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Abstract. The buy-at-bulk network design problem has been extensively stud-
ied in the general graph model. In this paper we consider the geometric version
of the problem, where all points in a Euclidean space are candidates for net-
work nodes. We present the first general approach for geometric versions of ba-
sic variants of the buy-at-bulk network design problem. It enables us to obtain
quasi-polynomial-time approximation schemes for basic variants of the buy-at-
bulk geometric network design problem with polynomial total demand. Then, for
instances with few sinks and low capacity links, we design very fast polynomial-
time low-constant approximations algorithms.

1 Introduction

Consider a water heating company that plans to construct a network of pipelines to carry
warm water from a number of heating stations to a number of buildings. The company
can install several types of pipes of various diameters and prices per unit length. Typ-
ically, the prices grow with the diameter while the ratio between the pipe throughput
capacity and its unit price decreases. The natural goal of the company is to minimize
the total cost of pipes sufficient to construct a network that could carry the warm water
to the buildings, assuming a fixed water supply at each source. Similar problems can
be faced by oil companies that need to transport oil to refineries or telecommunication
companies that need to buy capacities (in bulk) from a phone company.
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The common difficulty of these problems is that only a limited set of types of links
(e.g., pipes) is available so the price of installing a link (or, a node respectively) to carry
some volume of supply between its endpoints does not grow in linear fashion in the
volume but has a discrete character. Even if only one type of link with capacity not less
than the total supply is available the problem is NP-hard as it includes the minimum
Steiner tree problem. Since the geometric versions of the latter problem are known
to be strongly NP-complete [11], these problems cannot admit fully polynomial-time
approximations schemes in the geometric setting [11].

In operations research, they are often termed as discrete cost network optimization
[4,20] whereas in computer science as minimum cost network (or, link/edge) installa-
tion problems [23] or as buy-at-bulk network design [3]; we shall use the latter term.

In computer science, the buy-at-bulk network design problem has been introduced
by Salman et al. [23], who argued that the case most relevant in practice is when the
graph is defined by points in the Euclidean plane. Since then, various variants of
buy-at-bulk network design have been extensively studied in the graph model
[3,5,6,7,10,12,13,14,15,17,19] (rather than in geometric setting). Depending on whether
or not the whole supply at each source is required to follow a single path to a sink they
are characterized as non-divisible or divisible [23]. In terms of the warm water supply
problem, the divisible graph model means that possible locations of the pipes and their
splits or joints are given a priori.

In this paper, we consider the following basic geometric divisible variants of the
buy-at-bulk network design:

� Buy-at-bulk geometric network design (BGND): for a given set of different edge
types and a given set of sources and sinks placed in a Euclidean space construct a
minimum cost geometric network sufficient to carry the integral supply at sources
to the sinks.

� Buy-at-bulk single-sink geometric network design (BSGND): for a given set of dif-
ferent edge types, a given single-sink and given set of sources construct a minimum
cost geometric network sufficient to carry the integral supply at sources to the sink.

Motivated by the practical setting in which the underlying network has to posses
some basic structural properties, we distinguish also special versions of both problems
where each edge of the network has to be parallel to one of the coordinate system
axes, and term them as buy-at-bulk rectilinear network design (BRND) and buy-at-bulk
single-sink rectilinear network design (BSRND), respectively.

Our contributions and techniques. A classical approach for approximation algorithms
for geometric optimization problems builds on the techniques developed for polynomial-
time approximation schemes (PTAS) for geometric optimization problems due to Arora
[1]. The main difficulty with the application of this method to the general BGND prob-
lem lies in the reduction of the number of crossings on the boundaries of the dissection
squares. This is because we cannot limit the number of crossings of a boundary of a
dissection square below the integral amount of supply it carries into that square. On the
other hand, we can significantly limit the number of crossing locations at the expense
of a slight increase in the network cost. However with this relaxed approach we can-
not achieve polynomial but rather only quasi-polynomial upper bounds on the number
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of subproblems on the dissection squares in the dynamic programming phase but for
very special cases (cf. [2]). Furthermore, the subproblems, in particular the leaf ones,
become much more difficult. Nevertheless, we can solve them exactly in the case of
BRND with polynomially bounded demands of the sources and nearly-optimally in the
case of BGND with polynomially bounded demands of the sources and constant edge
capacities, in at most quasi-polynomial time1.

