
CRAM: Compressed Random Access Memory

Jesper Jansson1, Kunihiko Sadakane2, and Wing-Kin Sung3

1 Laboratory of Mathematical Bioinformatics, Institute for Chemical Research,
Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

jj@kuicr.kyoto-u.ac.jp
2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,

Tokyo 101-8430, Japan
sada@nii.ac.jp

3 National University of Singapore, 13 Computing Drive, Singapore 117417
ksung@comp.nus.edu.sg

Abstract. We present a new data structure called the Compressed Ran-
dom Access Memory (CRAM) that can store a dynamic string T of char-
acters, e.g., representing the memory of a computer, in compressed form
while achieving asymptotically almost-optimal bounds (in terms of em-
pirical entropy) on the compression ratio. It allows short substrings of T
to be decompressed and retrieved efficiently and, significantly, characters
at arbitrary positions of T to be modified quickly during execution with-
out decompressing the entire string. This can be regarded as a new type
of data compression that can update a compressed file directly. More-
over, at the cost of slightly increasing the time spent per operation, the
CRAM can be extended to also support insertions and deletions. Our
key observation that the empirical entropy of a string does not change
much after a small change to the string, as well as our simple yet efficient
method for maintaining an array of variable-length blocks under length
modifications, may be useful for many other applications as well.

1 Introduction

Certain modern-day information technology-based applications require random
access to very large data structures. For example, to do genome assembly in
bioinformatics, one needs to maintain a huge graph [18]. Other examples include
dynamic programming-based problems, such as optimal sequence alignment or
finding maximum bipartite matchings, which need to create large tables (often
containing a lot of redundancy). Yet another example is in image processing,
where one sometimes needs to edit a high-resolution image which is too big to
load into the main memory of a computer all at once. Additionally, a current
trend in the mass consumer electronics market is cheap mobile devices with
limited processing power and relatively small memories; although these are not
designed to process massive amounts of data, it could be economical to store
non-permanent data and software on them more compactly, if possible.

The standard solution to the above problem is to employ secondary memory
(disk storage, etc.) as an extension of the main memory of a computer. This

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 510–521, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

CRAM: Compressed Random Access Memory 511

technique is called virtual memory. The drawback of virtual memory is that the
processing time will be slowed down since accessing the secondary memory is
an order of magnitude slower than accessing the main memory. An alternative
approach is to compress the data T and store it in the main memory. By using
existing data compression methods, T can be stored in nHk + o(n log σ)-bits
space [2,8] for every 0 ≤ k < logσ n, where n is the length of T , σ is the size of
the alphabet, andHk(T) denotes the k-th order empirical entropy of T . Although
greatly reducing the amount of storage needed, it does not work well because it
becomes computationally expensive to access and update T .

Motivated by applications that would benefit from having a large virtual mem-
ory that supports fast access- and update-operations, we consider the following
task: Given a memory/text T [1..n] over an alphabet of size σ, maintain a data
structure that stores T compactly while supporting the following operations.
(We assume that � = Θ(logσ n) is the length of one machine word.)

• access(T, i): Return the substring T [i..(i+ �− 1)].
• replace(T, i, c): Replace T [i] by a character c ∈ [σ]. 1

• delete(T, i): Delete T [i], i.e., make T one character shorter.
• insert(T, i, c): Insert a character c into T between positions i−1 and i, i.e.,
make T one character longer.

Compressed Read Only Memory: When only the access operation is sup-
ported, we call the data structure Compressed Read Only Memory. Sadakane
and Grossi [17], González and Navarro [6], and Ferragina and Venturini [4] de-
veloped storage schemes for storing a text succinctly that allow constant-time
access to any word in the text. More precisely, these schemes store T [1..n] in

nHk +O
(
n log σ

(
k log σ+log log n

log n

))
bits2 and access(T, i) takes O(1) time, and

both the space and access time are optimal for this task. Note, however, that
none of these schemes allow T to be modified.

Compressed Random Access Memory (CRAM): When the operations
access and replace are supported, we call the data structure Compressed Ran-
dom Access Memory (CRAM). As far as we know, it has not been considered
previously in the literature, even though it appears to be a fundamental and
important data structure.

Extended CRAM: When all four operations are supported, we call the data
structure extended CRAM. It is equivalent to the dynamic array [16] and also
solves the list representation problem [5]. Fredman and Saks [5] proved a cell
probe lower bound of Ω(logn/ log log n) time for the latter, and also showed
that nΩ(1) update time is needed to support constant-time access. Raman et
al. [16] presented an n log σ+o(n log σ)-bit data structure which supports access,
replace, delete, and insert in O(log n/ log logn) time. Navarro and Sadakane
[15] recently gave a data structure using nH0(T) +O(n log σ/ logε n+ σ logε n)
bits that supports access, delete, and insert in O(logn

log logn (1+
log σ

log logn)) time.

