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obtain quasi-polynomial-time approximation schemes fsib variants of the buy-at-bulk geometric
network design problem with polynomial total demand. THeninstances with a single sink and low
capacity links, we design fast polynomial-time, low-c@mtapproximation algorithms.

Keywords Geometric networks; buy-at-bulk; approximation aldumt quasi-polynomial-time ap-
proximation scheme (QPTAS); Hanan grid; dynamic prograngyidelt decomposition.

1. Introduction

Consider a water heating company planning to construct\aanktof pipelines to carry
warm water from a number of heating stations to a number dflimgjs. The company can
install different types of pipes of various diameters aridgs per unit of length. Typically,
the prices grow with the diameter, while the ratio betweengfice per unit of length and
the pipe throughput capacity decreases. The natural gtia @ompany is to minimize the
total cost of pipes sufficient to construct a network thatid@arry the warm water to the
buildings, assuming a fixed water supply at each source.l8imioblems are faced by
oil companies that need to transport oil to refineries, @c@ihmunication companies that
need to buy capacities (in bulk) from a phone company.

The common difficulty of these problems is that only a limitsd of link types (e.g.,
pipes) is available so that the price of installing a link torg some volume of supply
between its endpoints does not grow linearly with the volubug has a discrete character.
Even if there is only one type of link available, and that lighe has enough capacity to
carry the entire supply, the problem is NP-hard as it inciuttee minimum Steiner tree
problem. Since the geometric versions of the latter proldesrknown to be strongly NP-
complete[15], they cannot admit fully polynomial-time approximatiorchemes in the
geometric settingg, 15].

In operations research, these types of problems are oftereteasdiscrete cost net-
work optimization[8, 30], whereas in computer science @snimum cost networkor,
link/edgg installation problemg34] or asbuy-at-bulk network desig[i]; we shall use the
latter term. In computer science, the buy-at-bulk netwakigin problem was introduced
by Salmaret al. [34], who also argued that a key special case is when the undgdyaph
is defined by points in the Euclidean plane because many matiion problems have a
natural embedding in the plane. Since then, several varafriuy-at-bulk network design
have been extensively studied in theph modelas opposed to the geometric setting);
see(2,3,7,9,10,11,14,16,17,18,19, 21,22, 24, 26, 29, 35, 36]. However, the geometric
versions of buy-at-bulk network design problems remaigdbr unexplored, despite their
potential practical importance.

Depending on whether or not the entire supply at each soanegjuired to follow a
single path to a sink, the problem variants are further éladsasnon-divisibleor divisible
[34]. In terms of the warm water supply problem, the divisiblepranodel means that the
possible locations of the pipes and their splits or joines gien a priori. In this paper,
we consider the following divisible, geometric variantsioé buy-at-bulk network design
problem:

> Buy-at-bulk geometric network desigBGND): For a given set of different link
types and a given set of sources and sinks placed in a Euclisigagce, construct
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a minimum cost geometric network sufficient to carry thegnaét supply at the sources
to the sinks.

>> Buy-at-bulk single-sink geometric network desiB8GND): For a given set of different
link types, a given single sink, and a given set of sourcessitoct a minimum cost
geometric network sufficient to carry the integral supplihatsources to the sink.

Motivated by settings in which the underlying network mussgess some basic struc-
tural properties, we also distinguish special versionsatifi [problems where each edge of
the network has to be parallel to one of the coordinate syatas, and term them &siy-
at-bulk rectilinear network desiglBRND) andbuy-at-bulk single-sink rectilinear network
design BSRND), respectively.

1.1. Previous work

Salmanet al. [34] initiated the algorithmic study of the single-sink buykatik network
design problem. They argued that the problem is especliyant in thegeometriccase,
and provided a polynomial-time approximation algorithmtfee indivisible variant of BS-
GND on the input Euclidean graph with an approximation rafi®(log(D/c1)), where

D is the total supply and, is the smallest link capacity. Their model differs somewhat
from ours in that they only allowed some points of the planedaised by the solution,
whereas we allow the entire space to be used. To the best &howuledge, the geometric
versions of buy-at-bulk problems have only been studiedipusly by Salmaret al. [34].

Salmanet al. [34] also gave a constant-factor approximationdgeneral graphsn the
case where only one sink and one type of links is availabieaghproximation ratio was im-
proved by Hassiwet al. [24]. Mansour and Pele@8] provided anD(log n)-approximation
for the multi-sink buy-at-bulk network design problem wtaatly one type of link is avail-
able. Awerbuch and Azdi7] were the first to give a polylogarithmic approximation for
the general graph case even when different sources havartmenicate with different
sinks. In thesingle-sink buy-at-bullknetwork design problem for general graphs, Garg
et al. [16] designed arO(K)-approximation algorithm, wher&’ is the number of link
types, and Guhat al. [21] gave the first constant-factor approximation algorithmtfar
(non-divisible) variant of the problem. This constant hagm reduced in a sequence of
paperg19, 22, 20, 26, 35] to reach the approximation ratio 20.41 for the divisibleiaat,
and 40.82 for the non-divisible variant (sge)).