As the result, we obtain a randomized quasi-polynomial-time approximation scheme
(QPTAS) for the divisible buy-at-bulk rectilinear network design problem in the Eu-
clidean plane with polynomially bounded total supply and a randomized QPTAS for the
divisible buy-at-bulk network design problem on the plane with polynomially bounded
total supply and constant edge capacities. Both results can be derandomized and the
rectilinear one can be generalized to include O(1)-dimensional Euclidean space. They
imply that the two aforementioned variants of buy-at-bulk geometric network design
are not APX-hard, unless SAT ∈ DTIME[nlogO(1) n].

These two results are later used to prove our further results about low-constant-factor
approximations for more general geometric variants. By using a method based on a
novel belt decomposition for the single-sink variant, we obtain a (2+ ε) approximation
to the divisible buy-at-bulk rectilinear network design problem in the Euclidean plane,
which is fast if there are few sinks and the capacities of links are small; e.g., it runs in
n(log n)O(1) time if the number of sinks and the maximum link capacity are polyloga-
rithmic in n. Similarly, we obtain a (2+ε) approximation to the corresponding variants
of the divisible buy-at-bulk network design problem in the Euclidean plane, which are
fast if there are few sinks and the capacities of links are small, e.g., n(log n)O(1)-time
if the number of sinks is polylogarithmic in n and maximum link capacity is O(1). For
comparison, the best known approximation factor for single-sink divisible buy-at-bulk
network design in the graph model is 24.92 [13].

Related work. Salman et al. [23] initiated the algorithmic study of the single-sink buy-
at-bulk network design problem. They argued that the problem is especially relevant
in practice in the geometric case and they provided a polynomial-time approximation
algorithm for the indivisible variant of BSGND on the input Euclidean graph (which
differs from our model in that Salman et al. [23] allowed only some points on the plane
to be used by the solution, whereas we allow the entire space to be used) with the
approximation guarantee of O(log D), where D is total supply. Salman et al. gave also
a constant factor approximation for general graphs in case where only one sink and one
type of links is available; this approximation ratio has been improved by Hassin et al.
[15]. Mansour and Peleg [18] provided an O(log n) approximation for the multi-sink
buy-at-bulk network design problem when only one type of link is available. Awerbuch
and Azar [3] were the first who gave a non-trivial (polylogarithmic) approximation
for the general graph case for the total of n sinks and sources even in the case where
different sources have to communicate with different sinks.

In the single-sink buy-at-bulk network design problem for general graphs, Garg et al.
[12] designed an O(K) approximation algorithm, where K is the number of edge types,

1 Our solution method does not work in quasi-polynomial time in the case of the stronger version
of BRND and BGND where specified sources must be assigned to specified sinks [3].
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and later Guha et al. [14] gave the first constant-factor approximation algorithm for the
(non-divisible) variant of the problem. This constant has been reduced in a sequence
of papers [10,13,17,24] to reach the approximation ratio of 145.6 for the non-divisible
variant and 24.92 for the divisible variant. Recently, further generalizations of the buy-
at-bulk network design problem in the graph model have been studied [5,6].

2 Preliminaries

Consider a Euclidean d-dimensional space E
d. Let s1, . . . , sns be a given set of ns

points in E
d (sources) and t1, . . . , tnt be a given set of nt points in E

d (sinks). Each
source si supplies some integral demand d(si) to the sinks. Each sink tj is required to
receive some integral demand d(tj). The sums

∑
i d(si),

∑
j d(tj) are assumed to be

equal and their value is termed as the total demand D. There are K types of edges, each
type with a fixed cost and capacity. The capacity of an edge of type i is ci and the cost
of placing an edge e of ith type and length |e| is |e| · δi.