1 The notation [σ] stands for the set {1, 2, . . . , σ}.
2 Reference [17] has a slightly worse space complexity.

512 J. Jansson, K. Sadakane, and W.-K. Sung

1.1 Our Contributions

This paper studies the complexity of maintaining the CRAM and extended
CRAM data structures. We assume the uniform-cost word RAM model with
word size w = Θ(log n) bits, i.e., standard arithmetic and bitwise boolean oper-
ations on w-bit word-sized operands can be performed in constant time [9]. Also,
we assume the memory consists of a sequence of bits, and each bit is identified
with an address in 0, . . . , 2w − 1. Furthermore, any consecutive w bits can be
accessed in constant time. (Note that this memory model is equivalent under the
word RAM model to a standard memory model consisting of a sequence of words
of some fixed length.) At any time, if the highest address of the memory used by
the algorithm is s, the space used by the algorithm is said to be s+ 1 bits [10].

Our main results for the CRAM are summarized in:

Theorem 1. Given a text T [1..n] over an alphabet of size σ and any ε > 0,
after O(n log σ/ logn) time preprocessing, the CRAM data structure for T [1..n]

can be stored in nHk(T) +O
(
n log σ

(
(k + 1)ε+ k log σ+log logn

logn

))
bits for every

0 ≤ k < logσ n simultaneously, where Hk(T) denotes the k-th order empirical
entropy of T , while supporting access(T, i) in O(1) time and replace(T, i, c)
for any character c in O(1/ε) time.

Theorem 1 is proved in Section 5 below.
Next, by setting ε = max{ log σ

logn ,
log log n

(k+1) logn}, we obtain:

Corollary 1. Given a text T [1..n] over an alphabet of size σ and any k =
o(logσ n), after O(n log σ/ logn) time preprocessing, the CRAM data structure

for T [1..n] can be stored in nHk(T) +O
(
n logσ · k log σ+log logn

logn

)
bits while sup-

porting access(T, i) in O(1) time and replace(T, i, c) for any character c in
O(min{logσ n, (k + 1) logn/ log logn}) time.

For the extended CRAM, we have:

Theorem 2. Given a text T [1..n] over an alphabet of size σ, after spending
O(n log σ/ logn) time on preprocessing, the extended CRAM data structure for

T [1..n] can be stored in nHk(T)+O
(
n log σ · k log σ+(k+1) log logn

logn

)
bits for every

0 ≤ k < logσ n simultaneously, where Hk(T) denotes the k-th order empirical
entropy of T , while supporting all four operations in O(logn/ log logn) time.

(Due to space limitations, the proof of Theorem 2 has been omitted from the
conference version of our paper.)

Table 1 shows a comparison with existing data structures. Many existing
dynamic data structures for storing compressed strings [7,11,13,15] use the fact
nH0(S) = log

(
n

n1,...,nσ

)
where nc is the number of occurrences of character c in

the string S. However, this approach is helpful for small alphabets only because
of the size of the auxiliary data. For large alphabets, generalized wavelet trees [3]
can be used to decompose a large alphabet into smaller ones, but this slows down

CRAM: Compressed Random Access Memory 513

Table 1. Comparison between previously existing data structures and the new ones
in this paper. For simplicity, we assume σ = o(n). The upper table lists results for the
Compressed Read Only Memory (the first line) and the CRAM (the second and third
lines), and the lower table lists results for the extended CRAM.

access replace Space (bits) Ref.

O(1) — nHk(T) +O
(
n log σ · k log σ+log logn

log n

)
[4,6]

O(1) O(min{logσ n, (k+1) log n
log logn

}) nHk(T) +O
(
n log σ · k log σ+log logn

log n

)
New

O(1) O(1
ε
) nHk(T) +

O
(
n log σ

(
k log σ+log log n

log n
+ (k + 1)ε

))
New

access/replace/insert/delete Space (bits) Ref.

O(log
2 n

log σ
) nHk(T) + o(n log σ) [15]

O(logσ logn
(log log n)2

) nH0(T) +O
(
n log σ · 1

logε n

)
[15]

O(logn
log log n

) nH0(T) +O
(
n log σ · log log n

log n

)
New

O(logn
log log n

) nHk(T) +O
(
n log σ · k log σ+(k+1) log log n

log n

)
New

the access and update times. For example, if σ =
√
n, the time complexity of

those data structures is O((log n/ log logn)2), while ours is O(log n/ log logn), or
even constant. Also, a technical issue when using large alphabets is how to update
the code tables for encoding characters to achieve the entropy bound. Code
tables that achieve the entropy bound will change when the string changes, and
updating the entire data structure with the new code table is time-consuming.

