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obtain quasi-polynomial-time approximation schemes for basic variants of the buy-at-bulk geometric
network design problem with polynomial total demand. Then,for instances with a single sink and low
capacity links, we design fast polynomial-time, low-constant approximation algorithms.

Keywords: Geometric networks; buy-at-bulk; approximation algorithm; quasi-polynomial-time ap-
proximation scheme (QPTAS); Hanan grid; dynamic programming; belt decomposition.

1. Introduction

Consider a water heating company planning to construct a network of pipelines to carry
warm water from a number of heating stations to a number of buildings. The company can
install different types of pipes of various diameters and prices per unit of length. Typically,
the prices grow with the diameter, while the ratio between the price per unit of length and
the pipe throughput capacity decreases. The natural goal ofthe company is to minimize the
total cost of pipes sufficient to construct a network that could carry the warm water to the
buildings, assuming a fixed water supply at each source. Similar problems are faced by
oil companies that need to transport oil to refineries, or telecommunication companies that
need to buy capacities (in bulk) from a phone company.

The common difficulty of these problems is that only a limitedset of link types (e.g.,
pipes) is available so that the price of installing a link to carry some volume of supply
between its endpoints does not grow linearly with the volume, but has a discrete character.
Even if there is only one type of link available, and that linktype has enough capacity to
carry the entire supply, the problem is NP-hard as it includes the minimum Steiner tree
problem. Since the geometric versions of the latter problemare known to be strongly NP-
complete[15], they cannot admit fully polynomial-time approximations schemes in the
geometric setting[6, 15].

In operations research, these types of problems are often termed asdiscrete cost net-
work optimization[8, 30], whereas in computer science asminimum cost network(or,
link/edge) installation problems[34] or asbuy-at-bulk network design[7]; we shall use the
latter term. In computer science, the buy-at-bulk network design problem was introduced
by Salmanet al. [34], who also argued that a key special case is when the underlying graph
is defined by points in the Euclidean plane because many optimization problems have a
natural embedding in the plane. Since then, several variants of buy-at-bulk network design
have been extensively studied in thegraph model(as opposed to the geometric setting);
see[2, 3, 7, 9, 10, 11, 14, 16, 17, 18, 19, 21, 22, 24, 26, 29, 35, 36]. However, the geometric
versions of buy-at-bulk network design problems remain largely unexplored, despite their
potential practical importance.

Depending on whether or not the entire supply at each source is required to follow a
single path to a sink, the problem variants are further classified asnon-divisibleor divisible
[34]. In terms of the warm water supply problem, the divisible graph model means that the
possible locations of the pipes and their splits or joints are given a priori. In this paper,
we consider the following divisible, geometric variants ofthe buy-at-bulk network design
problem:

� Buy-at-bulk geometric network design (BGND): For a given set of different link
types and a given set of sources and sinks placed in a Euclidean space, construct
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a minimum cost geometric network sufficient to carry the integral supply at the sources
to the sinks.

� Buy-at-bulk single-sink geometric network design (BSGND): For a given set of different
link types, a given single sink, and a given set of sources, construct a minimum cost
geometric network sufficient to carry the integral supply atthe sources to the sink.

Motivated by settings in which the underlying network must possess some basic struc-
tural properties, we also distinguish special versions of both problems where each edge of
the network has to be parallel to one of the coordinate systemaxes, and term them asbuy-
at-bulk rectilinear network design (BRND) andbuy-at-bulk single-sink rectilinear network
design (BSRND), respectively.

1.1. Previous work

Salmanet al. [34] initiated the algorithmic study of the single-sink buy-at-bulk network
design problem. They argued that the problem is especially relevant in thegeometriccase,
and provided a polynomial-time approximation algorithm for the indivisible variant of BS-
GND on the input Euclidean graph with an approximation ratioof O(log(D/c1)), where
D is the total supply andc1 is the smallest link capacity. Their model differs somewhat
from ours in that they only allowed some points of the plane tobe used by the solution,
whereas we allow the entire space to be used. To the best of ourknowledge, the geometric
versions of buy-at-bulk problems have only been studied previously by Salmanet al. [34].

Salmanet al. [34] also gave a constant-factor approximation forgeneral graphsin the
case where only one sink and one type of links is available; this approximation ratio was im-
proved by Hassinet al. [24]. Mansour and Peleg[28] provided anO(log n)-approximation
for the multi-sink buy-at-bulk network design problem whenonly one type of link is avail-
able. Awerbuch and Azar[7] were the first to give a polylogarithmic approximation for
the general graph case even when different sources have to communicate with different
sinks. In thesingle-sink buy-at-bulknetwork design problem for general graphs, Garg
et al. [16] designed anO(K)-approximation algorithm, whereK is the number of link
types, and Guhaet al. [21] gave the first constant-factor approximation algorithm forthe
(non-divisible) variant of the problem. This constant has been reduced in a sequence of
papers[19, 22, 20, 26, 35] to reach the approximation ratio 20.41 for the divisible variant,
and 40.82 for the non-divisible variant (see[20]).

Further generalizations of the buy-at-bulk network designproblem in the graph model
have also been studied. For example, Meyersonet al. [29] introducednon-uniformbuy-
at-bulk network design, where each edge has its own cost function so that the price of
installing a link also depends on the edge that it uses, and Chekuri et al. [10] later gave
the first polynomial-time polylogarithmic approximation ratio algorithm for this problem.
As another example, Goel and Estrin[17] and Goel and Post[18] consideredsimultane-
ousbuy-at-bulk, where the costs per unit of length for links maybe unknown or known
to change over time and the objective is to find a solution thatis expected to be a good
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approximation for all possible cost functions at the same time. For even more results on
buy-at-bulk network design in the graph model, see, e.g.,[2, 3, 11, 14, 36].