The objective of the buy-at-bulk geometric network design problem (BGND) is to
construct a geometric directed multigraph G in E

d such that:

• each copy of a multi-edge in the network is one of the K types;
• all the sources si and the sinks tj belong to the set of vertices of G (the remaining

vertices are called Steiner vertices);
• for � = 1, . . . , D, there is a supply-demand path (sd-path for short) P� from a

source si to a sink tj such that each source si is a startpoint of d(si) sd-paths, each
sink tj is an endpoint of d(tj) sd-paths, and for each directed multi-edge of the
multigraph the total capacity of the copies of this edge is not less than the total
number of sd-paths passing through it;

• the multigraph minimizes the total cost of the copies of its multi-edges.

If the set of sinks is a singleton then the problem is termed as the buy-at-bulk single-
sink geometric network design problem (BSGND for short). If the multigraph is re-
quired to be rectilinear, i.e., only vertical and horizontal edges are allowed, then the
problem is termed as the buy-at-bulk rectilinear network design problem (BRND for
short) and its single-sink version is abbreviated as BSRND.

We assume, that the types of the edges are ordered c1 < · · · < cK , δ1 < · · · < δK

and δ1
c1

> · · · > δK

cK
, since otherwise we can eliminate some types of the edges [23].

In this paper, we will always assume that the Euclidean space under consideration is
a Euclidean plane E

2, even though the majority of our results can be generalized to any
Euclidean O(1)-dimensional space.

Zachariasen [25] showed that several variants and generalizations of the minimum
rectilinear Steiner problem in the Euclidean plane are solvable on the Hanan grid of the
input points, i.e., on the grid formed by the vertical and horizontal straight-lines passing
through these points. The following lemma extends this to BRND.

Lemma 1. Any optimal solution to BRND in the plane can be converted into a planar
multigraph (so the sd-paths do not cross) where all the vertices lie on the Hanan grid.
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3 Approximating Geometric Buy-at-Bulk Network Design

In this section, we present our QPTAS for BRND and BGND. We begin with general-
izations of several results from [1,22] about PTAS for TSP and the minimum Steiner
tree in the plane. We first state a generalization of the Perturbation Lemma from [1,22].

Lemma 2. [22] Let G = (V, E) be a geometric graph with vertices in [0, 1]2, and let
U ⊆ V . Denote by E(U) the set of edges incident to the vertices in U . One can perturb
the vertices in U so they have coordinates of the form ( i

k , j
k ), where i, j are natural

numbers not greater than a common natural denominator k, and the total length of G
increases or decreases by an additive term of at most

√
2 · |E|/k.

Consider an instance of BGND or BRND with sources s1 . . . sns and sinks t1 . . . tnt .
We may assume, w.l.o.g., that the sources and the sinks are in [0, 1)2.

Suppose that the total demand D is nO(1) where n = ns + nt. It follows that the
maximum degree in a minimum cost multigraph solving the BGND or BRND is nO(1).
Hence, the total number of copies of edges incident to the sources and sinks in the
multigraph is also, w.l.o.g., nO(1) = nO(1) × n. In the case of BRND, we infer that
even the total number of copies of edges incident to all vertices, i.e., including the
Steiner points, is, w.l.o.g., nO(1) = nO(1) × O(n2) by Lemma 1.

Let δ > 0. By using a straightforward extension of Lemma 2 to include a geometric
multigraph and rescaling by L = nO(1)

δ the coordinates of the sources and sinks, we can
alter our BGND or BRND with all vertices on the Hanan grid such that:

• the sources and sinks of the BGND and BRND as well as the Steiner vertices of
the BRND lie on the integer grid in [0, L)2, and

• for any solution to the BGND with the original sources and sites (or, BRND with
all vertices on the Hanan grid) and for any type of edge, the total length of copies of
edges of this type in the solution resulting for the BGND with the sources and sinks
on the integer grid (or, for BRND with all vertices on the integer grid, respectively)
is at most L(1 + δ) times larger, and

• for any solution to the BGND with the sources and sinks on the integer grid (or,
for BRND with all vertices on the integer grid, respectively), the total length of
copies of edges of this type in the solution resulting for the BGND with the orig-
inal sources and sites (or, BRND with all vertices on the Hanan grid) is at most
(1 + δ)/L times larger.