Our results depend on a new analysis of the empirical entropies of similar
strings in Section 3. We prove that the empirical entropy of a string does not
change a lot after a small change to the string (Theorem 4). By using this fact,
we can delay updating the entire code table. Thus, after each update operation
to the string, we just change a part of the data structure according to the new
code table. In Section 5, we show that the redundancy in space usage by this
method is negligible, and we obtain Theorem 1.

Looking at Table 1, we observe that Theorem 1 can be interpreted as saying
that for arbitrarily small, fixed ε > 0, by spending O(n log σ · ε(k+1)) bits space
more than the best existing data structures for Compressed Read Only Memory,
we can also get O(1/ε) (i.e., constant) time replace operations.

1.2 Organization of the Paper

Section 2 reviews the definition of the empirical entropy of a string and the data
structure of Ferragina and Venturini [4]. In Section 3, we prove an important
result on the empirical entropies of similar strings. In Section 4, we describe a
technique for maintaining an array of variable-length blocks. Section 5 explains
how to implement the CRAM to achieve the bounds stated in Theorems 1 above.
Finally, Section 6 gives some concluding remarks.

514 J. Jansson, K. Sadakane, and W.-K. Sung

2 Preliminaries

2.1 Empirical Entropy

The compression ratio of a data compression method is often expressed in terms
of the empirical entropy of the input strings [12]. We first recall the definition of
this concept. Let T be a string of length n over an alphabet A = [σ]. Let nc be
the number of occurrences of c ∈ A in T . Let {Pc = nc/n}σc=1 be the empirical
probability distribution for the string T . The 0-th order empirical entropy of T
is defined as H0(T) = −∑σ

c=1 Pc logPc. We also use H0(p) to denote the 0-th
order empirical entropy of a string whose empirical probability distribution is p.

Next, let k be any non-negative integer. If a string s ∈ Ak precedes a symbol
c in T , s is called the context of c. We denote by T (s) the string that is the
concatenation of all symbols, each of whose context in T is s. The k-th order
empirical entropy of T is defined as Hk(T) = 1

n

∑
s∈Ak |T (s)|H0(T

(s)). It was
shown in [14] that for any k ≥ 0, Hk(T) ≥ Hk+1(T) holds, and nHk(T) is a
lower bound for the output size of any compressor that encodes each symbol
of T with a code that only depends on the symbol and its context of length k.

To prove our new results, we shall use the following theorem in Section 3:

Theorem 3 ([1, Theorem 16.3.2]). Let p and q be two probability mass func-
tions on A such that ||p−q||1 ≡ ∑

c∈A |p(c)−q(c)| ≤ 1
2 . Then |H0(p)−H0(q)| ≤

−||p− q||1 log ||p−q||1
|A| .

The technique of blocking, i.e., to conceptually merge consecutive symbols to
form new symbols over a larger alphabet, is used to reduce the redundancy of
Huffman encoding for compressing a string. A string T of length n is partitioned
into n

� blocks of length � each, then Huffman or other entropy codings are applied
to compress a new string T� of those blocks. We call this operation blocking of
length �.

2.2 Review of Ferragina and Venturini’s Data Structure

Here, we briefly review the data structure of Ferragina and Venturini from [4].
It uses the same basic idea as Huffman coding: replace every fixed-length block
of symbols by a variable-length code in such a way that frequently occurring
blocks get shorter codes than rarely occurring blocks.

To be more precise, consider a text T [1..n] over an alphabet A where |A| = σ
and σ < n. Let � = 1

2 logσ n and τ = log n. Partition T [1..n] into n
τ� super-blocks,

each contains τ� characters. Each super-block is further partitioned into τ blocks,
each contains � characters. Denote the n

� blocks by Ti = T [(i − 1)� + 1..i�] for
i = 1, 2, . . . , n/�.

Since each block is of length �, there are at most σ� =
√
n distinct blocks.

For each block P ∈ A�, let f(P) be the frequency of P in {T1, . . . , Tn/�}. Let
r(P) be the rank of P according to the decreasing frequency, i.e., the number of
distinct blocks P ′ such that f(P ′) ≥ f(P), and r−1(j) be its inverse function.
Let enc(j) be the rank j-th binary string in [ε, 0, 1, 00, 01, 10, 11, 000, . . .].