Further generalizations of the buy-at-bulk network degigsblem in the graph model
have also been studied. For example, Meyersbal. [29] introducednon-uniformbuy-
at-bulk network design, where each edge has its own costifumso that the price of
installing a link also depends on the edge that it uses, arek@het al. [10] later gave
the first polynomial-time polylogarithmic approximatioatio algorithm for this problem.
As another example, Goel and EstfirY] and Goel and Pogi8] consideredsimultane-
ousbuy-at-bulk, where the costs per unit of length for links nteeyunknown or known
to change over time and the objective is to find a solution ithaixpected to be a good
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approximation for all possible cost functions at the sam®tiFor even more results on
buy-at-bulk network design in the graph model, see, &g3, 11, 14, 36].

A classical approach for approximation algorithms for getia optimization prob-
lems builds on the techniques developed for polynomiaktapproximation schemes
(PTAS) for geometric optimization problems due to Ardtaand Mitchell [31]. In this
approach, to obtain @l + ¢)-approximation in.©(/¢) time, wheren denotes the size of
an input instance andis any given constarit < ¢ < 1, one first transforms the problem
to an integer grid of polynomial size and then recursivelgtipans the grid intodissec-
tion squareausing a quadtree of logarithmic depth. The next step is tuedtioe so-called
Structure Theorem, which guarantees that there existsnaos&loptimal solution that for
each dissection square crosses its boundary only a few amg®nly in a number (de-
pending oné) of prespecified portals. Finally, dynamic programming rispéoyed over
the recursive decomposition to find a solution satisfyirgg$tructure Theorem. In partic-
ular, this method has been successfully applied to solveninenum Euclidean Steiner
tree problen4], which can be considered as a very restricted case of BGNExeTdre,
an important question is whether these techniques can Hedpgp even more general
buy-at-bulk geometric network design problems.

1.2. Our contributions and techniques

In this paper, we demonstrate how to take advantage of thetstal properties of Eu-
clidean space to obtain more efficient approximation atgors for buy-at-bulk network
design problems in the geometric setting than in the waltisd graph model.

Unfortunately, it is not possible to directly apply the taifues developed by Arofd]
and Mitchell[31] to create a PTAS for the BGND problem. The main difficulty witile ap-
plication of Arora’s|4] and Mitchell's[31] techniques to the general BGND problem lies in
the reduction of the number of crossings on the boundaridseadissection squares. This
is because we cannot limit the number of crossings of a bayrafaa dissection square
below the integral amount of supply it carries into that squén the other hand, we can
significantly limit the number of crossing locations at tkpense of a slight increase in the
network cost. However, with this relaxed approach we cag achievequasi-polynomial
upper bounds (rather than polynomial upper bounds) on tinebeu of subproblems on
the dissection squares in the dynamic programming phasepéefor in some very special
cases (cf[5]). Furthermore, the subproblems, in particular the leafspbecome much
more difficult. Nevertheless, we can solve them exactly e ¢hse of BRND in super-
polynomial time by using our exponential-time algorithnt fbis problem. As a result,
we obtain a randomizeduasi-polynomial-time approximation schei(@PTAS) for the
divisible buy-at-bulk rectilinear network design problémthe Euclidean plane with poly-
nomially bounded total supply. Our result can be derandedénd generalized to include
O(1)-dimensional Euclidean space. This implies that the afergioned variant of buy-
at-bulk geometric network design is ndPX-hard, unles§ AT DTIME[nlOgO“) .

Our result is then used to obtain fast low-constant-fagipraximation algorithms for
single-sink variants. We develop a new “belt decompositahnique” for the single-sink
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case, and then apply the QPTAS above. It yield2 & <)-approximation for the divisible
buy-at-bulk rectilinear network design problem in the Eaean plane that is fast if the
capacities of links are small, and -8+ ¢)-approximation algorithm for the corresponding
BGND problem in the Euclidean plane. In comparison, the kesivn approximation ratio
achievable in polynomial time for single-sink divisibleysat-bulk network design in the
graph model is 20.4[20].

1.3. Paper organization

In Section2, we define the geometric variants of the buy-at-bulk netwaekign prob-
lems studied in this paper, establish the NP-hardness ofctes versions of BSGND and
BSRND, and provide a useful characterization of optimalohs to BRND. In Sectio8,
we give an exact (exponential-time) algorithm for BRND. Néx Sectiord, we present a
QPTAS for BRND in the Euclidean plane with polynomially baiedl total demand, which
generalizes to higher dimensions and yields an arbitrafiige to\/2-approximation for
the corresponding variants of BGND. In Secti®nwe derive fast, low-constant approx-
imations for cases of single sinks and low edge capacitiescviclude with some final
remarks in SectioB.

2. Preliminaries
2.1. Problem definitions

Consider a Euclideafrdimensional spadg®. Let{sy, ..., s,_} be a given set af; points
in E¢ calledsourcesand let{ty,...,t,,} be a given set of; points inE calledsinks
Definen = ns + n;. Each source; supplies some integralemandd(s;) to the sinks,
and each sink; is required to receive some intego@mandi(¢;) from the sources. The
sums)_, d(s;) and}_; d(t;) are assumed to be equal, and their value is calledatat
demandD. Furthermore, there at& given types of links, each type with a fixed cost and
capacity. Thecapacityof a link of typei is denoted by; and thecostof placing a linke of
ith type and lengthe| is |e| - ;. We assume that the types of the links are ordered so that
<< ey 01 < e < Ok, and% > > g—lfj since otherwise we can eliminate
some types of link§34].