Note the second and the third properties imply that we may assume further that our
input instance of BGND has sources and sinks on the integer grid in [0, L)2, since
this assumption introduces only an additional (1 + δ) factor to the final approximation
factor. We shall call this assumption the rounding assumption. In the case of BRND,
we may assume further, w.l.o.g., not only that our input instance has sources and sinks
on the integer grid but also that Steiner vertices may be located only on this grid by the
second and third property, respectively. This stronger assumption in the case of BRND
introduces also only an additional (1+ δ) factor to the final approximation factor by the
aforementioned properties. We shall term it the strong rounding assumption.

Now we pick two integers a and b uniformly at random from [0, L) and extend the
grid by a vertical grid lines to the left and L − a vertical grid lines to the right. We
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similarly increase the height of the grid using the random integer b, and denote the
obtained grid by L(a, b). Next, we define the recursive decomposition of L(a, b) by
dissection squares using quadtree. The dissection quadtree is a 4-ary tree whose root
corresponds to the square L(a, b). Each node of the tree corresponding to a dissection
square of area greater than 1 is dissected into four child squares of equal side length; the
four child squares are called siblings. The obtained quadtree decomposition is denoted
by Q(a, b).

We say a graph G is r-light if it crosses each boundary between two sibling dissection
squares of Q(a, b) at most r times. A multigraph H is r-fine if it crosses each boundary
between two sibling dissection squares of Q(a, b) in at most r places. For a straight-line
segment � and an integer r, an r-portal of � is any endpoint of any of the r segments of
equal length into which � can be partitioned.

3.1 QPTAS for Buy-at-Bulk Rectilinear Network Design (BRND)

We obtain the following new theorem which can be seen as a generalization of the
structure theorem from [1] to include geometric multigraphs, where the guarantee of
r-lightness is replaced by the weaker guarantee of r-fineness.

Theorem 1. For any ε > 0 and any BRND (or BGND, respectively) on the grid L(a, b),
there is a multigraph on L(a, b) crossing each boundary between two sibling dissec-
tion squares of Q(a, b) only at O(log L/ε)-portals, being a feasible solution of BRND
(BGND, respectively) and having the expected length at most (1 + ε) times larger than
the minimum.

To obtain a QPTAS for an arbitrary BRND with polynomial total demand in the Eu-
clidean plane it is sufficient to show how to find a minimum cost multigraph for BRND
on L(a, b) which crosses each boundary between two sibling dissection squares of
Q(a, b) only at r-portals efficiently, where r = O(log n/ε).

We specify a subproblem in our dynamic programming method by a dissection
square occurring in some level of the quadtree Q(a, b), a choice of crossing points
out of the O(r)-portals on the sides of the dissection square, and for each of the chosen
crossing points p, an integral demand d(p) it should either supply to or receive from
the square (instead of the pairing of the distinguished portals [1]). By the upper bound
D ≤ nO(1), we may assume, w.l.o.g., that d(p) = nO(1). Thus, the total number of such
different subproblem specifications is easily seen to be nO(r). The aforementioned sub-
problem consists of finding a minimum cost r-fine rectilinear multigraph for the BRND
within the square, where the sources are the original sources within the square and the
crossing points expected to supply some demand whereas the sinks are the original
sinks within the square and the crossing points expected to receive some demand.