A classical approach for approximation algorithms for geometric optimization prob-
lems builds on the techniques developed for polynomial-time approximation schemes
(PTAS) for geometric optimization problems due to Arora[4] and Mitchell [31]. In this
approach, to obtain a(1 + ε)-approximation innO(1/ε) time, wheren denotes the size of
an input instance andε is any given constant0 < ε < 1, one first transforms the problem
to an integer grid of polynomial size and then recursively partitions the grid intodissec-
tion squaresusing a quadtree of logarithmic depth. The next step is to prove the so-called
Structure Theorem, which guarantees that there exists an almost-optimal solution that for
each dissection square crosses its boundary only a few timesand only in a number (de-
pending on1

ε ) of prespecified portals. Finally, dynamic programming is employed over
the recursive decomposition to find a solution satisfying the Structure Theorem. In partic-
ular, this method has been successfully applied to solve theminimum Euclidean Steiner
tree problem[4], which can be considered as a very restricted case of BGND. Therefore,
an important question is whether these techniques can be applied to even more general
buy-at-bulk geometric network design problems.

1.2. Our contributions and techniques

In this paper, we demonstrate how to take advantage of the structural properties of Eu-
clidean space to obtain more efficient approximation algorithms for buy-at-bulk network
design problems in the geometric setting than in the well-studied graph model.

Unfortunately, it is not possible to directly apply the techniques developed by Arora[4]
and Mitchell[31] to create a PTAS for the BGND problem. The main difficulty withthe ap-
plication of Arora’s[4] and Mitchell’s[31] techniques to the general BGND problem lies in
the reduction of the number of crossings on the boundaries ofthe dissection squares. This
is because we cannot limit the number of crossings of a boundary of a dissection square
below the integral amount of supply it carries into that square. On the other hand, we can
significantly limit the number of crossing locations at the expense of a slight increase in the
network cost. However, with this relaxed approach we can only achievequasi-polynomial
upper bounds (rather than polynomial upper bounds) on the number of subproblems on
the dissection squares in the dynamic programming phase, except for in some very special
cases (cf.[5]). Furthermore, the subproblems, in particular the leaf ones, become much
more difficult. Nevertheless, we can solve them exactly in the case of BRND in super-
polynomial time by using our exponential-time algorithm for this problem. As a result,
we obtain a randomizedquasi-polynomial-time approximation scheme(QPTAS) for the
divisible buy-at-bulk rectilinear network design problemin the Euclidean plane with poly-
nomially bounded total supply. Our result can be derandomized and generalized to include
O(1)-dimensional Euclidean space. This implies that the aforementioned variant of buy-
at-bulk geometric network design is notAPX-hard, unlessSAT ∈ DTIME[nlogO(1) n].

Our result is then used to obtain fast low-constant-factor approximation algorithms for
single-sink variants. We develop a new “belt decompositiontechnique” for the single-sink
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case, and then apply the QPTAS above. It yields a(2 + ε)-approximation for the divisible
buy-at-bulk rectilinear network design problem in the Euclidean plane that is fast if the
capacities of links are small, and a(

√
8+ε)-approximation algorithm for the corresponding

BGND problem in the Euclidean plane. In comparison, the bestknown approximation ratio
achievable in polynomial time for single-sink divisible buy-at-bulk network design in the
graph model is 20.41[20].

1.3. Paper organization

In Section2, we define the geometric variants of the buy-at-bulk networkdesign prob-
lems studied in this paper, establish the NP-hardness of restricted versions of BSGND and
BSRND, and provide a useful characterization of optimal solutions to BRND. In Section3,
we give an exact (exponential-time) algorithm for BRND. Next, in Section4, we present a
QPTAS for BRND in the Euclidean plane with polynomially bounded total demand, which
generalizes to higher dimensions and yields an arbitrarilyclose to

√
2-approximation for

the corresponding variants of BGND. In Section5, we derive fast, low-constant approx-
imations for cases of single sinks and low edge capacities. We conclude with some final
remarks in Section6.

2. Preliminaries

2.1. Problem definitions

Consider a Euclideand-dimensional spaceEd. Let{s1, . . . , sns
} be a given set ofns points

in E
d calledsources, and let{t1, . . . , tnt

} be a given set ofnt points inEd calledsinks.
Definen = ns + nt. Each sourcesi supplies some integraldemandd(si) to the sinks,
and each sinktj is required to receive some integraldemandd(tj) from the sources. The
sums

∑

i d(si) and
∑

j d(tj) are assumed to be equal, and their value is called thetotal
demandD. Furthermore, there areK given types of links, each type with a fixed cost and
capacity. Thecapacityof a link of typei is denoted byci and thecostof placing a linke of
ith type and length|e| is |e| · δi. We assume that the types of the links are ordered so that
c1 < · · · < cK , δ1 < · · · < δK , and δ1

c1
> · · · > δK

cK
, since otherwise we can eliminate

some types of links[34].
A geometric networkis a directed, weighted multigraph embedded in ad-dimensional

Euclidean spaceEd. The objective of thebuy-at-bulk geometric network design problem
(BGND) is to construct a geometric networkG satisfying:

• All of the sources{s1, . . . , sns
} and sinks{t1, . . . , tnt

} belong to the set of vertices of
G (the additional vertices ofG are calledSteiner vertices).

