
ar
X

iv
:1

01
1.

17
08

v2
 [

cs
.D

S]
 1

8
Fe

b
20

12

CRAM: Compressed Random Access Memory

Jesper Jansson1, Kunihiko Sadakane2, and Wing-Kin Sung3

1 Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
E-mail: jesper.jansson@ocha.ac.jp

2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430,
Japan. E-mail: sada@nii.ac.jp

3 National University of Singapore, 13 Computing Drive, Singapore 117417.
E-mail: ksung@comp.nus.edu.sg

Abstract. We present a new data structure called the Compressed Ran-
dom Access Memory (CRAM) that can store a dynamic string T of char-
acters, e.g., representing the memory of a computer, in compressed form
while achieving asymptotically almost-optimal bounds (in terms of em-
pirical entropy) on the compression ratio. It allows short substrings of T
to be decompressed and retrieved efficiently and, significantly, characters
at arbitrary positions of T to be modified quickly during execution with-
out decompressing the entire string. This can be regarded as a new type
of data compression that can update a compressed file directly. More-
over, at the cost of slightly increasing the time spent per operation, the
CRAM can be extended to also support insertions and deletions. Our
key observation that the empirical entropy of a string does not change
much after a small change to the string, as well as our simple yet efficient
method for maintaining an array of variable-length blocks under length
modifications, may be useful for many other applications as well.

1 Introduction

Certain modern-day information technology-based applications require random
access to very large data structures. For example, to do genome assembly in
bioinformatics, one needs to maintain a huge graph [18]. Other examples include
dynamic programming-based problems, such as optimal sequence alignment or
finding maximum bipartite matchings, which need to create large tables (often
containing a lot of redundancy). Yet another example is in image processing,
where one sometimes needs to edit a high-resolution image which is too big to
load into the main memory of a computer all at once. Additionally, a current
trend in the mass consumer electronics market is cheap mobile devices with
limited processing power and relatively small memories; although these are not
designed to process massive amounts of data, it could be economical to store
non-permanent data and software on them more compactly, if possible.

The standard solution to the above problem is to employ secondary memory
(disk storage, etc.) as an extension of the main memory of a computer. This
technique is called virtual memory. The drawback of virtual memory is that the
processing time will be slowed down since accessing the secondary memory is

http://arxiv.org/abs/1011.1708v2

an order of magnitude slower than accessing the main memory. An alternative
approach is to compress the data T and store it in the main memory. By using
existing data compression methods, T can be stored in nHk + o(n log σ)-bits
space [2,8] for every 0 ≤ k < logσ n, where n is the length of T , σ is the size of
the alphabet, andHk(T) denotes the k-th order empirical entropy of T . Although
greatly reducing the amount of storage needed, it does not work well because it
becomes computationally expensive to access and update T .

Motivated by applications that would benefit from having a large virtual
memory that supports fast access- and update-operations, we consider the fol-
lowing task: Given a memory/text T [1..n] over an alphabet of size σ, maintain
a data structure that stores T compactly while supporting the following opera-
tions. (We assume that ℓ = Θ(logσ n) is the length of one machine word.)

• access(T, i): Return the substring T [i..(i+ ℓ− 1)].

• replace(T, i, c): Replace T [i] by a character c ∈ [σ]. 4

• delete(T, i): Delete T [i], i.e., make T one character shorter.

• insert(T, i, c): Insert a character c into T between positions i−1 and i, i.e.,
make T one character longer.

Compressed Read Only Memory: When only the access operation is sup-
ported, we call the data structure Compressed Read Only Memory. Sadakane
and Grossi [17], González and Navarro [6], and Ferragina and Venturini [4] de-
veloped storage schemes for storing a text succinctly that allow constant-time
access to any word in the text. More precisely, these schemes store T [1..n] in

nHk +O
(

n log σ
(

k log σ+log logn
logn

))

bits5 and access(T, i) takes O(1) time, and

both the space and access time are optimal for this task. Note, however, that
none of these schemes allow T to be modified.

Compressed Random Access Memory (CRAM): When the operations
access and replace are supported, we call the data structure Compressed Ran-

dom Access Memory (CRAM). As far as we know, it has not been considered
previously in the literature, even though it appears to be a fundamental and
important data structure.

Extended CRAM: When all four operations are supported, we call the data
structure extended CRAM. It is equivalent to the dynamic array [16] and also
solves the list representation problem [5]. Fredman and Saks [5] proved a cell
probe lower bound of Ω(logn/ log logn) time for the latter, and also showed
that nΩ(1) update time is needed to support constant-time access. Raman et

al. [16] presented an n log σ+o(n log σ)-bit data structure which supports access,
replace, delete, and insert in O(logn/ log logn) time. Navarro and Sadakane
[15] recently gave a data structure using nH0(T) +O(n log σ/ logǫ n + σ logǫ n)
bits that supports access, delete, and insert in O(log n

log logn (1+
log σ

log logn)) time.

4 The notation [σ] stands for the set {1, 2, . . . , σ}.
5 Reference [17] has a slightly worse space complexity.

1.1 Our contributions

This paper studies the complexity of maintaining the CRAM and extended
CRAM data structures.We assume the uniform-cost word RAMmodel with word
size w = Θ(log n) bits, i.e., standard arithmetic and bitwise boolean operations
on w-bit word-sized operands can be performed in constant time [9]. Also, we
assume that the memory consists of a sequence of bits, and each bit is identified
with an address in 0, . . . , 2w − 1. Furthermore, any consecutive w bits can be
accessed in constant time. (Note that this memory model is equivalent under the
word RAM model to a standard memory model consisting of a sequence of words
of some fixed length.) At any time, if the highest address of the memory used by
the algorithm is s, the space used by the algorithm is said to be s+ 1 bits [10].

Our main results for the CRAM are summarized in:

Theorem 1. Given a text T [1..n] over an alphabet of size σ and any fixed ǫ > 0,
after O(n log σ/ logn) time preprocessing, the CRAM data structure for T [1..n]

can be stored in nHk(T) +O
(

n log σ
(

(k + 1)ǫ+ k log σ+log log n
log n

))

bits for every

0 ≤ k < logσ n simultaneously, where Hk(T) denotes the k-th order empirical

entropy of T , while supporting access(T, i) in O(1) time and replace(T, i, c)
for any character c in O(1/ǫ) time.

Theorem 1 is proved in Section 5 below.
Next, by setting ǫ = max{ log σ

logn ,
log logn

(k+1) logn}, we obtain:

Corollary 1. Given a text T [1..n] over an alphabet of size σ and any fixed

k = o(logσ n), after O(n log σ/ logn) time preprocessing, the CRAM data struc-

ture for T [1..n] can be stored in nHk(T) +O
(

n log σ · k log σ+log logn
logn

)

bits while

supporting access(T, i) in O(1) time and replace(T, i, c) for any character c
in O(min{logσ n, (k + 1) logn/ log logn}) time.

