new bin root associated with l.

– A bin of size ≤ 3n/k is small. Let b be a small bin, and let v be the parent
of b. If another small bin b′ exists as a child of a sibling of v, b and b′ are
combined to a single bin.

Lemma 1. Algorithm 2 for k-bin decomposition produces a decomposition tree
Tk having at most k bins, where each bin is of size less or equal to 6n/k.

Proof. In Lemma 1 in [14], a proof of an analogous lemma for quartets is given.
The reader is referred to this proof for more details.

As a consequence of the decomposition procedure, the number of bins will be
bounded by k since the merging of small bins in the third step guarantees that
there are not too many small bins. Lemma 1 in [14] shows that the number of
small bins is strictly smaller than twice the number of large bins. Since a large
bin has a size of at least 3n/k, the number of large bins is at most k/3. Let the
number of large bins be l, and the number of small bins be s. Then the total
number of bins is s + l < l + 2l = 3l < 3 · k/3 = k. So, Tk has less than k bins,
each of size at most 6n/k. ��
Let R be the input set of triplet constraints. For any phylogenetic tree T , let RT

denote the subset of triplet constraints in R that are satisfied by T .
Since the decomposition algorithm works by contracting some edges of Topt

and transferring leaves to neighboring bins, it follows that for any triplet {a, b, c}
where a, b and c are in different bins, ab|c ∈ RTk

if and only if ab|c ∈ RTopt
,

¬ab|c ∈ RTk
if and only if ¬ab|c ∈ RTopt

, and similarly, a|b|c ∈ RTk
if and only

if a|b|c ∈ RTopt
, and ¬a|b|c ∈ RTk

if and only if ¬a|b|c ∈ RTopt
.

Lemma 2. The tree Tk that is a k-bin decomposition of Topt satisfies |RTk
∩R| ≥

|RTopt
∩ R| − c

k · n3 input triplet constraints, for some constant c.

Proof. Any triplet topology in RTopt
\ RTk

must have two or more leaves in the
same bin. The number of such triplet topologies with three or two leaves in the
same bin is at most 1/6 (6n/k)3 k + 1/2 (6n/k)2 nk ≤ 24n3/k for k ≥ 6. Each
of the above triplet topologies may contribute to at most four triplet constraints
in R (one fan triplet and three forbidden resolved triplets in the worst case).
Hence, assuming that k ≥ 6, we have |RTk

∩ R| ≥ |RTopt
∩ R| − 96n3/k. ��

Label-to-bin Assignment: Suppose that we are given a kernel K with at
most k leaves of a hypothetical phylogenetic tree distinctly leaf-labeled by S.
The Label-to-Bin Assignment problem (LBA) for a set R of triplet constraints
asks for an assignment of labels in S to at most k bins of size ≤ 6n/k that
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completes K to Tk and maximizes |R ∩ RTk
|. The supertree of K induced by

such an assignment is called a completion of K.
Jiang et al. [14] showed that although the corresponding LBA problem for

unrooted quartets is NP-hard, it admits a PTAS relying on a modified PTAS for
smooth polynomial integer programs by Arora et al. [2]. We adapt this technique
to our problem. First, for every resolved triplet ab|c in R, define the polynomial:

pab|c(x) =
∑

ij|k∈RTk

xaixbjxck + xbixajxck

Here, the term xsb = 1 if label s is assigned to bin b, and 0 otherwise. Next, for
every fan triplet a|b|c in R, define the following polynomial, where Per(a, b, c)
stands for the set of all one-to-one mappings from {a, b, c} to {a, b, c}:

pa|b|c(x) =
∑

i|j|k∈RTk

∑

δ∈Per(a,b,c)

xδ(a)ixδ(b)jxδ(c)k

For every forbidden resolved triplet ¬ab|c in R, define the polynomial:

p¬ab|c(x) = pac|b(x) + pbc|a(x) + pa|b|c(x)

Similarly, for every forbidden fan triplet ¬a|b|c in R, define the polynomial:

p¬a|b|c(x) = pab|c(x) + pac|b(x) + pbc|a(x)

Finally, define:

p(x) =
∑

ab|c∈R

pab|c(x) +
∑

a|b|c∈R

pa|b|c(x) +
∑

¬ab|c∈R

p¬ab|c(x) +
∑

¬a|b|c∈R

p¬a|b|c(x)

The optimization problem becomes: Maximize p(x) subject to
∑k

i=1 xsi = 1 for
each leaf s, and

∑n
s=1 xsi ≤ 6n/k for each bin i. (The first condition ensures that

each label is assigned to exactly one bin and the second condition maintains the
k-bin property.) Our polynomial integer program is an O(1)-smooth degree-3 poly-
nomial integer program according to the following definition from [2]: An O(1) -
smooth degree-d polynomial integer program is to maximize p(x1, ..., xn) subject
to xi ∈ {0, 1}, ∀i ≤ n, where p(x1, ..., xn) is a degree- d polynomial in which the
coefficient of each degree-i monomial (term) is O(nd−i).

