
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Deterministic protocols for Voronoi diagrams and triangulations

of planar point sets on the congested clique ✩

Jesper Jansson a, Christos Levcopoulos b, Andrzej Lingas b,∗, Valentin Polishchuk c,
Quan Xue d

a Graduate School of Informatics, Kyoto University, Kyoto, Japan
b Department of Computer Science, Lund University, Lund, Sweden
c Communications and Transport Systems, ITN, Linköping University, Sweden
d The University of Hong Kong, Hong Kong, China

A R T I C L E I N F O A B S T R A C T

Section Editor: Paul G. Spirakis

Handling Editor: Yong Chen

Keywords:

Voronoi diagram
Delaunay triangulation
Convex hull
Distributed algorithm
The congested clique model

We study the problems of computing the Voronoi diagram and a triangulation of a set of 𝑛2
points with 𝑂(log𝑛)-bit coordinates in the Euclidean plane in a substantially sublinear in 𝑛
number of rounds in the congested clique model with 𝑛 nodes. First, we observe that if the
points are uniformly at random distributed in a unit square then their Voronoi diagram within
the square can be computed in 𝑂(1) rounds with high probability (w.h.p.). Next, we show that
if a very weak smoothness condition is satisfied by an input set of 𝑛2 points with 𝑂(log𝑛)-
bit coordinates in the unit square then the Voronoi diagram of the point set within the unit
square can be deterministically computed in 𝑂(log𝑛) rounds in this model. Finally, we present a
deterministic 𝑂(log𝑛)-round protocol for a triangulation of 𝑛2 points with 𝑂(log𝑛)-bit coordinates
in the Euclidean plane. It relies on our novel method for extending triangulations of two planar
point sets separated by a straight line to a complete triangulation of the union of the sets in 𝑂(1)
rounds.

1. Introduction

The congested clique is a relatively new model of communication and computation introduced by Lotker et al. in 2005 [9]. It
focuses on the cost of communication between the nodes in a network, ignoring the cost of local computation within each node.
Hence, it can be seen as opposite to the Parallel Random Access Machine (PRAM) model, studied extensively in the 80s and 90s. The
PRAM model focuses on the computation cost and ignores the communication cost [1].

Originally, the complexity of many dense graph problems has been studied in the congested clique model under the following
assumptions. Each node of the congested clique represents a distinct vertex of the input graph and knows that vertex’s neighborhood
in the graph. Every node also knows the unique ID numbers (between 1 and 𝑛) of itself and all the other nodes at the start of the

✩ This article is an extended version of the paper entitled “The Voronoi Diagram of Weakly Smooth Planar Point Sets in 𝑂(log𝑛) Deterministic Rounds on the
Congested Clique” that has been presented at the 30th International Computing and Combinatorics Conference (COCOON 2024). It also includes among other things
a fragment of the paper entitled “Convex Hulls and Triangulations of Planar Point Sets on the Congested Clique” presented at the Thirty-Fifth Canadian Conference
on Computational Geometry (CCCG 2023).

* Corresponding author.
E-mail addresses: jj@i.kyoto-u.ac.jp (J. Jansson), Christos.Levcopoulos@cs.lth.se (C. Levcopoulos), Andrzej.Lingas@cs.lth.se (A. Lingas),

valentin.polishchuk@alumni.stonybrook.edu (V. Polishchuk), csxuequan@connect.hku.hk (Q. Xue).

https://doi.org/10.1016/j.tcs.2025.115491
Received 28 November 2024; Received in revised form 28 June 2025; Accepted 19 July 2025

Theoretical Computer Science 1055 (2025) 115491

Available online 28 July 2025
0304-3975/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:jj@i.kyoto-u.ac.jp
mailto:Christos.Levcopoulos@cs.lth.se
mailto:Andrzej.Lingas@cs.lth.se
mailto:valentin.polishchuk@alumni.stonybrook.edu
mailto:csxuequan@connect.hku.hk
https://doi.org/10.1016/j.tcs.2025.115491
https://doi.org/10.1016/j.tcs.2025.115491
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2025.115491&domain=pdf
http://creativecommons.org/licenses/by/4.0/

J. Jansson, C. Levcopoulos, A. Lingas et al.

Fig. 1. Illustrating the congested clique model. In every round, each node can send a distinct message of 𝑂(log𝑛) bits to each other node.

computation. The computation proceeds in rounds. In every round, each of the 𝑛 nodes can send a distinct message of 𝑂(log𝑛) bits
to each other node and also perform unlimited local computation; see Fig. 1. The primary complexity objective is to minimize the
number of rounds necessary to solve a given problem on the input graph in this model.

For several basic graph problems such as the minimum spanning tree problem, one has even succeeded to design 𝑂(1)-round
protocols in the congested clique model [10,13] (a protocol is another name for a distributed algorithm). Observe that when the
input graph is of bounded degree and the edge weights have 𝑂(log 𝑛)-bit representations, each node can just send the ID numbers of
all nodes in its neighborhood and the weights of its incident edges to, e.g., the first node, in 𝑂(1) rounds. After that, the first node
can solve the whole problem locally. However, such a trivial solution would require Ω(𝑛) rounds when the input graph is dense.