For the extended CRAM, we have:

Theorem 2. Given a text T [1..n] over an alphabet of size σ, after O(n log σ/ logn)
time preprocessing, the extended CRAM data structure for T [1..n] can be stored

in nHk(T) + O
(

n logσ · k log σ+(k+1) log logn
logn

)

bits for every 0 ≤ k < logσ n si-

multaneously, where Hk(T) denotes the k-th order empirical entropy of T , while
supporting all four operations in O(log n/ log logn) time.

Due to lack of space, the proof of Theorem 2 is given in Appendix B.

Table 1 shows a comparison with existing data structures. Many existing
dynamic data structures for storing compressed strings [7,11,13,15] use the fact
nH0(S) = log

(

n
n1,...,nσ

)

where nc is the number of occurrences of character c in
the string S. However, this approach is helpful for small alphabets only because
of the size of the auxiliary data. For large alphabets, generalized wavelet trees [3]
can be used to decompose a large alphabet into smaller ones, but this slows down
the access and update times. For example, if σ =

√
n, the time complexity of

Table 1. Comparison of existing data structures and the new ones from this paper.
For simplicity, we assume σ = o(n). The upper table lists results for the Compressed
Read Only Memory (the first line) and the CRAM (the second and third lines), and
the lower table lists results for the extended CRAM.

access replace Space (bits) Ref.

O(1) — nHk(T) +O
(

n log σ · k logσ+log log n

log n

)

[4,6]

O(1) O(min{log
σ
n,

(k+1) log n

log log n
}) nHk(T) +O

(

n log σ · k logσ+log log n

log n

)

New

O(1) O(1
ǫ
) nHk(T) +O

(

n log σ
(

k log σ+log log n

logn
+ (k + 1)ǫ

))

New

access/replace/insert/delete Space (bits) Ref.

O(log
2
n

log σ
) nHk(T) + o(n log σ) [15]

O(log σ log n

(log log n)2
) nH0(T) +O

(

n log σ · 1
logǫ n

)

[15]

O(log n

log log n
) nH0(T) +O

(

n log σ · log logn

log n

)

New

O(log n

log log n
) nHk(T) +O

(

n log σ · k log σ+(k+1) log log n

log n

)

New

those data structures is O((log n/ log logn)2), while ours is O(logn/ log logn),
or even constant. Also, a technical issue when using large alphabets is how to
update the code tables for encoding characters to achieve the entropy bound.
Code tables that achieve the entropy bound will change when the string changes,
and updating the entire data structure with the new code table is too time-
consuming.

Our results depend on a new analysis of the empirical entropies of similar

strings in Section 3. We prove that the empirical entropy of a string does not

change a lot after a small change to the string (Theorem 4). By using this fact,
we can delay updating the entire code table. Thus, after each update operation
to the string, we just change a part of the data structure according to the new
code table. In Section 5, we show that the redundancy in space usage by this
method is negligible, and we obtain Theorem 1.

Looking at Table 1, we observe that Theorem 1 can be interpreted as saying
that for arbitrarily small, fixed ǫ > 0, by spending O(n log σ · ǫ(k+1)) bits space
more than the best existing data structures for Compressed Read Only Memory,
we can also get O(1/ǫ) (i.e., constant) time replace operations.

1.2 Organization of the paper

Section 2 reviews the definition of the empirical entropy of a string and the
data structure of Ferragina and Venturini [4]. In Section 3, we prove an im-
portant result on the empirical entropies of similar strings. In Section 4 and
Appendix A, we describe a technique for maintaining an array of variable-length
blocks. Section 5 and Appendix B explain how to implement the CRAM and the
extended CRAM data structures to achieve the bounds stated in Theorems 1
and 2 above. Finally, Section 6 gives some concluding remarks. Experimental
results that demonstrate the good performance of the CRAM in practice can be
found in Appendix C.

2 Preliminaries

2.1 Empirical entropy

The compression ratio of a data compression method is often expressed in terms
of the empirical entropy of the input strings [12]. We first recall the definition of
this concept. Let T be a string of length n over an alphabet A = [σ]. Let nc be
the number of occurrences of c ∈ A in T . Let {Pc = nc/n}σc=1 be the empirical
probability distribution for the string T . The 0-th order empirical entropy of T
is defined as H0(T) = −

∑σ
c=1 Pc logPc. We also use H0(p) to denote the 0-th

order empirical entropy of a string whose empirical probability distribution is p.
Next, let k be any non-negative integer. If a string s ∈ Ak precedes a symbol

c in T , s is called the context of c. We denote by T (s) the string that is the
concatenation of all symbols, each of whose context in T is s. The k-th order
empirical entropy of T is defined as Hk(T) = 1

n

∑

s∈Ak |T (s)|H0(T
(s)). It was

shown [14] that for any k ≥ 0 we have Hk(T) ≥ Hk+1(T) and nHk(T) is a lower
bound to the output size of any compressor that encodes each symbol of T with
a code that only depends on the symbol and its context of length k.

The technique of blocking, i.e., to conceptually merge consecutive symbols to
form new symbols over a larger alphabet, is used to reduce the redundancy of
Huffman encoding for compressing a string. The string T of length n is parti-
tioned into n

ℓ blocks of length ℓ each, then Huffman or other entropy codings
are applied to compress a new string Tℓ of those blocks. We call this operation
blocking of length ℓ.

To prove our new results, we shall use the following theorem in Section 3:

Theorem 3 ([1, Theorem 16.3.2]). Let p and q be two probability mass func-

tions on A such that ||p−q||1 ≡
∑

c∈A |p(c)−q(c)| ≤ 1
2 . Then |H0(p)−H0(q)| ≤

−||p− q||1 log ||p−q||1
|A| .

2.2 Review of Ferragina and Venturini’s data structure

Here, we briefly review the data structure of Ferragina and Venturini from [4].
It uses the same basic idea as Huffman coding: replace every fixed-length block
of symbols by a variable-length code in such a way that frequently occurring
blocks get shorter codes than rarely occurring blocks.

To be more precise, consider a text T [1..n] over an alphabet A where |A| = σ
and σ < n. Let ℓ = 1

2 logσ n and τ = logn. Partition T [1..n] into n
τℓ super-blocks,

each contains τℓ characters. Each super-block is further partitioned into τ blocks,
each contains ℓ characters. Denote the n

ℓ blocks by Ti = T [(i − 1)ℓ + 1..iℓ] for
i = 1, 2, . . . , n/ℓ.

Since each block is of length ℓ, there are at most σℓ =
√
n distinct blocks.

For each block P ∈ Aℓ, let f(P) be the frequency of P in {T1, . . . , Tn/ℓ}. Let
r(P) be the rank of P according to the decreasing frequency, i.e., the number of
distinct blocks P ′ such that f(P ′) ≥ f(P), and r−1(j) be its inverse function.
Let enc(j) be the rank j-th binary string in [ǫ, 0, 1, 00, 01, 10, 11, 000, . . .].