Lemma 3. (Arora et al.[2]) Let m be the maximum value of an O(1)-smooth
degree-d polynomial integer program p(x1, ..., xn). For each ε > 0, there is a
polynomial-time algorithm that finds a 0/1 assignment α for the xi satisfying
p(α(x1), ..., α(xn)) ≥ m − εnd.

The PTAS of Arora et al. first solves the fractional version of the problem. It then
rounds the obtained fractional value for each variable individually in order to
obtain an integer solution. However, this is not possible in our case because of
the condition

∑k
i=1 xsi = 1 for each leaf s. Instead, following [14], we set xsi = 1

and xsj = 0 for j 
= i with probability equal the fractional value for xsi. In effect,
exactly one of the variables xs1, ..., xsk is set to 1 and the rest to 0. In analogy
to Theorem 2.6 in [14], we obtain the next lemma.
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Lemma 4. For each ε > 0, there is a polynomial-time algorithm which, for each
instance of the LBA specified by a set R of triplet constraints for dense MTC and
a kernel K, produces a completion T ′ of K such that |RT ′ ∩R| ≥ |RT̂ ∩R|− εn3,
where T̂ is an optimal completion of K.

Topt can be decomposed into a kernel with at most k leaves and k bins of size
≤ 6n/k (i.e., the tree Tk) as shown in Lemmas 1 and 2. Given any input set
of triplet constraints, for each kernel with k leaves, an approximate optimal
assignment of leaves to bins of such size can be found in polynomial time by
Lemma 4. Hence, dense MTC can be approximated in the following way:

Theorem 2. For each ε > 0, there is a polynomial-time algorithm which, for
each instance R of dense MTC, produces a tree Tk that approximates Topt in
such a way that |RTk

∩ R| ≥ (1 − ε)|Ropt ∩ R|.
Proof. Let c be the constant specified in Lemma 2. By Lemmas 2 and 4, |RTk

∩
R| ≥ |RTopt

∩ R| − (c/k + ε′) · n3 ≥ (1 − c/(c′k) − ε′/c′)|RTopt
∩ R|, where c′ is a

constant satisfying |RTopt
∩ R| ≥ c′n3. We estimate this constant by the density

of R and Theorem 1. By picking k ≥ 2c
c′ε and ε′ ≤ c′ε

2 , we obtain the theorem. ��

4 An ETAS for MTC

The following additional notation will be used. For any node u in a phylogenetic
tree T with a leaf label set S = Λ(T ), let Su be the subset of S labeling the
leaves of the subtree rooted at u. For any node v of T , let Pv be the partition
of Sv into Sv1 , ..., Svl

, where v1, ..., vl are the children of v.
For a partition P of U ⊆ S into l subsets, let w2(P ) be the number of resolved

triplets ab|c such that a and b belong to two distinct subsets in P and c /∈ U.
Similarly, let w3(P ) be the number of fan triplets a|b|a such that a, b, c belong
to three different subsets in P. Next, let wf2(P ) be the number of forbidden
resolved triplets ¬ab|c such that a and c belong to two distinct subsets in P and
b /∈ U , or b and c belong to two distinct subsets in P and a /∈ U , or a, b, c belong
to three different subsets in P. Finally, let wf3(P ) be the number of forbidden fan
triplets ¬a|b|c such that two elements in {a, b, c} belong to two distinct subsets
in P and the remaining one does not belong to any of the subsets. We have:

Lemma 5. Given a partition P of U ⊆ S into l subsets, w2(P ), w3(P ), wf2(P )
and wf3(P ) can be computed in O(m + n) time, where m is the number of input
triplet constraints and n is the size of S.

Proof. We “color” the elements in U with l colors according to P and the ele-
ments in S\U with another color, and then examine each input triplet constraint
to check if it increases w2(P ), w3(P ), wf2(P ), or wf3(P ) by one. ��
Remark 2. When l = 2 in Lemma 5, w2(P ) is the same as w(V1, V2) in Wu’s exact
algorithm for MRTC [19]. Theorem 2 in [19] computes w(V1, V2) in O(m + n2)
time, so using our Lemma 5 instead slightly improves the running time of Wu’s
algorithm from O(3n(m + n2)) to O(3n(m + n)).
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Lemma 6. For a phylogenetic tree T with leaves labeled with elements in S, the
number of input triplet constraints consistent with T is equal to

∑
v∈T (w2(Pv)+

w3(Pv) + wf2(Pv) + wf3(Pv)).