CRAM: Compressed Random Access Memory 515

The data structure of Ferragina and Venturini consists of four arrays:

• V = enc(r(T1)) . . . enc(r(Tn/�)).
• r−1(j) for j = 1, . . . ,

√
n.

• Table TSblk[1..
n
�τ] stores the starting position in V of the encoding of every

super-block.
• Table Tblk[1..

n
�] stores the starting position in V of the encoding of every

block relative to the beginning of its enclosing super-block.

The algorithm for access(T, i) is simple: Given i, compute the address where
the block for T [i] is encoded by using TSblk and Tblk and obtain the code which
encodes the rank of the block. Then, from r−1, obtain the substring. In total,
this takes O(1) time. This yields:

Lemma 1 ([4]). Any substring T [i..j] can be retrieved in O(1+(j−i+1)/ logσ n)
time.

Using the data structure of Ferragina and Venturini, T [1..n] can be encoded
using nHk +O(n

logσ n (k log σ + log logn)) bits according to the next lemma.

Lemma 2 ([4]). The space needed by V, r−1, TSblk, and Tblk is as follows:

• V is of length nHk + 2+O(k logn) +O(nk log σ/�) bits, simultaneously for
all 0 ≤ k < logσ n.• r−1(j) for j = 1, . . . ,

√
n can be stored in

√
n logn bits.

• TSblk[1..
n
�τ] can be stored in O(n�) bits.• Tblk[1..

n
�] can be stored in O(n� log logn) bits.

3 Entropies of Similar Strings

In this section, we prove that the empirical entropy of a string does not change
much after a small change to it. This result will be used to bound the space
complexity of our main data structure in Section 5.4. Consider two strings T
and T ′ of length n and n′, respectively, such that the edit distance between T
and T ′ is one. That is, T ′ can be obtained from T by replacement, insertion,
or deletion of one character. We show that the empirical entropies of the two
strings do not differ so much.

Theorem 4. For two strings T and T ′ of length n and n′, respectively, over an
alphabet A such that the edit distance between T and T ′ is one, it holds for any
integer k ≥ 0 that |nHk(T)− n′Hk(T

′)| = O((k + 1)(logn+ log |A|)).
To prove Theorem 4, we first prove the following:

Lemma 3. Let T be a string of length n over an alphabet A, T− be a string
made by deleting a character from T at any position, T+ be a string made by
inserting a character into T at any position, and T ′ be a string by replacing a
character of T into another one at any position. Then the following holds:

|nH0(T)− (n− 1)H0(T
−)| ≤ 4 logn+ 3 log |A| (if n ≥ 1) (1)

|nH0(T)− (n+ 1)H0(T
+)| ≤ 4 log(n+ 1) + 4 log |A| (if n ≥ 0) (2)

|nH0(T)− nH0(T
′)| ≤ 4 log(n+ 1) + 3 log |A| (if n ≥ 0) (3)

516 J. Jansson, K. Sadakane, and W.-K. Sung

Proof. Let P (x), P−(x), P+(x), and P ′(x) denote the empirical probability of
a character x ∈ A in T , T−, T+, and T ′, respectively, and let nx denote the
number of occurrences of x ∈ A in T . It holds that P (x) = nx

n for any x ∈ A.

If a character c is removed from T , then P−(c) = nc−1
n−1 , and P−(x) = nx

n−1

for any other x ∈ A. Then ||P − P−||1 = n−nc

n(n−1) +
∑

x∈A,x �=c
nx

n(n−1) = 2(n−nc)
n(n−1) .

If n = 1, it holds H0(T) = 0, and therefore nH0(T) − (n − 1)H0(T
−) = 0

and the claim holds. If n = nc, which means that all characters in T are c, it
holds H0(T) = H0(T

−) = 0 and the claim holds. Otherwise, 2
n(n−1) ≤ ||P −

P−||1 ≤ 2
n holds. If ||P − P−||1 ≤ 1

2 , from Theorem 3, |H0(P) − H0(P
−)| ≤

−||P −P−||1 log ||P−P−||1
|A| ≤ 2

n log |A|n(n−1)
2 . Then |nH0(T)− (n− 1)H0(T

−)| ≤
n|H0(P) −H0(P

−)| + H0(P
−) ≤ 4 logn + 3 log |A|. If ||P − P−||1 > 1

2 , which
implies n < 4, |nH0(T)− (n− 1)H0(T

−)| ≤ 3 log |A|. This proves the claim for
T−.