The data structure of Ferragina and Venturini consists of four arrays:

• V = enc(r(T1)) . . . enc(r(Tn/ℓ)).
• r−1(j) for j = 1, . . . ,

√
n.

• Table TSblk[1..
n
ℓτ] stores the starting position in V of the encoding of every

super-block.
• Table Tblk[1..

n
ℓ] stores the starting position in V of the encoding of every

block relative to the beginning of its enclosing super-block.

The algorithm for access(T, i) is simple: Given i, compute the address where
the block for T [i] is encoded by using TSblk and Tblk and obtain the code which
encodes the rank of the block. Then, from r−1, obtain the substring. In total,
this takes O(1) time. This yields:

Lemma 1 ([4]). Any substring T [i..j] can be retrieved in O(1+(j−i+1)/ logσ n)
time.

Using the data structure of Ferragina and Venturini, T [1..n] can be encoded
using nHk +O(n

log
σ
n (k log σ + log logn)) bits according to the next lemma.

Lemma 2 ([4]). The space needed by V, r−1, TSblk, and Tblk is as follows:

• V is of length nHk + 2+O(k logn) +O(nk log σ/ℓ) bits, simultaneously for

all 0 ≤ k < logσ n.
• r−1(j) for j = 1, . . . ,

√
n can be stored in

√
n logn bits.

• TSblk[1..
n
ℓτ] can be stored in O(nℓ) bits.• Tblk[1..

n
ℓ] can be stored in O(nℓ log logn) bits.

3 Entropies of similar strings

In this section, we prove that the empirical entropy of a string does not change
much after a small change to it. This result will be used to bound the space
complexity of our main data structure in Section 5.4. Consider two strings T
and T ′ of length n and n′, respectively, such that the edit distance between T
and T ′ is one. That is, T ′ can be obtained from T by replacement, insertion,
or deletion of one character. We show that the empirical entropies of the two
strings do not differ so much.

Theorem 4. For two strings T and T ′ on alphabet A of length n and n′ respec-

tively, such that the edit distance between T and T ′ is one, and for any integer

k ≥ 0, | nHk(T)− n′Hk(T
′)| = O((k + 1)(logn+ log |A|)).

To prove Theorem 4, we first prove the following:

Lemma 3. Let T be a string of length n over an alphabet A, T− be a string

made by deleting a character from T at any position, T+ be a string made by

inserting a character into T at any position, and T ′ be a string by replacing a

character of T into another one at any position. Then the following relations

hold:

|nH0(T)− (n− 1)H0(T
−)| ≤ 4 logn+ 3 log |A| (if n ≥ 1) (1)

|nH0(T)− (n+ 1)H0(T
+)| ≤ 4 log(n+ 1) + 4 log |A| (if n ≥ 0) (2)

|nH0(T)− nH0(T
′)| ≤ 4 log(n+ 1) + 3 log |A| (if n ≥ 0) (3)

Proof. Let P (x), P−(x), P+(x), and P ′(x) denote the empirical probability of
a character x ∈ A in T , T−, T+, and T ′, respectively, and let nx denote the
number of occurrences of x ∈ A in T . It holds that P (x) = nx

n for any x ∈ A.

If a character c is removed from T , it holds that P−(c) = nc−1
n−1 , and P−(x) =

nx

n−1 for any other x ∈ A. Then ||P − P−||1 = n−nc

n(n−1) +
∑

x∈A,x 6=c
nx

n(n−1) =
2(n−nc)
n(n−1) . If n = 1, it holds H0(T) = 0, and therefore nH0(T)−(n−1)H0(T

−) = 0

and the claim holds. If n = nc, which means that all characters in T are c, it
holds H0(T) = H0(T

−) = 0 and the claim holds. Otherwise, 2
n(n−1) ≤ ||P −

P−||1 ≤ 2
n holds. If ||P − P−||1 ≤ 1

2 , from Theorem 3, |H0(P) − H0(P
−)| ≤

−||P −P−||1 log ||P−P−||1
|A| ≤ 2

n log |A|n(n−1)
2 . Then |nH0(T)− (n− 1)H0(T

−)| ≤
n|H0(P) − H0(P

−)| +H0(P
−) ≤ 4 logn + 3 log |A|. If ||P − P−||1 > 1

2 , which
implies n < 4, |nH0(T)− (n− 1)H0(T

−)| ≤ 3 log |A|. This proves the claim for
T−.

If a character c is inserted into T , it holds that P+(c) = nc+1
n+1 , and P+(x) =

nx

n+1 for any other x ∈ A. Then ||P − P+||1 = 2(n−nc)
n(n+1) . If n = 0, H0(T) =

H0(T
+) = 0 and the claim holds. If n = nc, which means that T+ consists

of only the character c, H0(T) = H0(T
+) = 0 and the claim holds. Otherwise,

2
n(n−1) ≤ ||P −P+||1 ≤ 2

n holds. If ||P −P+||1 ≤ 1
2 , |nH0(T)−(n+1)H0(T

+)| ≤
n|H0(P) − H0(P

+)| + H0(P
−) ≤ 4 logn + 3 log |A|. If ||P − P+||1 > 1

2 , which
implies n < 4, |nH0(T)− (n+ 1)H0(T

+)| ≤ 4 log |A|. This proves the claim for
T+.

If a character c of T is replaced with another character c′ ∈ A (c′ 6= c),
||P − P ′||1 =

∑

α∈A |P (α) − P ′(α)| = |nc

n − nc−1
n | + |nc′

n − n
c′
+1
n | = 2

n . If
||P − P ′||1 ≤ 1

2 , |nH0(T)− nH0(T
′)| ≤ n|H0(P)−H0(P

′)| ≤ 4 logn+ 2 log |A|.
If ||P −P ′||1 > 1

2 , which implies n < 4, |nH0(T)−nH0(T
′)| ≤ 3 log |A|. If c′ = c,

T ′ = T and |nH0(T)− nH0(T
′)| = 0. This completes the proof. ⊓⊔

By using this lemma, we prove the theorem.

Proof. (of Theorem 4) From the definition of the empirical entropy, nHk(T) =
∑

s∈Ak |T (s)|H0(T
(s)). Therefore for each context s ∈ Ak, we estimate the change

of 0-th order entropy.