• Every copy of a multiedge inG is of one of theK available link types.
• For ℓ = {1, . . . , D}, there exists a supply-demand path (sd-pathfor short)Pℓ from a

sourcesi to a sinktj such that:

• Each sourcesi is a start point ofd(si) sd-paths;
• Each sinktj is an endpoint ofd(tj) sd-paths;
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• For each directed multiedgef of G, the number of sd-paths passing throughf is less
than or equal to the total capacity of all links inf .

that minimizes the total cost of all links.
If the set of sinks is a singleton then the problem is termed asthebuy-at-bulk single-

sink geometric network design problem(BSGND for short). If the multigraph is required
to be rectilinear, i.e., only vertical and horizontal edgesare allowed, then the problem is
termed as thebuy-at-bulk rectilinear network design problem(BRND for short), and its
single-sink version is abbreviated asBSRND.

Example 1. Suppose that we are given the instance of BRND shown in Fig.1(a) consisting
of two sources{s1, s2} and two sinks{t1, t2} with d(s1) = 6, d(s2) = 5, d(t1) = 6, and
d(t2) = 5, and suppose that two types of links are available:

• Type 1 link: Capacityc1 = 1, cost per unit of lengthδ1 = 2,
• Type 2 link: Capacityc2 = 10, cost per unit of lengthδ2 = 7.

Then, the geometric network in Fig.1(b) has total cost8 · δ1 · 6 + 8 · δ1 · 5 = 176, while
the geometric network in Fig.1(c) has total cost8 · δ1 · 1 + 1 · δ2 · 4 + 8 · δ2 · 1 = 100.2

Note that we allow divisible (splittable) demands, i.e., the entire demand originating at
a sourcesi does not have to follow the same route. For simplicity, we assume in this paper
that the Euclidean space under consideration is a EuclideanplaneE2, although the majority
of our results can be generalized to any EuclideanO(1)-dimensional space.

2.2. Hardness of BSGND and BSRND

The NP-hard problem of constructing a minimum (rectilinear) Steiner tree for a set of
n points in the Euclidean plane (see[15]) can be regarded as a special case of BSGND
(BSRND, respectively) with one link type. More precisely, letn−1 of the points be sources,
each of demand1, and let the remaining point be a sink with demandn − 1. Allow only
one type of link and set its capacityc1 to n. This reduction yields:

Lemma 2. BSGND and BSRND are NP-hard even if only one type of link is allowed and
the total demand is polynomially bounded in the total numberof sources and sinks.

2.3. Structural properties of solutions to rectilinear buy-at-bulk network design
(BRND)

Zachariasen[37] showed that several variants and generalizations of the minimum recti-
linear Steiner problem in the Euclidean plane are solvable on theHanan grid [23] of the
input points, defined as the grid formed by the vertical and horizontal straight lines passing
through these points. The next lemma extends this to BRND.

Lemma 3. Any optimal solution to BRND in the plane can be converted into a planar
multigraph in which sd-paths do not cross and where all vertices lie on the Hanan grid.
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Fig. 1. An example of BRND.

Proof. Consider an optimal solution to any instance of BRND in the plane.
First, eliminate all crossings between sd-paths in the solution as follows. At each pointp

where two sd-pathsP1 andP2 intersect, place a Steiner vertex. LetP−

1 andP+
1 be the parts

of P1 leading to and fromp, respectively, and similarly forP−

2 andP+
2 . In case the angle

betweenP−

1 andP+
1 is 180 degrees and the angle betweenP−

2 andP+
2 is also 180 degrees,

interchangeP+
1 andP+

2 so that the two resulting sd-paths consist ofP−

1 joined toP+
2 , and

P−

2 joined toP+
1 . See Fig.2 for an illustration.

Next, move the solution into the Hanan grid by repeating the following steps. While
there exists a vertical path not lying on the Hanan grid, picka vertical pathP of maximum
length that does not lie on the grid. Let costL be the total cost per unit of length of all
horizontal links touchingP from the left, and let costR be the total cost per unit of length
of all horizontal links touchingP from the right. If costL ≥ costR then moveP to the left
(otherwise, if costL < costR, moveP to the right) until:P is no longer a vertical path
of maximal length,P overlaps with another vertical path, orP reaches the Hanan grid.
Clearly, this will not increase the total cost of the solution. Finally, eliminate horizontal
paths not lying on the Hanan grid in the same way.
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Fig. 2. In the proof of Lemma3, every crossing between two sd-pathsP1 andP2 of the form shown on the left
is eliminated by replacingP1 andP2 by the two paths obtained by: (1) joiningP−

1
(the part ofP1 leading to the

intersection pointp) to P+

2
(the part ofP2 leading fromp); and (2) joiningP−

2
to P+

1
.

3. An Exact Algorithm for BRND

Here, we describe an exact, divide-and-conquer-based algorithm for BRND. It relies on
Lemma3, which guarantees the existence of an optimal solution to BRND lying on the
Hanan grid. The main idea is to transform the instance into anexponential number of
pairs of smaller instances which are solved recursively andthen joined to find an optimal
solution; the pairs of smaller instances are obtained by enumerating all valid combinations
of sd-paths in the part of the grid that connects them.

Lemma 4. Let H be a grid consisting ofh horizontal lines andk vertical lines, where
w.l.o.g.h ≤ k. Consider an instance of BRND with total demandD, where each source
or sink in the instance is placed in a distinct grid point ofH . Suppose there is an oracle
which, for any integerq ≤ D, returns a specification of a cheapest set of links having total
capacity at leastq in constant time. Then an optimal solution to the BRND instance can be
found inDO(k) time.

Proof. The proof is by induction onk.
If k ≤ 2 then the total number of sources and sinks is at most four. Sinceh ≤ k, the

grid H contains at most four edges between grid points. By Lemma3, there is an optimal
solution to the instance for which all links (i.e., copies ofedges) lie on at most four edges
of H . There are at most(D + 1)4 possible assignments of total capacities of the links on
these (at most four) edges and at most24 possible assignments of directions to the links.
For each such pair of assignments, we can easily check whether it is compatible with a
feasible solution to the instance of BRND. If yes, then for each of the edges, we query the
oracle to find a cheapest set of links achieving at least the assigned capacity. Finally, we
pick the cheapest among all such feasible solutions. Hence,we obtain an optimal solution
in DO(1) time.