If a character c is inserted into T , then P+(c) = nc+1
n+1 , and P+(x) = nx

n+1 for

any other x ∈ A. Then ||P − P+||1 = 2(n−nc)
n(n+1) . If n = 0, H0(T) = H0(T

+) = 0

and the claim holds. If n = nc, which means that T+ consists of only the
character c, H0(T) = H0(T

+) = 0 and the claim holds. Otherwise, 2
n(n−1) ≤

||P−P+||1 ≤ 2
n holds. If ||P−P+||1 ≤ 1

2 , |nH0(T)−(n+1)H0(T
+)| ≤ n|H0(P)−

H0(P
+)|+H0(P

−) ≤ 4 logn+3 log |A|. If ||P −P+||1 > 1
2 , which implies n < 4,

|nH0(T)− (n+ 1)H0(T
+)| ≤ 4 log |A|. This proves the claim for T+.

If a character c of T is replaced with another character c′ ∈ A (c′ �= c),
then ||P − P ′||1 =

∑
α∈A |P (α) − P ′(α)| = |nc

n − nc−1
n | + |nc′

n − nc′+1
n | = 2

n . If||P − P ′||1 ≤ 1
2 , |nH0(T)− nH0(T

′)| ≤ n|H0(P)−H0(P
′)| ≤ 4 logn+ 2 log |A|.

If ||P −P ′||1 > 1
2 , which implies n < 4, |nH0(T)−nH0(T

′)| ≤ 3 log |A|. If c′ = c,
T ′ = T and |nH0(T)− nH0(T

′)| = 0. This completes the proof. �	

Proof. (of Theorem 4) From the definition of the empirical entropy, nHk(T) =∑
s∈Ak |T (s)|H0(T

(s)). Therefore, for each context s ∈ Ak, we estimate the
change of 0-th order entropy. Because the edit distance between T and T ′ is
one, we can write T = T1cT2 and T ′ = T1c

′T2 using two (possibly empty) strings
T1, T2 and two (possibly empty) characters c, c′. For the context T1[n1−k+1..n1]
(n1 = |T1|), denoted by s0, the character c in the string T (s0) will change
to c′. The character T2[i] (i = 1, 2, . . . , k) has the context T1[n1 − k + 1 +
i..n1]cT2[1..i − 1], denoted by si, in T , but the context will change to s′i =
T1[n1 − k+1+ i..n1]c

′T2[1..i− 1] in T ′. Thus, a character T2[i] is removed from
the string T (si) and inserted into T ′(si). Therefore, the entropies will change in
at most 2k + 1 strings (T (s0), T (s1), . . . , T (sk), T ′(s1), . . . , T ′(sk)). By Lemma 3,
each one will change only O(log n+ log |A|). This proves the claim. �	

4 Memory Management

This section presents a data structure for storing a set B of m variable-length
strings over the alphabet {0, 1}, which is an extension of the one in [15]. The

CRAM: Compressed Random Access Memory 517

data structure allows the contents of the strings and their lengths to change,
but the value of m must remain constant. We assume a unit-cost word RAM
model with word size w bits. The memory consists of consecutively ordered bits,
and any consecutive w bits can be accessed in constant time, as stated above. A
string over {0, 1} of length at most b is called a (≤ b)-block. Our data structure
stores a set B of m such (≤ b)-blocks, while supporting the following operations:

• address(i): Return a pointer to where in the memory the i-th (≤ b)-block
is stored (1 ≤ i ≤ m).

• realloc(i, b′): Change the length of the i-th (≤ b)-block to b′ bits (0 ≤ i ≤
m). The physical address for storing the block (address(i)) may change.

Theorem 5. Given that b ≤ m and logm ≤ w, consider the unit-cost word
RAM model with word size w. Let B = {B[1], B[2], . . . , B[m]} be a set of (≤ b)-
blocks and let s be the total number of bits of all (≤ b)-blocks in B. We can
store B in s+O(m logm+ b2) bits while supporting address in O(1) time and
realloc in O(b/w) time.

Theorem 6. Given a parameter b = O(w), consider the unit-cost word RAM
model with word size w. Let B = {B[1], B[2], . . . , B[m]} be a set of (≤ b)-blocks,
and let s be the total number of bits of all (≤ b)-blocks in B. We can store B in
s+O(w4 +m logw) bits while supporting address and realloc in O(1) time.

(Due to lack of space, the proofs of Theorems 5 and 6 have been omitted from
the conference version of our paper.)

From here on, we say that the data structure has parameters (b,m).

5 A Data Structure for Maintaining the CRAM

This section is devoted to proving Theorem 1. Our aim is to dynamize Ferragina
and Venturini’s data structure [4] by allowing replace operations. Ferragina and
Venturini’s data structure uses a code table for encoding the string, while our
data structure uses two code tables, which will change during update operations.