Because the edit distance between T and T ′ is one, these are expressed
as T = T1cT2 and T ′ = T1c

′T2 by two possibly empty strings T1 and T2,
and possibly empty characters c and c′. For the context T1[n1 − k + 1..n1]
(n1 = |T1|), denoted by s0, the character c in the string T (s0) will change
to c′. The character T2[i] (i = 1, 2, . . . , k) has the context T1[n1 − k + 1 +
i..n1]cT2[1..i − 1], denoted by si, in T , but the context will change to s′i =
T1[n1 − k + 1 + i..n1]c

′T2[1..i− 1], in T ′. Therefore a character T2[i] is removed
from the string T (si), and it is inserted to T ′(si). Therefore in at most 2k + 1
strings (T (s0), T (s1), . . . , T (sk), T ′(s1), . . . , T ′(sk)), the entropies will change. From
Lemma 3, each one will change only O(logn+log |A|). This proves the claim. ⊓⊔

4 Memory management

This section presents a data structure for storing a set B of m variable-length
strings over the alphabet {0, 1}, which is an extension of the one in [15]. The
data structure allows the contents of the strings and their lengths to change,
but the value of m must remain constant. We assume a unit-cost word RAM
model with word size w bits. The memory consists of consecutively ordered bits,
and any consecutive w bits can be accessed in constant time, as stated above. A
string over {0, 1} of length at most b is called a (≤ b)-block. Our data structure
stores a set B of m such (≤ b)-blocks, while supporting the following operations:

• address(i): Return a pointer to where in the memory the i-th (≤ b)-block
is stored (1 ≤ i ≤ m).

• realloc(i, b′): Change the length of the i-th (≤ b)-block to b′ bits (0 ≤ i ≤
m). The physical address for storing the block (address(i)) may change.

Theorem 5. Given that b ≤ m and logm ≤ w, consider the unit-cost word

RAM model with word size w. Let B = {B[1], B[2], . . . , B[m]} be a set of (≤ b)-
blocks and let s be the total number of bits of all (≤ b)-blocks in B. We can

store B in s+O(m logm+ b2) bits while supporting address in O(1) time and

realloc in O(b/w) time.

Theorem 6. Given a parameter b = O(w), consider the unit-cost word RAM

model with word size w. Let B = {B[1], B[2], . . . , B[m]} be a set of (≤ b)-blocks,
and let s be the total number of bits of all (≤ b)-blocks in B. We can store B in

s +O(w4 +m logw) bits while supporting address and realloc in worst-case

O(1) time.

(Due to lack of space, the proofs of Theorems 5 and 6 are given in Appendix A.)
From here on, we say that the data structure has parameters (b,m).

5 A data structure for maintaining the CRAM

This section is devoted to proving Theorem 1. Our aim is to dynamize Ferragina
and Venturini’s data structure [4] by allowing replace operations. (Our data
structure for the extended CRAM which also supports insert and delete is
described in Appendix B.) Ferragina and Venturini’s data structure uses a code
table for encoding the string, while our data structure uses two code tables,
which will change during update operations.

Given a string T [1..n] defined over an alphabet A (|A| = σ), we support
two operations. (1) access(T, i): which returns T [i..i + 1

2 logσ n − 1]; and (2)
replace(T, i, c): which replaces T [i] with a character c ∈ A.

We use blocking of length ℓ = 1
2 logσ n of T . Let T ′[1..n′] be a string of length

n′ = n
ℓ on an alphabet Aℓ made by blocking of T . The alphabet size is σℓ =

√
n.

Each character T ′[i] corresponds to the string T [((i−1)ℓ+1)..iℓ]. A super-block
consists of 1/ǫ consecutive blocks in T ′ (ℓ/ǫ consecutive characters in T), where
ǫ is a predefined constant.

Our algorithm runs in phases. Let n′′ = ǫn′. For every j ≥ 1, we refer to
the sequence of the (n′′(j − 1) + 1)-th to (n′′j)-th replacements as phase j. The
preprocessing stage corresponds to phase 0. Let T (j) denote the string just before
phase j. (Hence, T (1) is the input string T .) Let F (j) denote the frequency table of
blocks b ∈ Aℓ in T (j), and C(j) and D(j) a code table and a decode table defined
below. The algorithm also uses a bit-vector R(j−1)[1..n′′], where R(j−1)[i] = 1
means that the i-th super-block in T is encoded by code table C(j−1); otherwise,
it is encoded by code table C(j−2).

During the execution of the algorithm, we maintain the following invariant:

• At the beginning of phase j, the string T (j) is encoded with code table C(j−2)

(we assume C(−1) = C(0) = C(1)), and the table F (j) stores the frequencies
of blocks in T (j).

• During phase j, the i-th super-block is encoded with code table C(j−2) if
R(j−1)[i] = 0, or C(j−1) if R(j−1)[i] = 1. The code tables C(j−2) and C(j−1)

do not change.
• During phase j, F (j+1) stores the correct frequency of blocks of the current T .

5.1 Phase 0: Preprocessing

First, for each block b ∈ Aℓ, we count the numbers of its occurrences in T ′ and
store it in an array F (1)[b]. Then we sort the blocks b ∈ Aℓ in decreasing order
of the frequencies F (1)[b], and assign a code C(1)[b] to encode them. The code
for a block b is defined as follows. If the length of the code enc(b), defined in
Section 2.2, is at most 1

2 logn bits, then C(1)[b] consists of a bit ‘0’, followed by
enc(b). Otherwise, it consists of a bit ‘1’, followed by the binary encoding of b,
that is, the block is stored without compression. The code length for any block b
is upper bounded by 1+ 1

2 logn bits. Then we construct a table D(1) for decoding

a block. The table has 21+
1

2
logn = O(

√
n) entries and D(1)[x] = b for all binary

patterns x of length 1 + 1
2 logn such that a prefix of x is equal to C(1)[b]. Note

that this decode table is similar to r−1 defined in Section 2.2.
Next, for each block T ′[i] (i = 1, . . . , n′), compute its length using C(1)[T ′[i]],

allocate space for storing it using the data structure of Theorem 6 with param-
eters (1 + ℓ logσ, n

ℓ) = (1 + 1
2 logn,

2n log σ
logn), and w = logn. From Lemma 2 and

Theorem 6, if follows that the size of the initial data structure is nHk(T) +

O
(

n log σ
logn (k log σ + log logn)

)

bits. Finally, for later use, copy the contents of

F (1) to F (2), and initialize R(0) by 0. By sorting the blocks by a radix sort, the
preprocessing time becomes O(n log σ/ logn).

5.2 Algorithm for access

The algorithm for access(T, i) is: Given the index i, compute the block number
x = ⌊(i − 1)/ℓ⌋ + 1 and the super-block number y containing T [i]. Obtain the
pointer to the block and the length of the code by address(x). Decode the block
using the decode table D(j−2) if R(j−1)[x] = 0, or D(j−1) if R(j−1)[x] = 1. This
takes constant time.

5.3 Algorithm for replace

We first explain a naive, inefficient algorithm. If b = T ′[i] is replaced with b′,
we change the frequency table F (1) so that F (1)[b] is decremented by one and
F (1)[b′] is incremented by one. Then new code table C(1) and decode table D(1)

are computed from updated F (1), and all blocks T ′[j] (j = 1, . . . , n′) are re-
encoded by using the new code table. Obviously, this algorithm is too slow.