We now analyze how much is lost by forcing the solution to an instance of MTC
to be a k-ary phylogenetic tree, defined as a phylogenetic tree in which every
internal node has degree at most k, where k is any integer such that k ≥ 2:

Theorem 3. For any phylogenetic tree T , there exists a k-ary phylogenetic
tree T ′ with Λ(T ′) = Λ(T ) that satisfies at least a fraction of (1 − 12/k) of
the input triplet constraints satisfied by T .

Proof. We shall replace each node v of T having more than k children by a
subtree in which all nodes have at most k children. Let v1,..., vl be the children
of v. Note that l > k. To start with, assign to each forbidden resolved triplet ¬ab|c
contributing to wf2(Pv), either the resolved triplet ac|b, where a and c belong to
distinct Svi

, Svj
and b /∈ Sv, or the resolved triplet bc|a, where a and c belong

to distinct Svi
, Svj

and a /∈ Sv, or the fan triplet a|b|c, where all a, b, c belong
to three distinct Svi

, Svj
, Svq

. Similarly, assign to each forbidden fan triplet
¬a|b|c contributing to wf3(Pv), either the resolved triplet ab|c, where a and b
belong to distinct Svi

, Svj
and c /∈ Sv, or the resolved triplet ac|b, where a and

c belong to distinct Svi
, Svj

and b /∈ Sv, or the resolved triplet bc|a, where a
and c belong to distinct Svi

, Svj
and a /∈ Sv. Let f2(Pv) be the cardinality of

the multiset of assigned resolved triplets and let f3(Pv) be the cardinality of the
multiset of assigned fan triplets. Then wf2(Pv) + wf3(Pv) = f2(Pv) + f3(Pv).

For the sake of the proof, partition the family of subsets Sv1 , ..., Svl
into

k groups uniformly at random. Consider any fan triplet a|b|c contributing to
w3(Pv) (i.e., having each of its elements in a distinct Svi

) or to f3(Pv) (i.e., being
assigned to a forbidden resolved triplet). The probability that any two elements
in {a, b, c} fall into the same group is bounded from above by 1/k + 2/k ≤ 3/k.
Hence, there exists a partition of the family of Sv1 , ..., Svl

into k groups such
that at least a (1 − 3/k) fraction of triples a|b|c contributing to w3(Pv) + f3(Pv)
will have all its elements in three different groups. For each group g in the latter
partition, first construct an arbitrary rooted resolved tree Fg whose leaves are
labeled by the children vi of v for which Svi

∈ g and then replace each leaf
labeled by vi in Fg by the subtree of T rooted at vi. Next, delete the edges in T
connecting v with its children and instead connect v to the roots of the trees Fg

by edges. Observe that the same fan triplet may contribute to w3(Pv) and it may
also contribute up to three times to f3(Pv), (i.e., it may be assigned to up to
three forbidden triplets contributing to wf2(Pv)). It follows that the sum of the
new value of w3(Pv) + f3(Pv) (provided that we keep the same assignments if
possible) is at least (1−4·3/k) of the sum of the previous value of w3(Pv)+f3(Pv).

In turn, consider any resolved triplet ab|c that contributes to w2(Pv) or to
f2(Pv) (i.e., is assigned to a forbidden resolved triplet contributing to wf2(Pv)
or a forbidden fan triplet contributing to wf3(Pv)). After the transformation of
T , the following holds: If the labels a and b belong to subsets in the same group
g then ab|c can neither contribute to w2(Pv) nor to f2(Pv) (i.e., to be assigned to
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a forbidden resolved triplet contributing to wf2(Pv) or to a forbidden fan triplet
contributing to wf3(Pv)). On the other hand, there must exist a non-leaf node
u of the binary tree Fg for which ab|c correspondingly contributes to w2(Pu), or
it can be assigned to the same forbidden resolved triplets now contributing to
wf2(Pu), or it can be assigned to the same forbidden fan triplets now contributing
to wf3(Pu). Thus, by extending the notation f2( ) to include f2(Pt), the sum of
w2(Pt)+f2(Pt) over the tree nodes t does not change. The theorem follows from
Lemma 6. ��
Motivated by Theorem 3, our new approximation algorithm in this section con-
structs a k-ary phylogenetic tree consistent with the maximum possible number
of input triplet constraints for some suitable value of k. For this purpose, we
generalize Wu’s algorithm [19] for MRTC which always outputs a binary phylo-
genetic tree, i.e., corresponding to the special case k = 2. We also need to extend
Wu’s algorithm to allow not only resolved triplets in the input.