Given a string T [1..n] defined over an alphabet A (|A| = σ), we support
two operations. (1) access(T, i): which returns T [i..i + 1

2 logσ n − 1]; and (2)
replace(T, i, c): which replaces T [i] with a character c ∈ A.

We use blocking of length � = 1
2 logσ n of T . Let T ′[1..n′] be a string of length

n′ = n
� on an alphabet A� made by blocking of T . The alphabet size is σ� =

√
n.

Each character T ′[i] corresponds to the string T [((i−1)�+1)..i�]. A super-block
consists of 1/ε consecutive blocks in T ′ (�/ε consecutive characters in T), where
ε is a predefined constant.

Our algorithm runs in phases. Let n′′ = εn′. For every j ≥ 1, we refer to
the sequence of the (n′′(j − 1) + 1)-th to (n′′j)-th replacements as phase j. The
preprocessing stage corresponds to phase 0. Let T (j) denote the string just before
phase j. (Hence, T (1) is the input string T .) Let F (j) denote the frequency table of
blocks b ∈ A� in T (j), and C(j) and D(j) a code table and a decode table defined

518 J. Jansson, K. Sadakane, and W.-K. Sung

below. The algorithm also uses a bit-vector R(j−1)[1..n′′], where R(j−1)[i] = 1
means that the i-th super-block in T is encoded by code table C(j−1); otherwise,
it is encoded by code table C(j−2).

During the execution of the algorithm, we maintain the following invariant:

• At the beginning of phase j, the string T (j) is encoded with code table C(j−2)

(we assume C(−1) = C(0) = C(1)), and the table F (j) stores the frequencies
of blocks in T (j).

• During phase j, the i-th super-block is encoded with code table C(j−2) if
R(j−1)[i] = 0, or C(j−1) if R(j−1)[i] = 1. The code tables C(j−2) and C(j−1)

do not change.
• During phase j, F (j+1) stores the correct frequency of blocks of the current T .

5.1 Phase 0: Preprocessing

First, for each block b ∈ A�, we count the numbers of its occurrences in T ′ and
store it in an array F (1)[b]. Then we sort the blocks b ∈ A� in decreasing order
of the frequencies F (1)[b], and assign a code C(1)[b] to encode them. The code
for a block b is defined as follows. If the length of the code enc(b), defined in
Section 2.2, is at most 1

2 logn bits, then C(1)[b] consists of a bit ‘0’, followed by
enc(b). Otherwise, it consists of a bit ‘1’, followed by the binary encoding of b,
that is, the block is stored without compression. The code length for any block b
is upper bounded by 1+ 1

2 logn bits. Then we construct a table D(1) for decoding

a block. The table has 21+
1
2 logn = O(

√
n) entries and D(1)[x] = b for all binary

patterns x of length 1 + 1
2 logn such that a prefix of x is equal to C(1)[b]. Note

that this decode table is similar to r−1 defined in Section 2.2.
Next, for each block T ′[i] (i = 1, . . . , n′), compute its length using C(1)[T ′[i]],

allocate space for storing it using the data structure of Theorem 6 with param-
eters (1 + � logσ, n

�) = (1 + 1
2 log n,

2n log σ
logn), and w = logn. From Lemma 2 and

Theorem 6, if follows that the size of the initial data structure is nHk(T) +

O
(

n log σ
logn (k log σ + log logn)

)
bits. Finally, for later use, copy the contents of

F (1) to F (2), and initialize R(0) by 0. By sorting the blocks by a radix sort, the
preprocessing time becomes O(n log σ/ logn).

5.2 Algorithm for Access

The algorithm for access(T, i) is: Given the index i, compute the block number
x =
(i − 1)/�� + 1 and the super-block number y containing T [i]. Obtain the
pointer to the block and the length of the code by address(x). Decode the block
using the decode table D(j−2) if R(j−1)[x] = 0, or D(j−1) if R(j−1)[x] = 1. This
takes constant time.

5.3 Algorithm for Replace

We first explain a naive, inefficient algorithm. If b = T ′[i] is replaced with b′,
we change the frequency table F (1) so that F (1)[b] is decremented by one and

CRAM: Compressed Random Access Memory 519

F (1)[b′] is incremented by one. Then new code table C(1) and decode table D(1)

are computed from updated F (1), and all blocks T ′[j] (j = 1, . . . , n′) are re-
encoded by using the new code table. Obviously, this algorithm is too slow.