Each leaf subproblem, where the dissection square is a cell of L(a, b) and the original
sources and sinks may be placed only at the corners of the dissection square, and the
remaining O(r) ones on the boundary of the cell, can be solved by exhaustive search
and dynamic programming as follows. By Lemma 1, we may assume, w.l.o.g., that
an optimal solution of the subproblem is placed on the Hanan O(r) × O(r) grid. We
enumerate all directions and total capacity assignments to the edges of the grid in time
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nO(r) by using the nO(1) bound on the total demand. For each such grid edge with non-
zero total capacity assigned, we find (if possible) the cheapest multi-covering of this
capacity with different edge types with capacity bounded by the total demand by using
a pseudo-polynomial time algorithm for the integer knapsack problem [11]. Next, we
compare the cost of such optimal multi-covering with the cost of using a single copy of
the cheapest edge type whose capacity exceeds the total demand (if any) to choose an
optimal solution. It follows that all the leaf subproblems can be solved in time nO(r2).

Then, we can solve subproblems corresponding to consecutive levels of the quadtree
Q(a, b) in a bottom up fashion by combining optimal solutions to four compatible sub-
problems corresponding to the four dissection squares which are children of the dis-
section square in the subproblem to solve. The compatibility requirement is concerned
with the location of the crossing points and their demand requirements. Since there are
nO(r) subproblems, solution of a single subproblem also takes nO(r) time.

The bottleneck in the complexity of the dynamic programming are the leaf subprob-
lems. If we could arbitrarily closely approximate their solutions in time nO(r) then we
could compute a minimum cost r-fine multigraph for BRND on L(a, b) with polyno-
mially bounded total demand in time nO(r). The following lemma will be helpful.

Lemma 3. For any ε > 0, one can produce a feasible solution to any leaf subproblem
which is within (1 + ε) from the minimum in time nO(log2 r).

By halving ε both in the dynamic programming for the original problem as well as in
Lemma 3 and using the method of this lemma to solve the leaf subproblems, we obtain
the following lemma.

Lemma 4. A feasible r-fine multigraph for BRND on L(a, b)with polynomially bounded
total demand and total cost within 1 + ε from the optimum is computable in time nO(r).

By combining Theorem 1 with Lemma 4 for r = O( log n
ε ) and the fact that the rounding

assumption introduces only an additional factor of (1 + O(ε)) to the approximation
factor, we obtain our first result.

Theorem 2. For any ε > 0, there is a randomized nO(log n/ε)-time algorithm for BRND
in the Euclidean plane with a total of n sources and sinks and total demand polynomial
in n, which yields a solution whose expected cost is within (1 + ε) of the optimum.

Theorem 2 immediately implies the following result for BGND (which will be substan-
tially subsumed in Section 3.2 in the case of constant maximum edge capacity).

Corollary 1. For any ε > 0, there is a randomized nO(log n/ε)-time algorithm for
BGND in the Euclidean plane with the total of n sources and sinks and with polynomial
in n total demand, which yields a solution whose expected cost is within (

√
2 + ε) from

the optimum.

3.2 QPTAS for the Buy-at-Bulk Geometric Network Design Problem (BGND)

We can arbitrarily closely approximate BGND analogously as BRND if it is possible to
solve or very closely approximate the leaf subproblems where all the sources and sinks
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are placed in O(log n/ε) equidistant portals on a boundary of a dissection square, and
feasible solutions are restricted to the square area. Note that such a leaf subproblem is
logarithmic as for the number of sources and sinks but the total capacity of its sources
or sinks might be as large as the total capacity D of all sources. We shall assume D to
be polynomial in the number of sinks an sources as in the previous section.

By an h-square BGND, we mean BGND restricted to instances where h sources and
sinks are placed on a boundary of a square. By a logarithmic square BGND, we mean
an h-square BGND where the total demand of the sources is O(log n).

Lemma 5. If there is an nO(log n)-time approximation scheme for a logarithmic square
BGND then there is an nO(log n)-time approximation scheme for an O(log n)-square
BGND with maximum edge capacity O(1).

Proof. Let D denote the total capacity of the sources in the h-square BGND, where h =
O(log n). Consider an optimal solution to the h-square BGND. It can be decomposed
into D sd-paths, each transporting one unit from a source to a sink. There are O(h2)
types of the sd-paths in one-to-one correspondence with the O(h2) pairs source-sink.
Analogously as in the rectilinear case (see Lemma 1), we may assume, w.l.o.g., that the
sd-paths do not intersect and that that the minimum edge capacity is 1. Let M be the
maximum edge capacity in the h-square BGND.