To get a faster algorithm, we can delay updating code tables for the blocks
and re-writing the blocks using new code tables because of Theorem 4. Because
the amount of change in entropy is small after a small change in the string, we
can show that the redundancy of using code tables defined according to an old
string can be negligible. For each single character change in T , we re-encode a
super-block (ℓ/ǫ characters in T). After ǫn′ changes, the whole string will be
re-encoded. To specify which super-block to be re-encoded, we use an integer
array G(j−1)[1..n′′]. It stores a permutation of (1, . . . , n′′) and indicates that at
the x-th replace operation in phase j we rewrite the G(j−1)[x]-th super-block.
The bit R(j−1)[x] indicates if the super-block has been already rewritten or not.
The array G(j−1) is defined by sorting super-blocks in increasing order of lengths
of codes for encoding super-blocks.

We implement replace(T, i, S) as follows. In the x-th update in phase j,

1. If R(j−1)[G(j−1)[x]] = 0, i.e., if the G(j−1)[x]-th super-block is encoded with
C(j−2), decode it and re-encode it with C(j−1), and set R(j−1)[G(j−1)[x]] = 1.

2. Let y be the super-block number containing T [i], that is, y = ⌊ǫ(i− 1)/ℓ⌋.
3. Decode the y-th super-block, which is encoded with C(j−2) or C(j−1) de-

pending on R(j−1)[y]. Let S′ denote the block containing T [i]. Make a new
block S from S′ by applying the replace operation.

4. Decrement the frequency F (j+1)[S′] and increment the frequency F (j+1)[S].
5. Compute the code for encoding S using C(j−1) if the y-th super-block is

already re-encoded (R(j−1)[y] = 1), or C(j−2) otherwise (R(j−1)[y] = 0).
6. Compute the lengths of the blocks in y-th super-block and apply realloc

for those blocks.
7. Rewrite the blocks in the y-th super-block.
8. Construct a part of tables C(j), D(j), G(j), and R(j) (see below).

To prove that the algorithm above maintains the invariant, we need only to
prove that the tables C(j−1), F (j), andG(j−1) are ready at the beginning of phase
j. In phase j, we create C(j) based on F (j). This is done by just radix-sorting the
frequencies of blocks, and therefore the total time complexity is O(σl) = O(

√
n).

Because phase j consists of n′′ replace operations, the work for creating C(j)

can be distributed in the phase. We represent the array G(j−1) implicitly by
(1/ǫ)(1 + 1

2 logn) doubly-linked lists Ld; Ld stores super-blocks of length d. By

retrieving the lists in decreasing order of d we can enumerate the elements ofG(j).
If all the elements of a list have been retrieved, we move to the next non-empty
list. This can be done in O(1/ǫ) time if we use a bit-vector of (1/ǫ)(1 + 1

2 logn)

bits indicating which lists are non-empty. We copy F (j) to F (j+1) in constant
time by changing pointers to F (j) and F (j+1). For each replace in phase j, we

re-encode a super-block, which consists of 1/ǫ blocks. This takes O(1/ǫ) time.
Therefore the time complexity for replace is O(1/ǫ) time.

Note that during phase j, only the tables F (j), F (j+1), C(j−2), C(j−1), C(j),
D(j−2), D(j−1), D(j), G(j−1), G(j), R(j−1), and R(j) are stored. The other tables
are discarded.

5.4 Space analysis

Let s(T) denote the size of the encoding of T by our dynamic data structure. At
the beginning of phase j, the string T (j) is encoded with code table C(j−2), which
is based on the string T (j−2). Let L(j) = nHk(T

(j)) and L(j−2) = nHk(T
(j−2)).

After the preprocessing, s(T (1)) ≤ L(1) + O
(

n log σ
logn (k log σ + log logn)

)

. If

we do not re-encode the string, for each replace operation we write at most
1+ 1

2 logn bits. Therefore s(T (j)) ≤ s(T (j−2)) +O(n′′ logn) holds. Because T (j)

is made by 2(n′′ +
√
n) character changes to T (j−2), from Theorem 4, we have

|L(j)−L(j−2)| = O(n′′(k+1)(logn+logσ)). Therefore we obtain s(T (j)) ≤ L(j)+
O(ǫ(k + 1)n log σ). The space for storing the tables F (j), C(j), D(j), G(j), H(j),
and R(j) is O(

√
n logn), O(

√
n logn), O(

√
n logn), O(n′′ logn) = O(ǫn log σ),

O(n′′ logn), O(n′′) bits, respectively.
Next we analyze the space redundancy caused by the re-encoding of super-

blocks. We re-encode the super-blocks with the new code table in increasing order
of their lengths, that is, the shortest one is re-encoded first, This guarantees that
at any time the space does not exceed max{s(T (j)), s(T (j−2))}. This completes
the proof of Theorem 1.

6 Concluding remarks

We have presented a data structure called Compressed Random Access Mem-
ory (CRAM), which compresses a string T of length n into its k-th order
empirical entropy in such a way that any consecutive logσ n bits can be ob-
tained in constant time (the access operation), and replacing a character (the
replace operation) takes O(min{logσ n, (k+1) logn/ log logn}) time. The time
for replace can be reduced to constant (O(1/ǫ)) time by allowing an additional
O(ǫ(k+1)n log σ) bits redundancy. The extended CRAM data structure also sup-
ports the insert and delete operations, at the cost of increasing the time for
access to O(logn/ log logn) time, which is optimal under this stronger require-
ment, and the time for each update operation also becomes O(logn/ log logn).

An open problem is how to improve the running time of replace for the
CRAM data structure to O(1) without using the O(ǫ(k + 1)n log σ) extra bits.

Acknowledgments

JJ was funded by the Special Coordination Funds for Promoting Science and
Technology, Japan. KS was supported in part by KAKENHI 23240002.WKS was
supported in part by the MOE’s AcRF Tier 2 funding R-252-000-444-112.

References

1. Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-
Interscience, 1991.

2. Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the
ACM, 52(4):552–581, 2005.

3. Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. Com-
pressed representations of sequences and full-text indexes. ACM Transactions on
Algorithms, 3(2), 2007. Article No. 20.

4. Paolo Ferragina and Rossano Venturini. A simple storage scheme for strings achiev-
ing entropy bounds. Theoretical Computer Science, 372(1):115–121, 2007.

5. Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic
data structures. In Proceedings of Symposium on Theory of Computing (STOC),
pages 345–354, 1989.

6. Rodrigo González and Gonzalo Navarro. Statistical encoding of succinct data struc-
tures. In Proceedings of Symposium on Combinatorial Pattern Matching (CPM),
pages 294–305, 2006.

7. Rodrigo González and Gonzalo Navarro. Rank/select on dynamic compressed se-
quences and applications. Theoretical Computer Science, 410(43):4414–4422, 2009.

8. Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-
compressed text indexes. In Proceedings of Symposium on Discrete Algorithms
(SODA), pages 841–850, 2003.

9. Torben Hagerup. Sorting and searching on the word RAM. In Proceedings of Sym-
posium on Theory Aspects of Computer Science (STACS), pages 366–398, 1998.

10. Torben Hagerup and Rajeev Raman. An efficient quasidictionary. In Proceedings
of Symposium on Switching and Automata Theory (SWAT), pages 1–18, 2002.