Next, supposek > 2. Let M be the median vertical grid line inH . Denote theh po-
sitions whereM intersects a horizontal line of the grid bym1,m2, . . . ,mh (ordered from
top to bottom). Define a vector(e1, e2, . . . , eh) that represents the demands of the sources
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Fig. 3. Illustrating the proof of Lemma4. The given instance of BRND is split into aleft part and aright
part, which are used to define pairs of smaller instances of BRND, denoted byLeft(f1, f2, . . . , fh) and
Right(f1, f2, . . . , fh), where eachfi ∈ {−D,−D + 1, . . . ,−1, 0, 1, . . . ,D − 1, D}.

and sinks lying onM as follows: For eachi ∈ {1, 2, . . . , h}, if mi contains a source in the
given instance of BRND then setei = d(mi); if mi contains a sink then setei = −d(mi);
otherwise (i.e.,mi contains neither a source nor a sink), setei = 0.

Split the given instance of BRND into two parts: theleft part, consisting of all sources
and sinks strictly to the left ofM , and theright part, consisting of all sources and sinks
strictly to the right ofM . Augment the left part withh new pointsl1, l2, . . . , lh at those
h positions whereM intersects a horizontal line of the grid, and augment the right part with
new pointsr1, r2, . . . , rh in the same way (note that each pairli andri would coincide if we
merge the left and right parts). See Fig.3. Next, for any vector(f1, f2, . . . , fh), where each
fi ∈ {−D,−D+1, . . . ,−1, 0, 1, . . . , D−1, D}, define two instancesLeft(f1, f2, . . . , fh)
andRight(f1, f2, . . . , fh) of BRND by modifying the left and right parts as follows. For
eachi ∈ {1, 2, . . . , h}:

• If ei + fi > 0 then letli be a source with demandd(li) = ei+ fi. If ei + fi < 0 then let
li be a sink with demandd(li) = −ei − fi. Otherwise (i.e.,ei + fi = 0), delete pointli.
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• If fi > 0 then letri be a sink with demandd(ri) = fi. If fi < 0 then letri be a source
with demandd(ri) = −fi. Otherwise (i.e.,fi = 0), delete pointri.

Now, for any vector(f1, f2, . . . , fh) such that the total demand of all sources and sinks
in each of the two instancesLeft(f1, f2, . . . , fh) andRight(f1, f2, . . . , fh) does not ex-
ceedD, the two instances can be solved recursively and their solutions merged to give
a candidate solution to the given instance of BRND. There areat most(2D + 1)h ≤
(D+1)h ·2h such vectors to try, and after solving all resulting pairs ofinstances, we select
a candidate solution of minimum cost to find an optimal solution to the given instance of
BRND.

In each of the instancesLeft(f1, f2, . . . , fh) andRight(f1, f2, . . . , fh), the numberh
of horizontal lines may exceed the number of vertical lines (which is at most⌊k/2⌋+ 1).
Therefore, to obtain a simple recursive formula for the running time of our procedure, we
further divide each of the left and right instances by a median horizontal grid line in the
same way as above. Thus, the input instance is reduced to at most(D+1)3k23k quadruples
of BRND instances, each with at most⌊k/2⌋ + 1 vertical lines and at most⌊k/2⌋ + 1

horizontal lines. (The3k in the exponent comes from the fact that three partitioning lines,
each with at mostk grid points, are needed to obtain such a quadruple of smallerinstances).
We obtain the following recursive bound on the timeT (k,D) required to obtain an optimal
solution to the input instance:

T (D, k) ≤ D3k · 23k+2 · (T (D, ⌊k/2⌋+ 1) +O(k))

≤ D3k · 23k+2 · (T (D, 2k/3) +O(k))

≤ D
O
(

∞∑

i=0

k·(2/3)i
)

· 2
O
(

∞∑

i=0

k·(2/3)i
)

+O(log k)
·DO(1)

≤ DO(k).

Next, using the idea behind the pseudo-polynomial time algorithm for the integer knap-
sack problem[15] gives:

Lemma 5. For all positive integersq ≤ D, one can find the cheapest set of links having
total capacity at leastq in O(DK) time, whereK is the number of link types.

Proof. We solve the problem forq in increasing order. To find an optimal solution forq,

pick the cheapest solution among the solutions which can be decomposed into an optimal
solution forq − ci and a single copy of the link of typei, wherei ranges over all possible
types of links.

By using Lemma5 as the oracle in Lemma4, we obtain the following theorem.

Theorem 6. There is an exact algorithm for BRND which runs inDO(n) ·K time, wheren
is the total number of sources and sinks,D ≥ 2 is their total demand, andK is the number
of link types.
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4. A QPTAS for BRND and a (
√

2 + ε)-Approximation for BGND

In this section, we present our QPTAS for BRND and also show how to apply it to BGND.
We begin with generalizations of several results from[4, 33] concerning PTAS for TSP and
the minimum Steiner tree in the plane.

We first state a generalization of the Perturbation Lemma from [4, 33].

Lemma 7. LetG = (V,E) be a geometric multi-graph with vertices in[0, 1]2, and edge
costs of the formδi · |e| for e ∈ E, wherei ∈ {1, . . . ,K} and 0 ≤ δ1 < · · · < δK .
Next, letU ⊆ V . Denote byE(U) the set of edges incident to the vertices inU . One can
perturb the vertices inU so that their coordinates become of the form( i

q ,
j
q ), wherei, j

are natural numbers not greater than a common natural denominatorq, and the total cost
ofG increases or decreases by an additive term of at most

√
2 · δK · |E(U)|/q.