For a type t of sd-path, let Nt be the number of sd-paths of type t in the optimal
solution. Since these sd-paths do not intersect, we can number them, say, in the cyclic
ordering around their common source, with the numbers in the interval [1, Nt]. Note
that each of these paths whose number is in the sub-interval [M, Nt − M + 1] can use
only edges which are solely used by sd-paths of this type in the optimal solution. Let
k = � 1

ε�, and let � be the ratio between the cost δ1 (per length unit) of an edge of
capacity 1 and the cost δmax of an edge of the maximum capacity M divided by M .
Suppose that Nt ≥ M + �kM + 2(M − 1). Let q = 	(Nt − 2(M − 1))/M
.

Consider the following modification of the optimal solution. Group the consecutive
bunches of M sd-paths of type t in the sub-interval [M, qM − 1], and direct them
through q directed edges of capacity M from the source to the sink corresponding to
the type t. Remove all edges in the optimal solution used by these sd-paths in this sub-
interval. Note that solely at most M − 1 sd-paths of the type t immediately to the left
of [M, Nt −M + 1] as well as at most M − 1 sd-paths of the type t immediately to the
right of this interval can loose their connections to the sink in this way. Independently
of whether such a path looses its connection or not, we direct it through a direct edge of
capacity 1 from the source to the sink.

The total cost of the directed edges of capacity M from the source to the sink in the
distance d is qδmaxd. It yields the lowest possible cost per unit, sent from the source to
the sink corresponding to t, equal to δmax

M d. Thus the total cost of the removed edges
must be at least qδmaxd ! The additional cost of the 2(M − 1) direct edges of capacity
1 from the source to the sink is ≤ ε fraction of qδmaxd by our assumption on Nt.

By starting from the optimal solution and performing the aforementioned modifica-
tion of the current solution for each type t of sd-path satisfying Nt ≥ M + �kM +
2(M − 1), we obtain a solution which is at most (1 + ε) times more costly than the
optimal, and which is decomposed into two following parts. The first, explicitly given
part includes all sd-paths of type t satisfying Nt ≥ M + �kM +2(M − 1) whereas the
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second unknown part includes all paths of types t satisfying Nt < �kM + 2(M − 1).
It follows that it is sufficient to have an (1 + ε)-approximation of an optimal solution to
the logarithmic square BGND problem solved by the second part in order to obtain an
(1 + O(ε))-approximation to the original h-square BGND. ��
Lemma 6. For any ε > 0, the logarithmic square BGND problem with the total ca-
pacity of the sources D can be (1 + ε)-approximated in time (D/ε)O(D(log D/ε)) if
cmax = O(1).

By combining Lemma 5 with Lemma 6 for D = O(log n/ε) and straightforward cal-
culations, we obtain an arbitrarily close to the optimum solutions to the nO(log n/ε) leaf
problems in total time nO(log n/εO(1)). Hence, analogously as in case of BRND, we
obtain a QPTAS for BGND with polynomially bounded demand when cmax = O(1).

Theorem 3. BGND with polynomially bounded demand of the sources and constant
maximum edge capacity admits an nO(log n)-time approximation scheme.

4 Fast Low-Constant Approximation for BRND and BGND

In this section, we present another method for BGND and BRND which runs in polyno-
mial time, gives a low-constant approximation guarantee, and does not require a polyno-
mial bound on the total demand. The method is especially efficient if the edge capacities
are small and there are few sinks.

We start with the following two simple lemmas. The first lemma is analogous to the
so-called routing lower bound from [18,23] and the second follows standard arguments.

Lemma 7. Let S be the set of sources in an instance of BGND (BRND), and for each
s ∈ S, let t(s) be the closest sink in this instance. The cost of an optimal solution to the
BGND (BRND, respectively) is at least

∑
s∈S dist(s, t(s)) δK

cK
d(s), where dist(s, t(s))

is the Euclidean distance (the L1 distance, respectively).