11. Meng He and J. Ian Munro. Succinct representations of dynamic strings. In
Proceedings of the International Symposium on String Processing and Information
Retrieval (SPIRE), pages 334–346, 2010.

12. S. Rao Kosaraju and Giovanni Manzini. Compression of low entropy strings with
Lempel-Ziv algorithms. SIAM Journal on Computing, 29(3):893–911, 1999.

13. Veli Mäkinen and Gonzalo Navarro. Dynamic entropy-compressed sequences and
full-text indexes. ACM Transactions on Algorithms, 4(3), 2008. Article No. 32.

14. Giovanni Manzini. An analysis of the Burrows-Wheeler transform. Journal of the
ACM, 48(3):407–430, 2001.

15. Gonzalo Navarro and Kunihiko Sadakane. Fully-functional static and dy-
namic succinct trees, 2010. Submitted for journal publication. Available at
http://arxiv.org/abs/0905.0768. A preliminary version appeared in Proc. ACM-
SIAM SODA, pp. 134–149, 2010.

16. Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct dynamic
data structures. In Proceedings of Workshop on Algorithms and Data Structures
(WADS), pages 426–437, 2001.

17. Kunihiko Sadakane and Roberto Grossi. Squeezing succinct data structures into
entropy bounds. In Proceedings of Symposium on Discrete Algorithms (SODA),
pages 1230–1239, 2006.

18. Jared T. Simpson, Kim Wong, Shaun D. Jackman, Jacqueline E. Schein, Steven
J. M. Jones, and İnanç Birol. ABySS: A parallel assembler for short read sequence
data. Genome Research, 19(6):1117–1123, June 2009.

Appendix

A Memory management

This appendix proves Theorems 5 and 6 from Section 4.

We first describe some technical details. (Recall the definitions from Sec-
tion 4.) Let p = Θ(log(mb)). This is the number of bits needed to represent
a memory address relative to the head of a memory region storing B. For any
(≤ b)-block B[i] in B, we will refer to the current contents of B[i] by data(i). To
store data(i) for all (≤ b)-blocks compactly while allowing efficient updates, we
allocate memory in such a way that data(i) for any given (≤ b)-block B[i] may
be spread out over at most two non-consecutive regions in the memory. For this
purpose, define a segment to be b + 4p consecutive bits of memory. The data
structure will always allocate and deallocate memory in terms of segments, and
keep a pointer to the start of the segment currently at the highest address in the
memory.

The core of our data structure is b doubly-linked lists L1, . . . , Lb, where each
list Lx is a doubly-linked list of a set of segments, each is of length b+4p bits. The
main idea is to use the segments in list Lx to store all (≤ b)-blocks of length x.
Moreover, we do so in such a way that when the length of a (≤ b)-block changes
from x to x + d, we only need to update a few segments in the two lists Lx

and Lx+d.
Every segment belonging to a list Lx is used as follows:

• pred : p bits to store the memory address of its predecessor segment in Lx.
• succ: p bits to store the memory address of its successor segment in Lx.
• block data: b + p bits for storing information associated with one or more
(≤ b)-blocks of length x. More precisely, for i ∈ [m], let id(i) denote the
binary encoding of the integer i in logm ≤ p bits. For every x ∈ [b], form a
string B∗

x by concatenating the pairs (id(i), data(i)) for all (≤ b)-blocks B[i]
of length x in some arbitrary order. Divide B∗

x into substrings of length b
and store them in the block data region of consecutive segments in Lx. Only
the first segment in each list Lx is allowed to have some unused bits in its
block data region.

• offset : log b (≤ p) bits to store the relative starting position within the
block data-region of the first (≤ b)-block. Observe that the head offset bits
of the segment are used to store another (≤ b)-block, whose starting position
belongs to another segment, except the first segment in Lx.

See Fig. 1 for an illustration. Note that a (≤ b)-block B[i] may stretch across
two segments in Lx, and that these two segments might not be located in a
consecutive region of the memory.

In addition to the doubly-linked lists, we use four arrays Seg[1..m], Pos[1..m],
Len[1..m], and Ind[1..m] to remember the locations of the (≤ b)-blocks. To be
precise, for each i ∈ [m], we have

• Seg[i] contains a pointer j to Ind[j].

L :x

≤(b)−block

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���

���
���
���
���

������
������
������
������

������
������
������
������

��
��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

id data

block_data

(empty)

for one segment

dataid

Fig. 1. Each doubly-linked list Lx consists of segments which together store all (≤ b)-
blocks of length x in their block data-regions (shown here). The data for a single (≤ b)-
block may be split across two segments and the first segment in Lx may contain some
unused bits.

• Pos[i] contains the relative location of B[i] from the starting position of the
segment.

• Len[i] stores the length of B[i].
• Ind[j] stores the memory address of the segment which stores blocks B[i]
with Seg[i] = j.

The array Ind is used for indirect addressing. Consider the case that we do
not use the array Ind and store memory addresses in Seg directly. When a
segment has moved to another address, we have to rewrite non-constant number
of Seg[i]’s for i’s such that the i-th block is stored in the segment. On the other
hand, if Ind is used, we need not to rewrite all Seg[i]’s and it is enough to rewrite
only an entry Ind[j] (j = Seg[i] for those i’s).

Proof. (of Theorem 5) To implement address(i) in O(1) time, we simply return
three values Q = Seg[Ind[i]], Pos[i], and Len[i]. Observe that B[i] is stored at
position Pos[i] of the segment Q. Moreover, when Pos[i] + Len[i] > b + p, the
(≤ b)-block B[i] spans across two segments (i.e. segments Q and Q.succ). In this
case, the first Pos[i]+Len[i]− b−p bits of B[i] are stored at the end of segment
Q while the remaining bits of B[i] are stored at the beginning of segment Q.succ.

To implement realloc(i, b′) in O(b/w) time, we first find the location q of
B[i] by address(i). Store data(i) in a temporary space tmp. Obtain the index j
of the first (≤ b)-block B[j] in Lx from the block data of the first segment in Lx.
Copy the first (≤ b)-block B[j] in Lx to position q and update Seg[j] and Pos[j]
accordingly. If the first segment in Lx becomes empty, move the segment with the
largest address to the empty location. Let s and t be the addresses of the segment
before and after the movement, respectively. We have to change pointers to all
(≤ b)-blocks B[j′] stored in the moved segment. Though the moved segment may
contain Θ(b) (≤ b)-blocks, this can be done in constant time as follows. For any
(≤ b)-block B[j′] in the segment, it holds Ind[j′] = r for some r, and Seg[r] = s
before the movement. Therefore it holds Seg[Ind[j′]] = s for all the blocks. After
the movement, it must hold that Seg[Ind[j′]] = t for all the blocks. This is done
in constant time by simply setting Seg[r] = t and we need not change Ind[j′] for

each j′. Each value r = Ind[j′] is an integer in the range [0,m] and corresponds
to a segment. Precisely, if the data structure currently has r segments, and a
new segment is allocated for B[j], we set Ind[j] = r + 1 and Seg[r + 1] is set
to the address of the new segment. If the blocks in the (r + 1)-st segment have
been moved, we change Seg[r + 1].