To get a faster algorithm, we can delay updating code tables for the blocks
and re-writing the blocks using new code tables because of Theorem 4. Because
the amount of change in entropy is small after a small change in the string, we
can show that the redundancy of using code tables defined according to an old
string can be negligible. For each single character change in T , we re-encode a
super-block (�/ε characters in T). After εn′ changes, the whole string will be
re-encoded. To specify which super-block to be re-encoded, we use an integer
array G(j−1)[1..n′′]. It stores a permutation of (1, . . . , n′′) and indicates that at
the x-th replace operation in phase j we rewrite the G(j−1)[x]-th super-block.
The bit R(j−1)[x] indicates if the super-block has been already rewritten or not.
The array G(j−1) is defined by sorting super-blocks in increasing order of lengths
of codes for encoding super-blocks.

We implement replace(T, i, S) as follows. In the x-th update in phase j,

1. If R(j−1)[G(j−1)[x]] = 0, i.e., if the G(j−1)[x]-th super-block is encoded with
C(j−2), decode it and re-encode it with C(j−1), and set R(j−1)[G(j−1)[x]] = 1.

2. Let y be the super-block number containing T [i], that is, y =
ε(i− 1)/��.
3. Decode the y-th super-block, which is encoded with C(j−2) or C(j−1) de-

pending on R(j−1)[y]. Let S′ denote the block containing T [i]. Make a new
block S from S′ by applying the replace operation.

4. Decrement the frequency F (j+1)[S′] and increment the frequency F (j+1)[S].

5. Compute the code for encoding S using C(j−1) if the y-th super-block is
already re-encoded (R(j−1)[y] = 1), or C(j−2) otherwise (R(j−1)[y] = 0).

6. Compute the lengths of the blocks in y-th super-block and apply realloc

for those blocks.

7. Rewrite the blocks in the y-th super-block.

8. Construct a part of tables C(j), D(j), G(j), and R(j) (see below).

To prove that the algorithm above maintains the invariant, we need only to prove
that the tables C(j−1), F (j), and G(j−1) are ready at the beginning of phase j.
In phase j, we create C(j) based on F (j). This is done by just radix-sorting the
frequencies of blocks, and therefore the total time complexity is O(σl) = O(

√
n).

Because phase j consists of n′′ replace operations, the work for creating C(j)

can be distributed in the phase. We represent the array G(j−1) implicitly by
(1/ε)(1 + 1

2 logn) doubly-linked lists Ld; Ld stores super-blocks of length d. By

retrieving the lists in decreasing order of d we can enumerate the elements ofG(j).
If all the elements of a list have been retrieved, we move to the next non-empty
list. This can be done in O(1/ε) time if we use a bit-vector of (1/ε)(1 + 1

2 logn)

bits indicating which lists are non-empty. We copy F (j) to F (j+1) in constant
time by changing pointers to F (j) and F (j+1). For each replace in phase j, we
re-encode a super-block, which consists of 1/ε blocks. This takes O(1/ε) time.
Therefore the time complexity for replace is O(1/ε) time.

520 J. Jansson, K. Sadakane, and W.-K. Sung

Note that during phase j, only the tables F (j), F (j+1), C(j−2), C(j−1), C(j),
D(j−2), D(j−1), D(j), G(j−1), G(j), R(j−1), and R(j) are stored. The other tables
are discarded.

5.4 Space Analysis

Let s(T) denote the size of the encoding of T by our dynamic data structure. At
the beginning of phase j, the string T (j) is encoded with code table C(j−2), which
is based on the string T (j−2). Let L(j) = nHk(T

(j)) and L(j−2) = nHk(T
(j−2)).

After the preprocessing, s(T (1)) ≤ L(1) + O
(

n log σ
logn (k log σ + log logn)

)
. If

we do not re-encode the string, for each replace operation we write at most
1+ 1

2 logn bits. Therefore s(T (j)) ≤ s(T (j−2))+O(n′′ logn) holds. Because T (j)

is made by 2(n′′ +
√
n) character changes to T (j−2), from Theorem 4, we have

|L(j)−L(j−2)| = O(n′′(k+1)(logn+logσ)). Therefore we obtain s(T (j)) ≤ L(j)+
O(ε(k + 1)n log σ). The space for storing the tables F (j), C(j), D(j), G(j), H(j),
and R(j) is O(

√
n logn), O(

√
n logn), O(

√
n logn), O(n′′ logn) = O(εn log σ),

O(n′′ logn), O(n′′) bits, respectively.
Next we analyze the space redundancy caused by the re-encoding of super-

blocks. We re-encode the super-blocks with the new code table in increasing order
of their lengths, that is, the shortest one is re-encoded first. This guarantees that
at any time, the space does not exceed max{s(T (j)), s(T (j−2))}. This completes
the proof of Theorem 1.