A geometric networks a directed, weighted multigraph embedded ifidimensional
Euclidean spac&?. The objective of théouy-at-bulk geometric network design problem
(BGND) is to construct a geometric netwofksatisfying:

e All of the sources sy, ..., s,, } and sinks{ty, ..., t,, } belong to the set of vertices of
G (the additional vertices aff are calledSteiner vertices

e Every copy of a multiedge i is of one of theK available link types.

e For?¢ = {1,..., D}, there exists a supply-demand pasid-pathfor short) P, from a
sources; to a sinkz; such that:

e Each source; is a start point ofl(s;) sd-paths;
e Each sink; is an endpoint oil(¢;) sd-paths;
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e For each directed multiedgeof G, the number of sd-paths passing throygis less
than or equal to the total capacity of all links jin

that minimizes the total cost of all links.

If the set of sinks is a singleton then the problem is termetha@buy-at-bulk single-
sink geometric network design probl€BISGND for short). If the multigraph is required
to be rectilinear, i.e., only vertical and horizontal edges allowed, then the problem is
termed as théuy-at-bulk rectilinear network design problefBRND for short), and its
single-sink version is abbreviated BSRND.

Example 1. Suppose that we are given the instance of BRND shown id@yconsisting
of two sourceq s, s } and two sinkgt1,t2} with d(s1) = 6, d(s2) =5, d(t1) = 6, and
d(t2) = 5, and suppose that two types of links are available:

e Type 1link: Capacity;; = 1, cost per unit of lengthh; = 2,
e Type 2 link: Capacity; = 10, cost per unit of length, = 7.

Then, the geometric network in Fityb) has total cos§ - §; - 6 + 8 - §; - 5 = 176, while
the geometric network in Fid(c) has total cosg - 01 -1 + 1-92-4 + 8-d5-1 = 100. O

Note that we allow divisible (splittable) demands, i.ee #ntire demand originating at
a sources; does not have to follow the same route. For simplicity, weiassin this paper
that the Euclidean space under consideration is a EucligleaelE?, although the majority
of our results can be generalized to any Euclid@gh)-dimensional space.

2.2. Hardness of BSGND and BSRND

The NP-hard problem of constructing a minimum (rectiline@teiner tree for a set of

n points in the Euclidean plane (s&5]) can be regarded as a special case of BSGND
(BSRND, respectively) with one link type. More precisets—1 of the points be sources,
each of demand, and let the remaining point be a sink with demane 1. Allow only

one type of link and set its capacity to n. This reduction yields:

Lemma 2. BSGND and BSRND are NP-hard even if only one type of link isveltl and
the total demand is polynomially bounded in the total nundfesources and sinks.

2.3. Structural properties of solutions to rectilinear buy-diulk network design
(BRND)

Zachariasen37] showed that several variants and generalizations of thémam recti-
linear Steiner problem in the Euclidean plane are solvabléheHanan grid [23] of the
input points, defined as the grid formed by the vertical arizbatal straight lines passing
through these points. The next lemma extends this to BRND.

Lemma 3. Any optimal solution to BRND in the plane can be converted aplanar
multigraph in which sd-paths do not cross and where all zedilie on the Hanan grid.
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Fig. 1. An example of BRND.

Proof. Consider an optimal solution to any instance of BRND in trenpl

First, eliminate all crossings between sd-paths in theteolas follows. At each point
where two sd-path®; andP; intersect, place a Steiner vertex. L&t andP;" be the parts
of P, leading to and fronp, respectively, and similarly foP,” and P,". In case the angle
betweenP,” andP;" is 180 degrees and the angle betw&snandP," is also 180 degrees,
interchangeP;,” and ;" so that the two resulting sd-paths consisff joined toP;", and
P, joined toP;". See Fig2 for an illustration.

Next, move the solution into the Hanan grid by repeating tiling steps. While
there exists a vertical path not lying on the Hanan grid, pisfertical path”? of maximum
length that does not lie on the grid. Let cpdie the total cost per unit of length of all
horizontal links touching® from the left, and let cogt be the total cost per unit of length
of all horizontal links touching® from the right. If cost > costz then moveP to the left
(otherwise, if cost < costz, move P to the right) until: P is no longer a vertical path
of maximal length,P overlaps with another vertical path, & reaches the Hanan grid.
Clearly, this will not increase the total cost of the solati¢inally, eliminate horizontal
paths not lying on the Hanan grid in the same way. |
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Fig. 2. In the proof of Lemma&, every crossing between two sd-paths and P, of the form shown on the left
is eliminated by replacing® and P, by the two paths obtained by: (1) joinirfg;~ (the part ofP; leading to the
intersection poinp) to P2+ (the part of P, leading fromp); and (2) joiningP,” to P1+ .

3. An Exact Algorithm for BRND

Here, we describe an exact, divide-and-conquer-basedithigofor BRND. It relies on
Lemma3, which guarantees the existence of an optimal solution tdlBRying on the
Hanan grid. The main idea is to transform the instance int@gonential number of
pairs of smaller instances which are solved recursivelythed joined to find an optimal
solution; the pairs of smaller instances are obtained bynemnating all valid combinations
of sd-paths in the part of the grid that connects them.

Lemmad4. Let H be a grid consisting oh horizontal lines andt vertical lines, where
w.l.0.g.h < k. Consider an instance of BRND with total demadwhere each source
or sink in the instance is placed in a distinct grid pointiéf Suppose there is an oracle
which, for any integey < D, returns a specification of a cheapest set of links havirg) tot
capacity at least in constant time. Then an optimal solution to the BRND instazan be
found inDC®*) time.