Consider an instance of BGND or BRND with sourcess1 . . . sns
and sinkst1 . . . tnt

.
We may assume w.l.o.g. that the sources and the sinks are in[0, 1)2.

Suppose that the total demandD is nO(1) wheren = ns + nt. It follows that the
maximum degree in a minimum cost multigraph solving BGND or BRND isnO(1). Hence,
the total number of links incident to the sources and sinks inthe multigraph is alsonO(1) =

nO(1) × n. In the case of BRND, we conclude that the total number of links incident to all
vertices, i.e., including the Steiner points, is, w.l.o.g.,nO(1) = nO(1)×O(n2) by Lemma3.

Let∆ > 0. Recall thatδK denotes the maximum cost per unit of length, taken over all
K types of links. By using a straightforward extension of Lemma7 to include a geometric

multigraph and rescaling the coordinates of the sources andsinks by a factorL = nO(1)
·δK

∆ ,
we can alter the given BGND instance or BRND instance to a new instance so that:

• all sources and sinks of the new instance of BGND/BRND as wellas all Steiner vertices
of the new instance of BRND lie on the integer grid[0, L)2, and

• given any solution to the original instance of BGND/BRND, itholds that for each type
of link, the total length of all links of this type in the corresponding solution to the new
instance is at mostL(1 + ∆) times larger, and

• given any solution to the new instance of BGND/BRND, it holdsthat for each type of
link, the total length of all links of this type in the corresponding solution to the original
instance is at most(1 + ∆)/L times larger.

The second and third properties imply that we may assume thatany input instance of
BGND has all its sources and sinks on the integer grid in[0, L)2, since this assumption
introduces at most an additional(1 + ∆) factor to the final approximation ratio. We shall
call it the rounding assumption. In the case of BRND, we may further assume not only
that our input instance has its sources and sinks on the integer grid, but also that all Steiner
vertices may be located only on this grid. We term this assumption the strong rounding
assumption. By the second and third properties, the strong rounding assumption in the case
of BRND also introduces (at most) an additional(1 +∆) factor to the final approximation
ratio.
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Now, we pick two integersa andb uniformly at random from[0, L) and extend the grid
by a vertical grid lines to the left andL − a vertical grid lines to the right. We similarly
increase the height of the grid by usingb, and denote the grid obtained this way byL(a, b).
Next, recursively decomposeL(a, b) into dissection squares by using a 4-ary treeQ(a, b)

called aquadtreeso that:

• The root ofQ(a, b) corresponds to the squareL(a, b).
• Each squareS of area> 1 and containing> 1 point is recursively partitioned into four

equal-sized subsquaresS1, S2, S3, S4 calledsibling dissection squares. In Q(a, b), the
internal node representingS has four children representingS1, S2, S3, S4.

• Q(a, b) has heightO(log n) andnO(1) nodes.

We say a graphG is r-light if it crosses each boundary between two sibling dissection
squares ofQ(a, b) at mostr times. A multigraphH is r-fine if it crosses each boundary
between two sibling dissection squares ofQ(a, b) in at mostr places. For any line segment
ℓ and positive integerr, the r-portals of ℓ are defined as ther endpoints of ther − 1

equal-length subsegments ofℓ into whichℓ can be partitioned. See Fig.4.

distance = |  | / (r−1)l

portals

l

Fig. 4. A lineℓ and ther-portals ofℓ.

Next, we derive the following new theorem which can be seen asa generalization of
the structure theorem of Arora[4] to include geometric multigraphs where the guarantee of
r-lightness is replaced by the weaker guarantee ofr-fineness.

Theorem 8. For anyε > 0 and any BRND (or BGND, respectively) on the gridL(a, b),
there is a multigraph onL(a, b) crossing each boundary between two sibling dissec-
tion squares ofQ(a, b) only atO(logL/ε)-portals which is a feasible solution of BRND
(BGND, respectively) and has expected length at most(1 + ε) times larger than the
minimum.

Proof. We will prove the result for BRND. Identical arguments work for BGND.
The proof follows the approach proposed by Arora in[4]. Let r = 2(1+logL)

ε . Let
G be the multigraph which is an optimal solution for BRND. We will modify the edges
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of G to obtain a multigraphH on L(a, b) crossing each boundary between two sibling
dissection squares ofQ(a, b) only atr-portals that is a feasible solution of BRND and that
has expected length at most(1 + ε) times larger than that ofG.

The dissection squares inQ(a, b) are defined hierarchically and one can assignlevels
ranging from0 to logL to them in the natural way: the root is at level 0, and for every
i ≥ 0, the children of a dissection square at leveli are at leveli + 1. Let ℓ be any grid line
in L(a, b). We define thelevel ofℓ as the minimum level of all dissection squares that have
one side contained inℓ. Observe that ifℓ is of leveli then any dissection square inQ(a, b)

with a side lying onℓ has side length at mostL/2i. Also note that since the shifta and the
shift b are chosen at random, for each vertical or horizontal lineℓ in the grid and for eachi
with 0 ≤ i ≤ logL, we havePr[ℓ is at leveli] ≤ 2i/L.

For a geometric multigraphQ (which will be eitherG or H in our case), fori =

1, . . . ,K, let Qi be the sub-multigraph ofQ induced by links of typei. For any sub-
multigraphQ′ of Q, we denote bycost(Q′) the total cost of all its links, whereas|Q′|
stands for the total length of all its links.