Lemma 8. Let S be a set of k points within a square of side length �. One can find in
time O(k) a Steiner tree of S with length O(�

√
k).

The following lemma describes a simple reduction procedure which yields an almost
feasible solution to BSGND or BSRND with cost arbitrarily close to the optimum.

Lemma 9. For any ε > 0, there is a reduction procedure for BSGND (or BSRND, re-
spectively), with one sink and n − 1 sources and the ratio between the maximum and
minimum distances of a source from the sink equal to m, which returns a multigraph
yielding a partial solution to the BSGND (or BSRND, respectively) satisfying the fol-
lowing conditions:

• all but O((1
ε )2c2

K log m) sources can ship their whole demand to the sink;
• for each source s there are at most cK − 1 units of its whole demand d(s) which

cannot be shipped to the sink.

The reduction runs in time O( cK

ε log m log n + cKn), which is O(n/ε2) if cK = O(1).
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Proof. Form a rectilinear 2	m
×2	m
 grid F with unit distance equal to the minimum
distance between the only sink t and a source, centered around t. Let μ be a positive
constant to be set later.

We divide F into the square R of size 2	μ√cK
 centered in t and for i = 0, 1, . . . ,
the belts Bi of squares of size 2i within the L∞ distance at least 2i	μ√cK
 and
at most 2i+1	μ√cK
 from t. Note that the number of squares in the belt Bi is at
most (4	μ√cK
)2 = O(μ2cK), hence the total number of squares in all the belts is
O(μ2cK log m) by the definition of the grid.

The reduction procedure consists of two phases. In the first phase, we connect each
source s by a multi-path composed of �d(s)/cK� copies of a shortest path from s to t
implemented with the K-th type of edges. Observe that the average cost of such a con-
nection per each of the cK�d(s)/cK� demand units u shipped from s to t is dist(s, t) δK

cK

which is optimal by Lemma 7. Note that after the first phase the remaining demand for
each source is at most cK − 1 units.

In the second phase, for each of the squares Q in each of the belts Bi, we sum the
remaining demands of the sources contained in it, and for each complete cK-tuple of
demand units in Q, we find a minimum Steiner multi-tree of their sources and connect
its vertex v closest to t by a shortest path to t. The total length of the resulting multi-tree
is easily seen to be dist(v, t) + O(2i√cK) ≤ (1 + O( 1

μ ))dist(v, t) by the definition
of the squares and Lemma 8. Hence, for each unit u in the cK-tuple originating from
its source s(u), we can assign the average cost of connection to t by the multi-tree
implemented with the K-th type of edges not greater than (1 + O( 1

μ))dist(s(u), t) δK

cK
.

It follows by Lemma 7 that the total cost of the constructed network is within
(1+O( 1

μ)) from the minimum cost of a multigraph for the input BSGND. By choosing
μ appropriately large, we obtain the required 1 + ε-approximation.

Since the total number of squares different from R is O(μ2cK log m), the total num-
ber of their sources with a non-zero remaining demand (at most cK − 1 units) to ship is
O(μ2c2

K log m). Furthermore, since the square R can include at most O(μ2cK) sources,
the number of sources with a non-zero remaining demand (at most cK − 1 units) in R
is only O(μ2cK).

The first phase can be implemented in time linear in the number of sources. The sec-
ond phase requires O(μ2cK log m) range queries for disjoint squares and O(cKn/cK)
constructions of Steiner trees on cK vertices using the method of Lemma 8. Thus it
needs O(μ2cK log m logn + cKn) time by [21] and Lemma 8. Since, w.l.o.g, μ =
O(1

ε ), we conclude that the whole procedure takes O( cK

ε2 log m logn + cKn) time. ��

Extension to BRND and BGND. We can generalize our reduction to include nt sinks
by finding the Voronoi diagram in the L2 (or L1 for BGND) metric on the grid, lo-
cating each source in the region of the closest sink, and then running the reduction
procedure separately on each set of sources contained in a single region of the Voronoi
diagram. The construction of the Voronoi diagram and the location of the sources takes
time O(n log n) (see [16,21]). The nt runs of the reduction procedure on disjoint sets
of sources takes time O((1