Proof. The proofis by induction ok.

If £ < 2 then the total number of sources and sinks is at most fouceSin< k, the
grid H contains at most four edges between grid points. By Ler@ntlaere is an optimal
solution to the instance for which all links (i.e., copiesedfges) lie on at most four edges
of H. There are at mostD + 1)* possible assignments of total capacities of the links on
these (at most four) edges and at msspossible assignments of directions to the links.
For each such pair of assignments, we can easily check whietlkecompatible with a
feasible solution to the instance of BRND. If yes, then fatteaf the edges, we query the
oracle to find a cheapest set of links achieving at least thigr@esd capacity. Finally, we
pick the cheapest among all such feasible solutions. Heveebtain an optimal solution
in DO time.

Next, supposé > 2. Let M be the median vertical grid line iff. Denote theh po-
sitions wherel/ intersects a horizontal line of the grid bby;, ma, ..., m (ordered from
top to bottom). Define a vectde,, e, . . ., ¢;,) that represents the demands of the sources
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Fig. 3. lllustrating the proof of Lemmd. The given instance of BRND is split into laft part and aright
part, which are used to define pairs of smaller instances of BRNdhoted byLeft(f1, fo,..., fn) and
Right(f1, f2,. .-, fn), whereeaclf; ¢ {—-D,-D+1,...,-1,0,1,...,D —1,D}.

and sinks lying on\/ as follows: For eachh € {1,2,...,h}, if m; contains a source in the
given instance of BRND then sef = d(m;); if m; contains a sink then sef = —d(m;);
otherwise (i.e.m; contains neither a source nor a sink), set 0.

Split the given instance of BRND into two parts: tledt part, consisting of all sources
and sinks strictly to the left of/, and theright part, consisting of all sources and sinks
strictly to the right of /. Augment the left part withh new pointsiy, I, ..., [, at those
h positions wheré/ intersects a horizontal line of the grid, and augment thiet pgurt with

new points-, 7o, . .., 7, in the same way (note that each paandr; would coincide if we
merge the left and right parts). See RgNext, for any vecto( f1, f2,. .., fr), where each
fie{-D,—D+1,...,—1,0,1,...,D—1, D}, define two instanceBeft(f1, fa, - -, [n)

and Right(f1, f2,. .., fn) of BRND by modifying the left and right parts as follows. For
eachi € {1,2,... h}:

e If e; + f; > Othen letl; be a source with demarntfl;) = e; + fi. If e; + f; < 0thenlet
l; be a sink with demand(l;) = —e; — f;. Otherwise (i.e.¢; + f; = 0), delete point;.
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e If f; > 0then letr; be a sink with demand(r;) = f;. If f; < 0 then letr; be a source
with demandi(r;) = — f;. Otherwise (i.e.f; = 0), delete point;.

Now, for any vector( f1, fo, ..., fn) such that the total demand of all sources and sinks
in each of the two instanceseft(f1, f, ..., fn) and Right(f1, f2, ..., fn) does not ex-
ceedD, the two instances can be solved recursively and theirisokitmerged to give
a candidate solution to the given instance of BRND. Thereaammost(2D + 1)" <
(D +1)"- 2" such vectors to try, and after solving all resulting pairstances, we select
a candidate solution of minimum cost to find an optimal solutio the given instance of
BRND.

In each of the instanceseft(f1, f2,. .., fn) and Right(f1, fa, ..., fr), the numbe#h
of horizontal lines may exceed the number of vertical linesi¢h is at most £ /2| + 1).
Therefore, to obtain a simple recursive formula for the fagrime of our procedure, we
further divide each of the left and right instances by a mediiarizontal grid line in the
same way as above. Thus, the input instance is reduced tosat e 1)2#23% quadruples
of BRND instances, each with at mogt/2] + 1 vertical lines and at mogtk/2| + 1
horizontal lines. (Th&k in the exponent comes from the fact that three partitionimes,
each with at most grid points, are needed to obtain such a quadruple of sniaditemces).
We obtain the following recursive bound on the tiffi€:, D) required to obtain an optimal
solution to the input instance:

T(D,k) < D3**.23%+2 (T(D, |k/2| +1) + O(k))

< D3F . 2342 (T(D,2k/3) + O(k))
DO(;:Ok-(Z/:S)?') _ 2O(i§0k~(2/3)i)+0(log K DO

IN

< Do), 0
Next, using the idea behind the pseudo-polynomial timerélyo for the integer knap-
sack problenil5] gives:

Lemma 5. For all positive integers; < D, one can find the cheapest set of links having
total capacity at leasg in O(DK) time, whereK is the number of link types.

Proof. We solve the problem fog in increasing order. To find an optimal solution for
pick the cheapest solution among the solutions which careberdposed into an optimal
solution forq — ¢; and a single copy of the link of typg where: ranges over all possible
types of links. |

By using Lemméb as the oracle in Lemm& we obtain the following theorem.

Theorem 6. There is an exact algorithm for BRND which runsii¥(™ . K time, wheren
is the total number of sources and sinks> 2 is their total demand, and’ is the number
of link types.
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4. A QPTASfor BRND and a (1/2 + €)-Approximation for BGND

In this section, we present our QPTAS for BRND and also showtiecapply it to BGND.
We begin with generalizations of several results fildn33] concerning PTAS for TSP and
the minimum Steiner tree in the plane.