Consider a lineℓ and let level(ℓ) be its level. Each edgee crossingℓ will be deflected in
the new multigraphH to ensure that it crossesℓ in the nearest portal to the original crossing.
Since the portals are placed inℓ at distance L

r·2level(ℓ) from each other, this modification of
edgee will increase the length ofe in H by at most an additive term of L

r·2level(ℓ) . Therefore,
if we denote byτ(ℓ,Gi) the number of edges inGi crossingℓ, the total increase in the
length of all edges inGi crossingℓ will be at mostτ(ℓ,Gi)·L

r·2level(ℓ) .
Next, we observe that level(ℓ) is a random variable that depends on the random choice

of the shift inQ(a, b). Therefore, the expected increase of the length of all edgesin Gi

crossingℓ will be at most:

logL
∑

i=0

Pr[level(ℓ) = i] · τ(ℓ,Gi) · L
r · 2i ≤

logL
∑

i=0

2i

L
· τ(ℓ,Gi) · L

r · 2i

=
(1 + logL) · τ(ℓ,Gi)

r
.

Therefore, if we sum this over allG0, . . .GK and horizontal and vertical grid linesℓ,
then we see that the expected total cost of the new multigraphH is upper bounded by:

E
[

cost(H)
]

= E
[

K
∑

i=0

cost(Hi)
]

≤
K
∑

i=0

cost(Gi) + δi ·
(1 + logL) ·

∑

ℓ: grid line inL(a,b) τ(ℓ,Gi)

r

= cost(G) +
1 + logL

r
·

K
∑

i=0

δi ·
∑

ℓ: grid line inL(a,b)

τ(ℓ,Gi)

whereδi is the cost per unit of length of a link of typei, as in Section2.1.
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Now, we use Lemma 4 from[4] which bounds (under the assumption that all edges in
Gi are of length at least 4, which can be assumed w.l.o.g. by rescaling the original grid) the
sum:

∑

ℓ: grid line (either horizontal or vertical) inL(a,b) τ(ℓ,Gi) ≤ 2 · |Gi|.
Finally, we setr = 2(1+logL)

ε to obtain:

E
[

cost(H)
]

≤ cost(G) +
1 + logL

r
·

K
∑

i=0

δi · 2 · |Gi| = (1 + ε) · cost(G) .

To obtain a QPTAS for BRND in the Euclidean plane with polynomial total demand, we
employ a bottom-up dynamic programming approach to find a minimum cost multigraph
for BRND onL(a, b) that crosses each boundary between two sibling dissection squares
of Q(a, b) only at r-portals, wherer = O(log n/ε). This means that we need to solve
a number of subproblems, each consisting of finding a minimumcost r-fine rectilinear
multigraph for BRND within the square, where the sources arethe original sources within
the square and the crossing points expected to supply some demand, whereas the sinks
are the original sinks within the square and the crossing points expected to receive some
demand. More precisely, every subproblem is specified by:

(1) A node in the quadtreeQ(a, b), corresponding to a dissection square.
(2) A choice of crossing points, i.e., a subset of that square’s O(r)-portals.
(3) For each chosen crossing pointp, an integral demandd(p) that it should either supply

or receive (instead of the pairing of the distinguished portals as in[4]).

By the upper boundD ≤ nO(1), we may assume thatd(p) = nO(1) for every crossing
pointp. Thus, the total number of different subproblem specifications must benO(r). Note
that using a smallerε implies a better approximation ratio but more subproblems.

We first solve all leaf subproblems, i.e., subproblems represented by leaves in the
quadtreeQ(a, b), and then all non-leaf subproblem, i.e., subproblems represented by in-
ternal nodes inQ(a, b), in bottom-up order as follows:

• Each leaf subproblem, where the dissection square is a cell of L(a, b) and the original
sources and sinks may be placed only at the corners of the dissection square and the
remainingO(r) ones atr-portals along the boundary, is solved innO(r) time according
to Theorem6.

• Each non-leaf subproblemP is solved by combining optimal solutions to quadruples of
compatible subproblemsP1, P2, P3, P4 corresponding to the four dissection squares that
are children of the dissection square forP , and selecting the best such quadruple. (Here,
P1, P2, P3, P4 arecompatibleif the locations of the crossing points and their specified
demands are consistent amongP1, P2, P3, P4.) There arenO(r) ·nO(r) ·nO(r) ·nO(r) =

nO(r) quadruples of subproblems ofP to consider, and to check if any quadruple is
compatible takesnO(1) time, so solving a single subproblemP takesnO(r) · nO(1) =

nO(r) time.
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This gives:

Lemma 9. A feasibler-fine multigraph for BRND onL(a, b) with polynomially bounded
total demand and total cost within1 + ε from the optimum is computable innO(r) time.

By combining Theorem8 with Lemma9 for r = O( log n
ε ) and the fact that the rounding

assumption introduces only an additional(1 +O(ε)) factor to the approximation ratio, we
obtain our first result.

Theorem 10. For anyε > 0, there is a randomizednO(logn/ε)-time algorithm for BRND
in the Euclidean plane, with a total ofn sources and sinks and total demand polynomial
in n, that yields a solution whose expected cost is within(1 + ε) of the optimum.

Theorem10directly implies the following result for BGND.

Corollary 11. For anyε > 0, there is a randomizednO(logn/ε)-time algorithm for BGND
in the Euclidean plane, with a total ofn sources and sinks and total demand polynomial
in n, that yields a solution whose expected cost is within(

√
2 + ε) of the optimum.

5. A Fast, Low-Constant Approximation Scheme for BSRND and BSGND

In this section, we present another method for BRND and BGND with single sinks
(BSRND and BSGND), based on a new “belt decomposition technique”. The method runs
in polynomial time, gives a low-constant approximation guarantee, and does not require a
polynomial bound on the total demand. It is especially efficient if the link capacities are
small.