Next, copy the x bits stored in tmp to immediately before the first (≤ b)-
block in the head of the list Lx+d. In case the first segment of Lx+d does not
have enough space to store it, we allocate a new segment. Finally, update Seg[i],
Pos[i], Len[i], and Ind[i]. The time complexity is O(b

w). This is necessary to
copy segments of O(b + p) bits.

To analyze the space complexity, note that the total length of data(i) for
all B[i] ∈ B is s. Each list Lx has at most one segment which has an empty
slot, and therefore there exist at most b segments with an empty slot. Then the
number of segments to store s bits is at most s/b+ b and the space to store the
segments is (b+4p)(s/b+ b) = s(1+ 4p

b)+ b(b+4p). This is s+O(b2 +m logm)
because p = log(mb) = O(logm) and s ≤ bm. We also need 4mp = O(m logm)
bit space for storing Seg[1..m], Ind[1..m], Pos[1..m], and Len[1..m]. In total,
the total space is s+O(b2 +m logm) bits. This proves Theorem 5. ⊓⊔

The data structure of Theorem 5 uses O(m logm) bits additional space,
which is too large if we want to store many short blocks. Because of this, we
give an alternative data structure in Theorem 6. We say the data structure has
parameters (b,m).

Proof. (of Theorem 6) We use Theorem 5 to store a set of (≤ b)-blocks B[1..m]
for b = 1+w and m = wc for some constant c > 0. We say the data structure has
parameters (1+w,wc). For general m > wc, we split B[1..m] into m′ = ⌈m/wc⌉
sub-arrays B′

1[1..w
c], B′

2[1..w
c], . . . , B′

m′ [1..wc] and to store each sub-array B′
i

we use Theorem 5 with parameters (b,m) = (1 + w,wc). Then address(i) and
realloc(i, b) are done in constant time. However a problem is that the memory
space to store the data structure for each sub-array will change, and we cannot
store it in a consecutive memory region. To overcome this, we use a two-level
data structure. Let M = ⌈ m

w3 ⌉. The higher level consists of M data structures
of Theorem 5 with parameters (1 +w,w3). We call each one Di (i = 1, . . . ,M).
Each Di uses a consecutive memory region, which is impossible. Therefore we
use a kind of virtual memory. The memory to store segments is divided into
pages. Each page uses a physically consecutive memory region, while the pages
are located in non-consecutive regions. Each data structure Di has w

2 pages, and
each page contains either w segments or no segments, depending on how many
bits are necessary to store the blocks. Precisely, if s segments are necessary, the
first ⌈s/w⌉ pages have w segments each, and the rest have no segments. The
total number of pages for all Di (i = 1, . . . ,M) is Mw2 = ⌈m

w ⌉.
The whole pages of all the data structures Di (i = 1, . . . ,M) are managed

by a single data structure of Theorem 5 with parameters (O(w2), ⌈m
w ⌉). We call

the data structure D. The algorithm for address(i) becomes as follows. Let
q = ⌊ i−1

w3 ⌋+ 1 and r = i− (q − 1)w3. The i-th block is stored as the r-th block

of Dq. Therefore we compute address(r) in Dq, and obtain the logical (virtual)
address x of the segment containing the block. To convert it into the physical
(real) address y of the memory, we first compute the page number z for the
segment, then compute address(z) in D. It is straightforward to compute the
address for the block inside the page because the segments in the page are of
the same length. These operations are done in constant time.

The function realloc(i, b) is implemented as follows. First we find the data
structure Dq that contains the i-th block, and execute realloc in Dq. Note that
Dq uses virtual memory which is managed by D. Therefore we have to convert
a logical address to a physical one for any memory access. During the execution
of realloc in Dq, we have to move a constant number of pages of w2 bits in
D. If we naively use the result of Theorem 5, it takes O(w) time. It is easy to
obtain an amortized O(1) time algorithm because each block is of O(w) bits
and movement of pages in D occurs every O(w) operations of realloc in Dq.
It is also easy to obtain a worst-case O(1) time algorithm at the cost of O(w2)
bit redundant space for each Dq. We can spread the movement of pages over
the next O(w) execution of realloc in Dq. Then a constant number of pages
with empty slots will exist, resulting in O(w2) bit redundancy in space. This
redundancy sums up to O(m

w3 · w2) = O(mw) bits for all Dq.
We analyze the space complexity. Each Dq has O(w2+w3 logw)-bit auxiliary

data structures, and they sum up to O(m logw) bits. The data structure D uses
s+O(w4+m logw

w) bits. Therefore the total space is s+O(w4+m logw) bits. ⊓⊔

B A data structure for maintaining the extended CRAM

This section proves Theorem 2. To support insert and delete efficiently, we
use variable length super-blocks. Namely, let τ = logn

log logn and ℓ = 1
2 logσ n.

Each super-block consists of τ to 2τ blocks (τℓ to 2τℓ consecutive characters
in T). These super-blocks are stored using the data structure of Theorem 5
with parameters (2 log2 n/ log logn, n log log n/ log2 n). To represent super-block
boundaries, we use a bit-vector B[1..n] such that B[i] = 1 means that T [i] is
the first character in a super-block. Therefore B has Θ(n log σ log logn/ log2 n)
ones. This bit-vector is stored using the following data structure.

Lemma 4 (Lemma 17 [15]). We can maintain any bit-vector B[1..n] within
nH0(B) + O(n log log n/ logn) bits of space, while supporting the operations

rank, select, insert, and delete, all in time O(log n/ log logn).

Because nH0(B) = O(n log logn/ logn), the bit-vector can be stored in
O(n log log n/ logn) bits, and rank(B, i) can be computed in O(logn/ log logn)
time, where rank(B, i) is the number of ones in B[1..i]. By using this data struc-
ture, we can compute the super-block number containing T [i] by rank(B, i).

The algorithm for insert and delete in the extended CRAM works as
follows. First, we re-write the super-block in which insert or delete occurs.
If it contains less than τ or more than 2τ blocks, we merge two consecutive
super-blocks or split it into two to maintain the invariant that every super-block

consists of τ to 2τ blocks. If the lengths of super-blocks change, we update
the bit-vector B accordingly. Because only a constant number of super-blocks
change, the time complexity is O(log n/ log logn).

However, in the extended CRAM, the time complexity of access(T, i) in-
creases from O(1) to O(log n/ log logn): We first compute the super-block num-
ber for T [i] by using rank(B, i) in O(logn/ log logn) time. Then, we scan all
the blocks in the super-block to find the location storing T [i..i + ℓ − 1]. Fur-
thermore, for each replace(T, i, c) operation, we re-encode a super-block. This
means that we set ǫ = O(log logn/ logn) in Theorem 1. The time complexity
becomes O(log n/ log logn).