ε )2ntcK log m log n + cKn). The union of the nt result-
ing multigraphs may miss to ship the whole demand only from O((1

ε )2ntc
2
K log m)

sources. This gives the following generalization of Lemma 9.
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Lemma 10. For any ε > 0, there is a reduction procedure for BGND (or BRND, resp.),
with nt sinks and n − nt sources and the ratio between the maximum and minimum
distances of a source from the sink equal to m, which returns a multigraph yielding a
partial solution to the BGND (or BRND, resp.) satisfying the following conditions:

• all but O((1
ε )2ntc

2
K log m) sources can ship their whole demand to the sink;

• for each source s there are at most cK − 1 units of its whole demand d(s) which
cannot be shipped to the sink.

The reduction procedure runs in time O((1
ε )2ntcK log m log n + n(cK + log n)). In

particular, if cK = (log n)O(1) then the running time is (1
ε )2n log m(log n)O(1).

Now, we are ready to derive our main results in this section.

Theorem 4. For any ε > 0, there is a (2 + ε)-approximation algorithm for BRND with
nt sinks and n−nt sources in the Euclidean plane, running in time O((1

ε )2ntcK log2 n+

n(log n + cK)) + (ntc
2
K log n)O(

log nt+log cK
ε2 ), in particular in time n(log n)O(1) +

(log n)O( log log n

ε2 ) if nt = (log n)O(1) and cK = (log n)O(1).

Proof. By the rounding assumption discussed in Section 3 we can perturb the sinks
and the sources so they lie on an integer grid of polynomial size introducing only an
additional (1 + O(ε)) factor to the final approximation factor. The perturbation can be
easily done in linear time. Next, we apply the reduction procedure from Lemma 10 to
obtain an almost feasible solution of total cost not exceeding (1 + O(ε)) of that for the
optimal solution to the BSRND on the grid. Note that m ≤ nO(1) and hence log m =
O(log n) in this application of the reduction by the polynomiality of the grid. It remains
to solve the BRND subproblem for the O((1

ε )2ntcK log n) remaining sources with total
remaining demand polynomial in their number. This subproblem can be solved with the
randomized (1+O(ε))-approximation algorithm of Theorem 2. In fact, we can use here

also its derandomized version which will run in time (ntc
2
K log n)O(

log nt+log cK
ε2 ). ��

As an immediate corollary from Theorem 4, we obtain a (
√

8 + ε)-approximation al-
gorithm for BGND with nt sinks and n − nt sources in the Euclidean plane, running

in time O((1
ε )2ntcK log2 n + n(log n + cK)) + (ntc

2
K log n)O(

log nt+log cK
ε2 ). However,

the direct method analogous to that of Theorem 4 yields a better approximation, in
particular also an (2 + ε)-approximation if cK = O(1).

Theorem 5. For any ε > 0, there is a (1 +
√

2 + ε)-approximation algorithm for
BGND with nt sinks and n − nt sources in the Euclidean plane, running in time

O((1
ε )2ntcK log2 n + n(log n + cK)) + (ntc

2
K log n)O(

log nt+log cK
ε2 ); the running time

is n(log n)O(1) +(logn)O( log log n

ε2 ) if nt = (log n)O(1) and cK = (log n)O(1). Further-
more, if cK = O(1) then the approximation factor of the algorithm is 2 + ε.

5 Final Remarks

We have demonstrated that BRND and BGND in a Euclidean space admit close ap-
proximation under the assumption that the total demand is polynomially bounded. By
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running the first phase of the reduction procedure from Lemma 9 as a preprocessing,
we could get rid of the latter assumption at the expense of worsening the approximation
factors by the additive term 1.

All our approximation results for different variants of BRND in Euclidean plane
derived in this paper can be generalized to include corresponding variants of BRND in
a Euclidean space of fixed dimension. All our approximation schemes are randomized
but they can be derandomized similarly as those in [1,8,9,22].
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