We start with two useful lemmas. First, by taking the shortest path from each source
to a sink and considering the case when the most economical cost per capacity over all
link types could always be employed, we obtain the next lemma, analogous to the so-called
routing lower bound in[28, 34]:

Lemma 12. Let S be the set of sources in an instance of BRND (BGND), and for each
s ∈ S, let t(s) be the closest sink in this instance. The cost of an optimal solution to BRND
(BGND, respectively) is at least

∑

s∈S dist(s, t(s)) · δK
cK

· d(s), wheredist(s, t(s)) is the
L1 distance (the Euclidean distance, respectively).

Next, we adapt the proof of Lemma 2 on p. 184 in[27] for upper bounding the length of
a closed walk through a set of points in ad-dimensional cube to the problem of computing
a minimum Steiner tree in the plane to obtain:

Lemma 13. Let S be a set ofk points within a square of side lengthℓ. One can find a
Steiner tree ofS with lengthO(ℓ

√
k) in O(k) time.

Proof. Divide the square intoℓ/w vertical strips of widthw. There is a trivial Steiner tree
of S including the vertical and the top boundaries of the strips whose total length is at most
(ℓ/w + 2)ℓ+ kw/2. See Fig.5.

By settingw to ℓ/
√
k, we obtain the lemma.
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l

w

Fig. 5. The trivial Steiner tree.

The following key lemma describes a procedure which yields an almostfeasible solu-
tion to BSRND or BSGND with cost arbitrarily close to the optimum.

Lemma 14. For any ε > 0, there is a reduction procedure for BSRND (or BSGND, re-
spectively) with one sink,n− 1 sources, and the ratio between the maximum and minimum
distances of a source from the sink equal tom, which returns a multigraph yielding a
partial solution to the given instance of BSRND (or BSGND, respectively) satisfying the
following conditions:

• All butO((1ε )
2c2K logm) sources can ship their whole demand to the sink;

• For each sources there are at mostcK − 1 units of its whole demandd(s) which cannot
be shipped to the sink.

The procedure runs inO( cKε2 logm logn+ cKn) time, which isO(n/ε2) if cK = O(1).

Proof. Form a rectilinear2⌈m⌉ × 2⌈m⌉ grid F with unit distance equal to the minimum
distance between the only sinkt and a source, centered aroundt. Let µ be a positive con-
stant whose value will be set later.

PartitionF into a squareR with side length2⌈µ√cK⌉ centered int, and for i ∈
{0, 1, . . . , logm}, the beltsBi of squares of side length2i within L∞ distance at least
2i⌈µ√cK⌉ and at most2i+1⌈µ√cK⌉ from t. See Fig.6 for an illustration. Note that the
number of squares in any beltBi is at most(4⌈µ√cK⌉)2 = O(µ2cK) by the definition of
the grid; hence, the total number of squares in all the belts isO(µ2cK logm).

The reduction procedure consists of two phases, described below. Importantly, after the
first phase, the remaining demand for each source is at mostcK − 1 units. After the second
phase, the total remaining demand ofall sources inside each square is at mostcK −1 units.

Phase 1: Connect each sources by a multi-path composed of⌊d(s)/cK⌋ copies of a short-
est path froms to t, implemented with theK-th type of links. Observe that the average cost
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B1B0

Kc

R

t

µ

Fig. 6. An example of the decomposition into the squareR and the beltsBi. The side length of a square in
beltBi+1 is exactly twice that of a square inBi for i ≥ 0, and the number of squares in each belt isO(µ2cK).

of such a connection per each of thecK⌊d(s)/cK⌋ demand unitsu shipped froms to t is
dist(s, t) · δK

cK
, which is optimal by Lemma12.

Phase 2: For each squareQ in each of the beltsBi, locate all sources contained inQ. Then,
while the total remaining demand of all sources inQ is at leastcK , arbitrarily selectcK
units of remaining demand, find a minimum Steiner multitree of their sources and connect
its vertexv closest tot by a shortest path tot. The total length of the resulting multitree
is dist(v, t) + O(2i

√
cK) ≤ (1 + O( 1µ )) · dist(v, t) by the definition of the squares and

Lemma13. Hence, for each demand unitu in thecK-tuple originating from its sources(u),
we can assign the average cost of connection tot by the multitree implemented with the
K-th type of links not greater than(1+O( 1µ ))·dist(s(u), t)·

δK
cK

. It follows from Lemma12

that the total cost of the constructed network is within(1 +O( 1µ )) from the minimum cost
of a multigraph for the input BSRND. By choosingµ appropriately large, we obtain the
required(1 + ε)-approximation.

After the second phase, each square outsideR contains at mostcK−1 sources with non-
zero remaining demand. Since the number of squares isO(µ2cK logm), the total number
of their sources with a non-zero remaining demand (i.e., at most cK − 1 units) to ship is
O(µ2c2K logm) after the second phase. Furthermore, since the squareR contains at most
O(µ2cK) sources, the number of sources inR with a non-zero remaining demand is only
O(µ2cK).

Finally, we analyze the running time. The first phase can be implemented in time lin-
ear in the number of sources. The second phase first needs to find all sources located
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inside each squareQ. This can be done by using a standard 2D range query data struc-
ture for reporting all points in a query rectangle[32] with the query rectangle set toQ;
in total,O(µ2cK logm) 2D range queries for (disjoint) squares are required, whichtakes
O(µ2cK logm logn) time by[32]. Next, the second phase constructsO(cKn/cK) = O(n)

Steiner trees on at mostcK vertices each, using the method of Lemma13 above, which
takesO(cKn) time. W.l.o.g., we letµ = O(1ε ) and conclude that the whole procedure
takesO( cKε2 logm logn+ cKn) time.