We first state a generalization of the Perturbation Lemma frb 33].

Lemma?7. LetG = (V, E) be a geometric multi-graph with vertices i, 12, and edge
costs of the formd; - |e| for e € E, wherei € {1,...,K} and0 < §; < -+ < k.
Next, letU C V. Denote byE(U) the set of edges incident to the vertice$inOne can
perturb the vertices i/ so that their coordinates become of the fo(rgn g) wherei, j
are natural numbers not greater than a common natural denator ¢, and the total cost
of G increases or decreases by an additive term of at m@stéx - |E(U)|/q.

Consider an instance of BGND or BRND with souregs. . s,,, and sinksty .. .¢,,.
We may assume w.l.0.g. that the sources and the sinks &eliff.

Suppose that the total demadtlis n°") wheren = n, + n,. It follows that the
maximum degree in a minimum cost multigraph solving BGND BN® isn©(!). Hence,
the total number of links incident to the sources and sinksémmultigraph is alsa® () =
n°1) x n. Inthe case of BRND, we conclude that the total number oSlimicident to all
vertices, i.e., including the Steiner points, is, w.L.ou§ () = n°M x O(n?) by Lemma3.

Let A > 0. Recall thaty x denotes the maximum cost per unit of length, taken over all
K types of links. By using a straightforward extension of Leaifto include a geometric
multigraph and rescaling the coordinates of the sourcesiakd by a factor, = %,
we can alter the given BGND instance or BRND instance to a netance so that:

e all sources and sinks of the new instance of BGND/BRND as agdlll Steiner vertices
of the new instance of BRND lie on the integer gjidL)?, and

e given any solution to the original instance of BGND/BRNDhdlds that for each type
of link, the total length of all links of this type in the coggonding solution to the new
instance is at modt(1 + A) times larger, and

e given any solution to the new instance of BGND/BRND, it hatldat for each type of
link, the total length of all links of this type in the corresmling solution to the original
instance is at most + A)/L times larger.

The second and third properties imply that we may assumeatimatinput instance of
BGND has all its sources and sinks on the integer grifhirl)?, since this assumption
introduces at most an addition@l + A) factor to the final approximation ratio. We shall
call it the rounding assumptiorin the case of BRND, we may further assume not only
that our input instance has its sources and sinks on theeintgl, but also that all Steiner
vertices may be located only on this grid. We term this asgiomphe strong rounding
assumptionBy the second and third properties, the strong roundingrapton in the case
of BRND also introduces (at most) an additiofah- A) factor to the final approximation
ratio.
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Now, we pick two integera andb uniformly at random fronj0, L) and extend the grid
by a vertical grid lines to the left and — a vertical grid lines to the right. We similarly
increase the height of the grid by usitbygand denote the grid obtained this way bfx, b).
Next, recursively decompodga, b) into dissection squares by using a 4-ary e, b)
called aquadtreeso that:

e The root ofQ(a, b) corresponds to the squatéa, b).

e Each squaré of area> 1 and containing> 1 point is recursively partitioned into four
equal-sized subsquargs, S, Ss, 54 calledsibling dissection squaren Q(a,b), the
internal node representirjhas four children representiry, S, Ss, Sy.

¢ Q(a,b) has heighD(log n) andn®® nodes.

We say a grapld is r-light if it crosses each boundary between two sibling dissection
squares of)(a,b) at mostr times. A multigraphH is r-fineif it crosses each boundary
between two sibling dissection squaresxf:, b) in at most- places. For any line segment
¢ and positive integer, the r-portals of ¢ are defined as the endpoints of the: — 1
equal-length subsegments/ihto which/¢ can be partitioned. See Fig.

} portals

I distance =]| |/ (r-

Fig. 4. A line¢ and ther-portals of¢.

Next, we derive the following new theorem which can be seea gsneralization of
the structure theorem of Arof4] to include geometric multigraphs where the guarantee of
r-lightness is replaced by the weaker guaranteefofeness.

Theorem 8. For anys > 0 and any BRND (or BGND, respectively) on the gfitu, b),
there is a multigraph onL(a,b) crossing each boundary between two sibling dissec-
tion squares of)(a, b) only atO(log L/¢)-portals which is a feasible solution of BRND
(BGND, respectively) and has expected length at nibst ¢) times larger than the
minimum.

Proof. We will prove the result for BRND. Identical arguments wook BGND.
The proof follows the approach proposed by Arorg4h Letr = w. Let
G be the multigraph which is an optimal solution for BRND. Wdlwmodify the edges



Approximation Algorithms for Buy-at-Bulk Geometric NetikvBesign 1961

of G to obtain a multigrapi on L(a, b) crossing each boundary between two sibling
dissection squares 6f(a, b) only atr-portals that is a feasible solution of BRND and that
has expected length at mdst+ <) times larger than that aF.

The dissection squares @(a, b) are defined hierarchically and one can assgyels
ranging from0 to log L to them in the natural way: the root is at level 0, and for every
1 > 0, the children of a dissection square at levate at level + 1. Let ¢ be any grid line
in L(a,b). We define théevel of¢ as the minimum level of all dissection squares that have
one side contained it Observe that i is of leveli then any dissection square@a, b)
with a side lying or¢ has side length at mogt/2¢. Also note that since the shiftand the
shift b are chosen at random, for each vertical or horizontaldimethe grid and for each
with 0 < i < log L, we havePr[/ is at leveli] < 2¢/L.