We also have to consider “the change of logn problem”. The sizes of blocks
and super-blocks depend on logn, the length of the string. If n changes a lot, logn
also changes, and we have to reconstruct the data structure for the new value
of logn. To avoid this, we use the same technique as Mäkinen and Navarro [13].
We partition the string T into three parts T1, T2, T3, and encode them using
logn − 1, logn, logn + 1 as their “logn” values, respectively. We maintain the
following invariant that if n is zero or a power of two, T1 and T3 are empty
and T2 is equal to T , and if n increases by one, the length of T3 grows by
two and that of T1 shrinks by one. To accomplish this, depending on where
an insert occurs, we move the rightmost one or two characters of T1 to the
beginning of T2, and the rightmost one or two characters of T2 to the begin-
ning of T3. A deletion is done similarly. We can guarantee that if the string
length is doubled, “logn” increases by one. For example, if n is a power of
two then all the characters belong to T2. Then after n insertions, the length
becomes 2n and all the characters move to T3, and now T3 becomes the new
T2. The strings T1, T2, and T3 are stored using the data structure of Theo-
rem 5 with parameters (2(logn−1)2/ log(logn−1), n log(logn−1)/(logn−1)2),
(2(logn)2/ log logn, n log logn/(logn)2), (2(log n+1)2/ log(logn+1), n log(logn+
1)/(logn+1)2), respectively. The asymptotic space and time complexities do not
change.

C Experimental results

To test the performance of the CRAM data structure in practice, we implemented
a prototype named cram and compared it to a gzip-based alternative method
named cramgz. For the implementations, we used the C programming language.
In this appendix, we describe the details of the experiments and the outcome.

1. cram is the data structure that we introduced in this paper, but a few changes
were made to make it easier to implement. (These simplifications may reduce
the performance of the method slightly; however, as shown below, it is still
excellent.) To be precise, the cram-prototype works as described in the paper
but with the following modifications:

• The memory is partitioned into large blocks, and the size of each large
block is denoted by b. Each large block is further partitioned into middle

blocks of length m. Finally, each middle block stores blocks of length
ℓ = 2, instead of 1

2 logσ n, which correspond to the “blocks” described in
the paper.

• Pointers to large blocks and middle blocks are stored.

• Each block is encoded by a Huffman code. We assign codes to all char-
acters in the alphabet because otherwise we cannot encode characters
that are missing from the initial string but later appear due to replace

operations.

• An additional parameter u is employed as follows. If x bytes of memory
change occur, then x · u bytes are re-encoded with new codes. Further-
more, if x · u > b, a large block is re-encoded. (This means that the
worst-case time complexity of replace becomes amortized, so it is no
longer constant.)

2. Next, cramgz is an original data structure based on gzip:

• The memory is partitioned into large blocks of length b′.

• Each large block is compressed by gzip and stored using our dynamic
memory management algorithm. We employed the zlib library6, with
compression level 1 (i.e., the fastest compression).

For the experiments, we used the two text files English and DNA from the Pizza
& Chili corpus 7. The lengths of these texts are limited to 200MB, so n = 200·220
and the alphabet size σ = 256.

Experiment 1: The first experiment only involved cram and was done to de-
termine a suitable value for the parameter u. We first built the CRAM data
structure for the English text using the parameters b = 1024, m = 64. Then, we
overwrote the DNA text onto the (compressed) English text one character at a
time, from left to right, by using replace operations. The 1-st order entropy of
the initial text was about 4 bits per character (bpc), and including the auxil-
iary data structure, the size was about 4.67 bpc. On the other hand, since the
DNA text only consists of four distinct characters {a, c, g, t} and the text is
almost random, its 1-st order entropy is 2 bpc and about 2.67 bpc including the
auxiliary data structure.

Fig. 2 shows the outcome. As expected, when the text is modified, its 1-st
order entropy (shown in the curve ‘entropy’) changes. The other lines in the
diagram show the data structure’s change in size for various values of the pa-
rameter u. If u = 1, the code never changes because we write the whole DNA
text before the end of Phase 1 (see Section 5 for the explanation of “phase”). In
other words, all the characters in the DNA text are encoded by the optimal code
for the English text, and the resulting size is bad. If u > 1, the code is updated
while the text is modified, and the size converges to the entropy (plus the size

6 http://zlib.net
7 http://pizzachili.dcc.uchile.cl

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 20 40 60 80 100

S
iz

e
(b

pc
)

Update

Size of Data Structure (english -> dna)

u=1 (57.88 sec)
u=2 (72.70 sec)
u=3 (90.52 sec)

u=4 (108.84 sec)
u=5 (129.06 sec)
u=8 (188.25 sec)

entropy

Fig. 2. Results for Experiment 1. The x-axis represents the ratio of overwritten text;
0 is the initial situation where the entire text is from the English text, 50 means that
the left half of the text has been changed to the DNA text while the right half is still
from the English text, and 100 is when the whole text has become the DNA text.

of the auxiliary data structure). We can see that as the value of u increases, the
size converges towards the entropy more quickly but the time needed to update
the data structure also increases. We select u = 4 as a good trade-off between
the convergence speed and the update time.

Experiment 2: The second experiment compared the access and replace

times for cram and cramgz. We set the parameters of the data structures so that
both have the same size. For cram, we set b = 1024, m = 64, u = 4. Then, the
English text has size 4.67 bpc. To achieve the same compression ratio (4.67 bpc)
for cramgz, we had to select b′ = 1024.

We performed two types of experiments: one to evaluate access by mea-
suring the time needed to read the entire compressed English text, and one to
evaluate replace by measuring the time needed to overwrite the DNA text onto
the compressed English text. We combined series of consecutive operations into
single read/write unit operations, and tried various sizes of read/write units
smaller than the block size. Fig. 3 shows the size of each read/write unit and
the resulting time for access and replace. In cramgz, large blocks of length
b′ = 1024 bytes are directly compressed by gzip, and reading any unit shorter
than 1024 bytes still requires decoding the whole large block. Therefore, access
is not very efficient when using units shorter than b′ bytes. Similarly, writing a

 1

 10

 100

 1000

 100 1000

R
ea

d/
W

rit
e

tim
e

(s
)

Read/Write unit (bytes)

Size of unit and read/write time

gzip write
cram write
gzip read

cram read

Fig. 3. Results for Experiment 2. The x-axis shows the size of the unit for read/write,
and the y-axis shows the resulting time needed to read the whole text by access

operations or to overwrite the whole text by replace operations, respectively.

short unit requires decoding a large block, rewriting a part of it, and then en-
coding the whole large block again. On the other hand, in cram, the base is the
middle block (i.e., m = 64 bytes) and therefore it is more efficient than cramgz.
Fig. 3 shows that cram is faster than cramgz for all read unit sizes, and faster
for 16 to 256 bytes write unit sizes.

	CRAM: Compressed Random Access Memory