Our new algorithm works as follows. For each non-singleton subset U of S,
define score(U) recursively by score(U) = maxk

l=2 scorel(U), where scorel(U) =

max
l−partition U1...,Ul of U

l∑

i=1

score(Ui) +
3∑

j=2

wj(U1, .., Ul) + wfj(U1, ..., Ul)

For a singleton U , score(U) is set to 0. As in Wu’s algorithm [19], score(U)
is evaluated in non-decreasing order of the sizes of subsets U of S. Then, the
output phylogenetic tree is constructed by a traceback, starting from score(S),
and picking an l-partition of the current subset U that yields the maximum value
of score(U). The corresponding node of the constructed tree gets l children in
one-to-one correspondence with the subsets of U forming the selected partition.

It follows by induction on |U | and Lemma 6 that score(U) equals the maxi-
mum number of input triplets that can be satisfied by a k-ary subtree leaf-labeled
by U . This yields the optimality of the tree constructed during the traceback.

There are
(
n
q

)
subsets U of S with q elements. The number of l-partitions of a

subset U with q elements is lq. Therefore, the total number of subsets partitions
processed by our algorithm is

∑n
q=1

(
n
q

) ∑k
�=2 �q ≤ ∑k

�=2(� + 1)n ≤ (k + 1)n+1

by binomial expansion. Finally, by Lemma5, for a given partition P of U ⊆ S
into l subsets, the weights w2(P ), w3(P ), wf2(P ) and wf3(P ) can be computed
in O(m + n) time, where m is the number of input triplet constraints and n is
the size of S. We conclude that our algorithm runs in O((k+1)n+1(m+n)) time,
i.e., in O(2(n+1) log2(k+1)(m + n)) time.

Theorem 4. Let S be a set of n distinct labels and let k be an integer greater
than 1. For any set R of m (resolved or forbidden resolved or fan or forbid-
den fan) triplet constraints on S, one can find a k-ary phylogenetic tree T with
Λ(T ) = S that maximizes the number of satisfied triplet constraints in R among
all k-ary phylogenetic trees in O(2(n+1) log2(k+1)(m + n)) time.

By combining Theorems 3 and 4, we obtain an exponential-time approximation
scheme (ETAS) for the maximum rooted triplets consistency problem:
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Theorem 5. Let S be a set of n distinct labels and let ε > 0 be a constant.
For any set R of m (resolved or forbidden resolved or fan or forbidden fan)
triplet constraints on S, one can find a phylogenetic tree T with Λ(T ) = S in
O(2(n+1) log2(�12/ε�+1)(m + n)) time satisfying at least (1 − ε) of the maximum
number of triplet constraints in R that can be satisfied in any phylogenetic tree.

5 Extensions to the Weighted Case

Having input triplet constraints in the form of rooted triplets and forbidden
rooted triplets, it is natural to assign nonnegative real weights to them. Note that
¬a|b|c is equivalent to the conjunction of ¬ab|c, ¬ac|b and ¬bc|a. Consequently,
MTC generalizes to the maximum weighted rooted triplet consistency problem
(MWTC), where the objective is to construct a phylogenetic tree that maximizes
the total weight of the satisfied input triplet constraints.

By Theorem 4 in [8], the 1/3-approximation algorithm for MRTC in [8] works
for the weighted version of MRTC as well. Hence, the 1/4-approximation algo-
rithm for MTC in Sect. 2 immediately generalizes to MWTC by considering
sums of weights of input triplet constraints belonging to the appropriate subsets
instead of just the cardinalities of the subsets. Our exact algorithm for MTC in
Sect. 4 similarly generalizes to MWTC by considering sums of the weights of the
respective triplet constraints instead of their numbers. However, the situation is
a bit more subtle for our PTAS for dense MTC in Sect. 3 and our ETAS for MTC
in Sect. 4. Because of Lemma 2 and Theorem 3, respectively, where in both cases
some fraction of the triplet constraints may be lost, we need to assume that the
maximum triplet constraint weight is at most O(1) times larger than the min-
imum one in order to generalize both approximation schemes to the weighted
case. Furthermore, in our PTAS, the polynomials in one-to-one correspondence
with the input triplet constraints in the definition of the integer program have
to be multiplied by the weight of the corresponding constraint.

6 Final Remarks

MTC is APX-complete by the APX-completeness of MRTC [4] and Theorem 1.
An open problem is to improve the polynomial-time approximation ratios 1/3
and 1/4 for MRTC and MTC; by applying the technique in Sect. 2, an f -
approximation for the former would give an f

1+f -approximation for the latter.
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