For a geometric multigrap® (which will be eitherG or H in our case), fori =
1,..., K, let Q; be the sub-multigraph of induced by links of type. For any sub-
multigraph Q' of Q, we denote byeost(Q’) the total cost of all its links, whereag’|
stands for the total length of all its links.

Consider a lin¢ and let leve(() be its level. Each edgecrossing’ will be deflected in
the new multigrapti{ to ensure that it crosséén the nearest portal to the original crossing.
Since the portals are placeddrat distancer_z'eLTw from each other, this modification of
edgee will increase the length of in H by at most an additive term % Therefore,
if we denote byr (¢, G;) the number of edges i&; crossing/, the total increase in the
length of all edges iid7; crossing will be at most%.

Next, we observe that levg) is a random variable that depends on the random choice
of the shift inQ(a, b). Therefore, the expected increase of the length of all edygés
crossing? will be at most:

log L

S Prilevelr) = i ZEG) L
1=0

r. 20 = LT r. 20

Therefore, if we sum this over ally, ... Gx and horizontal and vertical grid linés
then we see that the expected total cost of the new multigkahupper bounded by:

K
E[costH)] = E[) _ cos(H;)]
=0

(L+1ogL) - > . gridiine inL(a,p) T(4: Gi)
T

K
<> costGi) + b -
=0
1+ logL K
= costG) + — 251- : Z (¢, Gi)

=0 ¢: grid line in L(a,b)

whered; is the cost per unit of length of a link of tygeas in Sectior2.1
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Now, we use Lemma 4 frorfi] which bounds (under the assumption that all edges in
G, are of length at least 4, which can be assumed w.l.0.g. bgliagdhe original grid) the
SumZZe; grid line (either horizontal or vertical) it (a,b) T(Zv Gi) <2 |G1|

Finally, we set = 206 1) g obtain:

1+1logL K
E[cos(H)] < cos(G)+f-;5i-2- |Gil = (1+¢)-costG) . _

To obtain a QPTAS for BRND in the Euclidean plane with polynaltotal demand, we
employ a bottom-up dynamic programming approach to find amim cost multigraph
for BRND on L(a, b) that crosses each boundary between two sibling disseafjioaress
of Q(a,b) only atr-portals, where- = O(logn/e). This means that we need to solve
a number of subproblems, each consisting of finding a miningost r-fine rectilinear
multigraph for BRND within the square, where the sourcedlaeeoriginal sources within
the square and the crossing points expected to supply somande whereas the sinks
are the original sinks within the square and the crossingtpa@xpected to receive some
demand. More precisely, every subproblem is specified by:

(1) A node in the quadtre@(a, b), corresponding to a dissection square.

(2) A choice of crossing points, i.e., a subset of that sds@ér)-portals.

(3) For each chosen crossing poinian integral demand(p) that it should either supply
or receive (instead of the pairing of the distinguished gleras in[4]).

By the upper bound> < n°1), we may assume thal(p) = n°(") for every crossing
pointp. Thus, the total number of different subproblem specificatimust be:©("). Note
that using a smaller implies a better approximation ratio but more subproblems.

We first solve all leaf subproblems, i.e., subproblems sgrted by leaves in the
quadtres?)(a, b), and then all non-leaf subproblem, i.e., subproblems sgmted by in-
ternal nodes i) (a, b), in bottom-up order as follows:

e Each leaf subproblem, where the dissection square is afcél{g b) and the original
sources and sinks may be placed only at the corners of thectitss square and the
remainingO(r) ones at--portals along the boundary, is solvedifi") time according
to Theoren®.

e Each non-leaf subproblei is solved by combining optimal solutions to quadruples of
compatible subproblem®,, P, P;, P, corresponding to the four dissection squares that
are children of the dissection square forand selecting the best such quadruple. (Here,
Py, Py, Ps, P, arecompatibleif the locations of the crossing points and their specified
demands are consistent amafg P», Ps, P;.) There areC(") . nO() . pO) . pO(r) —
n®(") quadruples of subproblems @f to consider, and to check if any quadruple is
compatible takes©(!) time, so solving a single subproblemtakesn©() . nCM) =
n) time.
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This gives:

Lemma9. A feasibler-fine multigraph for BRND ot (a, b) with polynomially bounded
total demand and total cost within+ ¢ from the optimum is computable (") time.

By combining Theorer8 with Lemma9 for r = O(lo%”) and the fact that the rounding
assumption introduces only an additioihH- O(¢)) factor to the approximation ratio, we
obtain our first result.

Theorem 10. For anye > 0, there is a randomized©(°2 /<) time algorithm for BRND
in the Euclidean plane, with a total of sources and sinks and total demand polynomial
in n, that yields a solution whose expected cost is within- ¢) of the optimum.

TheoremilOdirectly implies the following result for BGND.

Corollary 11. For anye > 0, there is a randomized© (¢ "/)-time algorithm for BGND
in the Euclidean plane, with a total of sources and sinks and total demand polynomial
in n, that yields a solution whose expected cost is withi2 + <) of the optimum.

5. A Fast, Low-Constant Approximation Scheme for BSRND and BSGND

In this section, we present another method for BRND and BGNIh wingle sinks
(BSRND and BSGND), based on a new “belt decomposition teglefi The method runs
in polynomial time, gives a low-constant approximationigueiee, and does not require a
polynomial bound on the total demand. It is especially effitiif the link capacities are
small.