6 Concluding Remarks

We have presented a data structure called Compressed Random Access Mem-
ory (CRAM), which compresses a string T of length n into its k-th order
empirical entropy in such a way that any consecutive logσ n bits can be ob-
tained in constant time (the access operation), and replacing a character (the
replace operation) takes O(min{logσ n, (k+1) logn/ log logn}) time. The time
for replace can be reduced to constant (O(1/ε)) time by allowing an additional
O(ε(k+1)n log σ) bits redundancy. The extended CRAM data structure also sup-
ports the insert and delete operations, at the cost of increasing the time for
access to O(log n/ log logn) time, which is optimal under this stronger require-
ment, and the time for each update operation also becomes O(log n/ log logn).

Preliminary experimental results indicate that our CRAM data structure sup-
ports faster reads/writes of short segments (from 16 to 256 bytes) than when
using gzip. These experimental results will be reported in another paper.

An open problem is how to improve the running time of replace for the
CRAM data structure to O(1) without using the O(ε(k + 1)n log σ) extra bits.

Acknowledgments. JJ was funded by The Hakubi Project at Kyoto Univer-
sity. KS was supported in part by Funding Program for World-Leading Innova-
tive R&D on Science and Technology (FIRST Program). WKS was supported
in part by the MOE’s AcRF Tier 2 funding R-252-000-444-112.

CRAM: Compressed Random Access Memory 521

References

1. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Interscience
(1991)

2. Ferragina, P., Manzini, G.: Indexing compressed text. Journal of the ACM 52(4),
552–581 (2005)

3. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms 3(2), article
No. 20 (2007)

4. Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy
bounds. Theoretical Computer Science 372(1), 115–121 (2007)

5. Fredman, M.L., Saks, M.E.: The cell probe complexity of dynamic data structures.
In: Proceedings of ACM STOC, pp. 345–354 (1989)

6. González, R., Navarro, G.: Statistical Encoding of Succinct Data Structures. In:
Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 294–305.
Springer, Heidelberg (2006)

7. González, R., Navarro, G.: Rank/select on dynamic compressed sequences and
applications. Theoretical Computer Science 410(43), 4414–4422 (2009)

8. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proceedings of ACM-SIAM SODA, pp. 841–850 (2003)

9. Hagerup, T.: Sorting and searching on the word RAM. In: Proceedings of Sympo-
sium on Theory Aspects of Computer Science (STACS 1998), pp. 366–398 (1998)

10. Hagerup, T., Raman, R.: An Efficient Quasidictionary. In: Penttonen, M., Schmidt,
E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 1–18. Springer, Heidelberg (2002)

11. He, M., Munro, J.I.: Succinct Representations of Dynamic Strings. In: Chavez, E.,
Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 334–346. Springer, Heidelberg
(2010)

12. Kosaraju, S.R., Manzini, G.: Compression of low entropy strings with Lempel-Ziv
algorithms. SIAM Journal on Computing 29(3), 893–911 (1999)

13. Mäkinen, V., Navarro, G.: Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms 4(3), article No. 32 (2008)

14. Manzini, G.: An analysis of the Burrows-Wheeler transform. Journal of the
ACM 48(3), 407–430 (2001)

15. Navarro, G., Sadakane, K.: Fully-functional static and dynamic succinct trees. Sub-
mitted for Journal Publication (2010), http://arxiv.org/abs/0905.0768 ; A pre-
liminary version appeared in Proc. ACM-SIAM SODA, pp. 134–149 (2010)

16. Raman, R., Raman, V., Rao, S.S.: Succinct Dynamic Data Structures. In: Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 426–437.
Springer, Heidelberg (2001)

17. Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy bounds.
In: Proceedings of ACM-SIAM SODA, pp. 1230–1239 (2006)

18. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J.M., Birol, İ.:
ABySS: A parallel assembler for short read sequence data. Genome Research 19(6),
1117–1123 (2009), http://dx.doi.org/10.1101/gr.089532.108

http://arxiv.org/abs/0905.0768
http://dx.doi.org/10.1101/gr.089532.108

	CRAM: Compressed Random Access Memory
	Introduction
	Our Contributions
	Organization of the Paper

	Preliminaries
	Empirical Entropy
	Review of Ferragina and Venturini's Data Structure

	Entropies of Similar Strings
	Memory Management
	A Data Structure for Maintaining the CRAM
	Phase 0: Preprocessing
	Algorithm for Access
	Algorithm for Replace
	Space Analysis

	Concluding Remarks
	References