Now, we are ready to derive our main result in this section. Basically, we can solve
any given instance of BSRND approximately by first running the reduction procedure of
Lemma14, and then applying the more sophisticated approximation algorithm from The-
orem10 to handle the leftover demands.

Theorem 15. For any ε > 0, there is a(2 + ε)-approximation algorithm for BSRND
with one sink andn − 1 sources in the Euclidean plane, running inO((1ε )

2cK log2 n +

cKn) + (c2K logn)O(
log cK

ε2
) time; in particular, inn(log n)O(1) + (logn)O( log log n

ε2
) time if

cK = (logn)O(1).

Proof. By the rounding assumption discussed in Section4, we can perturb the sinks and the
sources so they lie on an integer grid of polynomial size introducing only an additional(1+
O(ε)) factor to the final approximation ratio. The perturbation can easily be done in linear
time. Next, we apply the reduction procedure from Lemma14 to obtain an almost feasible
solution of total cost not exceeding(1+O(ε)) of that for the optimal solution to the BSRND
on the grid. Note thatm ≤ nO(1) and hencelogm = O(log n) in this application of the
reduction by the polynomiality of the grid. It remains to solve the BRND subproblem for
theO((1ε )

2c2K logn) remaining sources with total remaining demand polynomial in their
number. This subproblem can be solved with the randomized(1 + O(ε))-approximation
algorithm of Theorem10. We may also use its derandomized version here, which will run

in (c2K logn)O(
log cK

ε2
) time.

As an immediate corollary to Theorem15, we obtain:

Corollary 16. For anyε > 0, there is a(
√
8 + ε)-approximation algorithm for BSGND

with one sink andn − 1 sources in the Euclidean plane, running inO((1ε )
2cK log2 n +

cKn) + (c2K logn)O(
log cK

ε2
) time.

Remark 1. For the special case ofcK = O(1), one can obtain a simpler (and still
polynomial-time) approximation algorithm for BSRND by plugging in Theorem6 instead
of Theorem10 to handle the leftover demands in the proof of Theorem15. The reason
is that whencK = O(1), the number of sources with a non-zero remaining demand is
O((1ε )

2c2K logm) = O((1ε )
2 logm) = O((1ε )

2 logn), i.e., logarithmic inn.

Remark 2. Our new technique in this section also extends to arelaxedvariant of BRND
in which the demands of the sinks are unspecified, meaning that every sink can accept
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any amount of supply from the sources. We can generalize the reduction of Lemma14 to
includent sinks by first computing the Voronoi diagram of the sinks in theL1-metric on
the grid, then associating each source to its closest sink bychecking which region of the
Voronoi diagram it belongs to, and finally running the reduction procedure of Lemma14
separately on each set of sources contained in a single Voronoi region. The construction of
the Voronoi diagram and the location of the sources takeO(n log n) time (see[25, 32]). It
follows by straightforward calculations that for anyε > 0, there is a(2+ε)-approximation
algorithm for the relaxed BRND withnt sinks andn − nt sources in the Euclidean plane,

running inO((1ε )
2ntcK log2 n+ n(logn+ cK)) + (ntc

2
K logn)O(

log nt+log cK

ε2
) time. This

also implies a(
√
8 + ε)-approximation algorithm for the analogously relaxed BGNDwith

nt sinks andn− nt sources in the Euclidean plane, running in timeO((1ε )
2ntcK log2 n+

n(logn+ cK)) + (ntc
2
K logn)O(

log nt+log cK

ε2
).

6. Conclusion

In this paper, we have shown:

• BGND, BRND, BSGND, and BSRND are NP-hard, even whenK = 1 andD is poly-
nomially bounded inn (Lemma2 in Section2.2).

• An exact algorithm for divisible BRND that runs inDO(n) · K time (Theorem6 in
Section3).

• A QPTAS for divisible BRND in the Euclidean plane withD ≤ nO(1) (Theorem10 in
Section4).

• A (2+ε)-approximation algorithm for divisible BSRND in the Euclidean plane that runs

in n(logn)O(1)+(logn)O( log log n

ε2
) time if cK = (logn)O(1) (Theorem15in Section5).

• A (
√
8 + ε)-approximation algorithm for divisible BSGND in the Euclidean plane that

runs inO((1ε )
2cK log2 n+ n(logn+ cK)) + (c2K logn)O(

log cK

ε2
) time (Corollary16 in

Section5).

To summarize, our results suggest that certain geometric variants of minimum total
edge cost problems are easier to closely approximate than their graph counterparts. For
example, the best known approximation ratios achievable inpolynomial time for divisi-
ble buy-at-bulk network design in the graph model are polylogarithmic in the multi-sink
case[7] and 20.41 in the single-sink case[20], while we have obtained an(

√
8 + ε)-

approximation algorithm for BSGND in the Euclidean plane whose running time is poly-
nomial whencK (the maximum capacity of a link) is constant, according to Corollary 16.

All our approximation results for different variants of BRND in the Euclidean plane
derived in this paper can be generalized to include the corresponding variants of BRND
in a Euclidean space of fixed dimension. Our approximation schemes are randomized but
they can be derandomized in the same way as those in[4, 12, 13, 33]. An open problem is
how to design faster approximation algorithms for the problems considered in this paper
desirably under less restrictive assumptions on the numberof sinks, the capacities, and
the total demand. It is worth mentioning that recently a polynomial-time approximation
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scheme for the restriction of BSGND in the Euclidean plane allowing for only one type of
link with not too large capacity and polynomial total demandhas been presented in[1].
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