We start with two useful lemmas. First, by taking the shanpegh from each source
to a sink and considering the case when the most economistipeo capacity over all
link types could always be employed, we obtain the next lepamalogous to the so-called
routing lower bound in28, 34J:

Lemma 12. Let S be the set of sources in an instance of BRND (BGND), and fdn eac
s € S, lett(s) be the closest sink in this instance. The cost of an optimatiea to BRND
(BGND, respectively) is at leadt ¢ dist(s,t(s)) - g—g - d(s), wheredist(s,t(s)) is the

L, distance (the Euclidean distance, respectively).

Next, we adapt the proof of Lemma 2 on p. 1842i| for upper bounding the length of
a closed walk through a set of points id-alimensional cube to the problem of computing
a minimum Steiner tree in the plane to obtain:

Lemma 13. Let S be a set oft points within a square of side length One can find a
Steiner tree of with lengthO(¢v/k) in O(k) time.

Proof. Divide the square intd/w vertical strips of widthw. There is a trivial Steiner tree
of S'including the vertical and the top boundaries of the stripsse total length is at most
(¢/w + 2)¢ + kw/2. See Figh.

By settingw to ¢/+/k, we obtain the lemma. |
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Fig. 5. The trivial Steiner tree.

The following key lemma describes a procedure which yietdalmostfeasible solu-
tion to BSRND or BSGND with cost arbitrarily close to the aptim.

Lemma 14. For anye > 0, there is a reduction procedure for BSRND (or BSGND, re-
spectively) with one sink, — 1 sources, and the ratio between the maximum and minimum
distances of a source from the sink equakito which returns a multigraph yielding a
partial solution to the given instance of BSRND (or BSGNBpezxtively) satisfying the
following conditions:

e Allbut O((1)?c% log m) sources can ship their whole demand to the sink;

e For each source there are at mostx — 1 units of its whole demand(s) which cannot
be shipped to the sink.

The procedure runs i (<5 log mlogn + cxn) time, which isO(n/<?) if cx = O(1).

Proof. Form a rectilinea|[m] x 2[m] grid F' with unit distance equal to the minimum
distance between the only sinland a source, centered aroundlet ;. be a positive con-
stant whose value will be set later.

Partition /' into a squareR with side length2[,/cx | centered int, and fori €
{0,1,...,logm}, the belts B; of squares of side lengt® within L., distance at least
2'[uy/cx | and at mos2it! [, /ck | from t. See Fig6 for an illustration. Note that the
number of squares in any be®; is at most(4[\/cx |)*> = O(p*ck) by the definition of
the grid; hence, the total number of squares in all the bel i:>cx logm).

The reduction procedure consists of two phases, descriéded/dmportantly, after the
first phase, the remaining demand for each source is ategostl units. After the second
phase, the total remaining demandhtifsources inside each square is at mgst- 1 units.

Phase 1. Connect each soureeby a multi-path composed 0fl(s)/cx | copies of a short-
est path frons to ¢, implemented with thé(-th type of links. Observe that the average cost
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[e— |

FU' @7

Fig. 6. An example of the decomposition into the squBrend the beltsB;. The side length of a square in
belt B; 1 is exactly twice that of a square i; for < > 0, and the number of squares in each beldig:%cx ).

of such a connection per each of the|d(s)/cx | demand units: shipped froms to ¢ is
dist(s, t) - 2, which is optimal by Lemma2.

Phase 2: For each squar@ in each of the belt®;, locate all sources containeddh Then,
while the total remaining demand of all sourcegris at leastck, arbitrarily selectcx
units of remaining demand, find a minimum Steiner multitre#heir sources and connect
its vertexv closest tat by a shortest path to The total length of the resulting multitree
is dist(v,t) + O(2'\/ex) < (1+ O(%)) - dist(v, t) by the definition of the squares and
Lemmal3. Hence, for each demand unitn thec g -tuple originating from its sourcgu),
we can assign the average cost of connectionlig the multitree implemented with the
K-thtype of links not greater tha(ﬂ+0(%)) -dist(s(u),t)- ﬁ—f; It follows from Lemmal2
that the total cost of the constructed network is withiin- O(%)) from the minimum cost
of a multigraph for the input BSRND. By choosingappropriately large, we obtain the
required(1 + ¢)-approximation.

After the second phase, each square outBidentains at mostx — 1 sources with non-
zero remaining demand. Since the number of squar@s;iécx log m), the total number
of their sources with a non-zero remaining demand (i.e., @ty — 1 units) to ship is
O(u*c3 logm) after the second phase. Furthermore, since the squamtains at most
O(u’ck) sources, the number of sourcesfirwith a non-zero remaining demand is only
O(p’ck).

Finally, we analyze the running time. The first phase can h@dmented in time lin-
ear in the number of sources. The second phase first needdtalfisources located
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inside each squar@. This can be done by using a standard 2D range query data struc
ture for reporting all points in a query rectand#2] with the query rectangle set 1Q;

in total, O(pu2cx logm) 2D range queries for (disjoint) squares are required, wtikhs
O(u?ck logmlogn) time by[32]. Next, the second phase constru@exn/cx) = O(n)
Steiner trees on at mosj vertices each, using the method of Lem@&above, which
takesO(ckn) time. W.l.o.g., we letx = O(1) and conclude that the whole procedure
takesO( <5 logm logn + cxn) time. |

Now, we are ready to derive our main result in this sectiorsi&dly, we can solve
any given instance of BSRND approximately by first running tduction procedure of
Lemmal4, and then applying the more sophisticated approximatigardhm from The-
orem10to handle the leftover demands.

Theorem 15. For anye > 0, there is a(2 + ¢)-approximation algorithm for BSRND
with one sink andx — 1 sources in the Euclidean plane, runningdh((1)%c log®n +

loglog n

ckn) + (c% log n)o(loge;K) time; in particular, inn(logn)°® + (logn)? =) time if
cr = (logn)°W,

Proof. By the rounding assumption discussed in Sedcfiome can perturb the sinks and the
sources so they lie on an integer grid of polynomial sizeothticing only an additiondll +
O(e)) factor to the final approximation ratio. The perturbation easily be done in linear
time. Next, we apply the reduction procedure from Lent¥ao obtain an almost feasible
solution of total cost not exceeditig+O (<)) of that for the optimal solution to the BSRND
on the grid. Note that» < n®() and hencéogm = O(logn) in this application of the
reduction by the polynomiality of the grid. It remains tows®the BRND subproblem for
the O((%)%%( logn) remaining sources with total remaining demand polynonmiahgeir
number. This subproblem can be solved with the randomized O(¢))-approximation
algorithm of Theoreni0. We may also use its derandomized version here, which will ru

log ¢
in (¢ logn)?" ") time. O

As an immediate corollary to Theoreb®, we obtain:

Corollary 16. For anye > 0, there is a(v/8 + ¢)-approximation algorithm for BSGND
with one sink andx — 1 sources in the Euclidean plane, runningdn((1)%cx log®n +

log ¢
)OS time.

ckn) + (c% logn
Remark 1. For the special case afy = O(1), one can obtain a simpler (and still
polynomial-time) approximation algorithm for BSRND by glging in Theoren® instead

of Theorem10 to handle the leftover demands in the proof of TheoEnThe reason

is that whencx = O(1), the number of sources with a non-zero remaining demand is
O((1)2c% logm) = O(()*logm) = O((%)?logn), i.e., logarithmic inn.

Remark 2. Our new technique in this section also extends telaxedvariant of BRND
in which the demands of the sinks are unspecified, meanirtgetieay sink can accept
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any amount of supply from the sources. We can generalizestihéction of Lemmad4 to
includen; sinks by first computing the Voronoi diagram of the sinks ia th -metric on
the grid, then associating each source to its closest sirdhbgking which region of the
Voronoi diagram it belongs to, and finally running the reduttprocedure of Lemma4
separately on each set of sources contained in a single dam@gion. The construction of
the Voronoi diagram and the location of the sources t@kelog n) time (se€25, 32]). It
follows by straightforward calculations that for any> 0, there is g2 + ¢)-approximation
algorithm for the relaxed BRND with, sinks and» — n; sources in the Euclidean plane,
running inO((1)?niex log® n + n(logn + ck ) + (nec% log n)o(%) time. This
also implies &+/8 + ¢)-approximation algorithm for the analogously relaxed BGWith
n; sinks andh — n; sources in the Euclidean plane, runningin tiﬁh@(%)Qnth log?n +

O(logntz—zlog K

n(logn + cx)) + (nic log n)

6. Conclusion

In this paper, we have shown:

e BGND, BRND, BSGND, and BSRND are NP-hard, even whén= 1 and D is poly-
nomially bounded im (Lemmaz2 in Section2.2).

e An exact algorithm for divisible BRND that runs ip©(™ . K time (Theorem6 in
Section3).

e A QPTAS for divisible BRND in the Euclidean plane wih < n®®) (Theoreml10in
Sectiond).

e A (2+¢)-approximation algorithm for divisible BSRND in the Euadian plane that runs
in n(log )2 + (logn)°C=") time if cx = (log n)°() (Theoremi5in Sections).

e A (/8 + ¢)-approximation algorithm for divisible BSGND in the Eucdigin plane that
runs inO((%)%ck log® n + n(logn + cx)) + (c% log 7)°*=) time (Corollaryl16in
Sectionb).

To summarize, our results suggest that certain geometrianta of minimum total
edge cost problems are easier to closely approximate tleangraph counterparts. For
example, the best known approximation ratios achievabf@lgnomial time for divisi-
ble buy-at-bulk network design in the graph model are pglgtithmic in the multi-sink
case[7] and 20.41 in the single-sink ca$20], while we have obtained af/8 + ¢)-
approximation algorithm for BSGND in the Euclidean planeoaé running time is poly-
nomial whercg (the maximum capacity of a link) is constant, according todllary 16.

All our approximation results for different variants of BRNn the Euclidean plane
derived in this paper can be generalized to include the spording variants of BRND
in a Euclidean space of fixed dimension. Our approximatitreses are randomized but
they can be derandomized in the same way as thoge 12, 13, 33]. An open problem is
how to design faster approximation algorithms for the peoid considered in this paper
desirably under less restrictive assumptions on the numbsinks, the capacities, and
the total demand. It is worth mentioning that recently a polyial-time approximation
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scheme for the restriction of BSGND in the Euclidean plat@aahg for only one type of
link with not too large capacity and polynomial total deméuwad been presented ifi.
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