Matrix problems [3], sorting and routing [7], and geometric problems [6] have also been studied in the congested clique model.
In all cases, the basic input items, i.e., matrix entries or keys, or points in the plane, respectively, are assumed to have 𝑂(log𝑛)-bit
representations and each node initially has a batch of 𝑛 such items. Note that the bound on bit representation of an input item is a
natural consequence of the 𝑂(log𝑛)-bit bound on the size of a single message which makes input items of unbounded bit representation
incompatible with the assumed model. As in the graph case, in every round, each node can send a distinct 𝑂(log𝑛)-bit message to each
other node and perform unlimited local computation. Significantly, it has been shown that matrix multiplication can be performed
in a number of rounds substantially sublinear in 𝑛 [3] while sorting and routing can be implemented in 𝑂(1) rounds (Theorems 4.5
and 3.7 in [7]).

Already at the end of the 90s, Goodrich [5] presented 𝑂(1)-round randomized protocols for the construction of the three-
dimensional convex hull of a set of points in three-dimensional Euclidean space in 𝑂(1) communication rounds in the so-called
Bulk Synchronous Processing model (BSP). (BSP is similar to PRAM but it takes into account the communication and synchronization
costs in contrast to PRAM.) His result also implies an 𝑂(1)-round bound on the randomized construction of the Voronoi diagram and
the dual Delaunay triangulation of a planar point set in the BSP model. By using the 𝑂(1)-round routing protocol of Lenzen [7] (see
also Fact 1), Goodrich’s 𝑂(1) bound on the number of rounds necessary for the construction of the Voronoi diagram and Delaunay
triangulation can be carried over from the BSP model to ours. In [5], Goodrich also presented a deterministic 𝑂(1)-round protocol
for the two-dimensional convex hull in the BSP model that, again by applying the protocol from [7], works in 𝑂(1)-rounds on the
congested clique with 𝑛 nodes.

In this context, the major open problems are to derive non-trivial upper bounds on the number of rounds sufficient to deterministi-
cally construct: (i) the convex hull of a point set in the three-dimensional Euclidean space, and, in particular (ii) the Voronoi diagram
or the dual Delaunay triangulation of a planar point set, and even just (iii) a triangulation of a planar point set.

The bottleneck in the design of efficient parallel or distributed algorithms for the Voronoi diagram of a planar point set using
a direct divide-and-conquer approach is an efficient parallel or distributed merging of Voronoi diagrams. Aggarwal et al. [1] pre-
sented an 𝑂(log2 𝑛)-time CREW PRAM algorithm for the Voronoi diagram based on an involved 𝑂(log 𝑛)-time PRAM method for the
parallel merging. (In the CREW variant of PRAM, multiple processors can read a memory cell but only one can write at a time.)
Subsequently, Amato and Preparata [2] demonstrated an 𝑂(log𝑛)-time CREW PRAM algorithm for the three-dimensional convex hull
and consequently also for the two-dimensional Voronoi diagram of a point set.

Our new results are as follows. To begin with, we observe that if the points are uniformly at random distributed in a unit square
then their Voronoi diagram within the square can be computed in 𝑂(1) rounds w.h.p.

Next, we substantially extend the local approach to the construction of the Voronoi diagram used in the design of parallel and
distributed algorithms for the Voronoi diagram of points drawn uniformly at random, e.g., from a unit square [8,14]. We show that
already a very weak smoothness condition on the input set of 𝑛2 points with 𝑂(log𝑛)-bit coordinates within a unit square is sufficient
to obtain an 𝑂(log𝑛) upper bound on the number of rounds required to construct the Voronoi diagram of the set within the unit
square on the congested 𝑛-clique. Roughly, our weak smoothness condition says that if a square 𝑄 of side length 𝓁 within the unit
square contains at least 𝑛 out of the 𝑛2 input points then any square of the same size at distance at most 4

√
2𝓁 from 𝑄 and within

the unit square has to contain at least one input point. We obtain our result by combining a quadtree partition of the unit square
with a local construction of the Voronoi diagram within the squares corresponding to the leaves of quadtree. The local construction
is possible due to the fulfillment of the weak smoothness condition.

Finally, we present a deterministic 𝑂(log𝑛)-round protocol for a triangulation of 𝑛2 points with 𝑂(log𝑛)-bit coordinates in the
Euclidean plane. It is based on our novel method for completing triangulations of two planar point sets separated by a straight line
to a full triangulation of the union of the sets in 𝑂(1) rounds.

Theoretical Computer Science 1055 (2025) 115491

2

J. Jansson, C. Levcopoulos, A. Lingas et al.

Table 1
Deterministic protocols for the construction of the Voronoi diagram or a triangu-
lation of the input set of 𝑛2 points with 𝑂(log𝑛)-bit coordinates in the Euclidean
two-dimensional space 𝐸2 presented in this article.

input set of 𝑛2 points in 𝐸2 problem # rounds theorem

uniform random in unit square Voronoi diagram 𝑂(1) Theorem 1
(1
2
,4
√
2)-smooth Voronoi diagram 𝑂(log𝑛) Theorem 3

arbitrary triangulation 𝑂(log𝑛) Theorem 4

Fig. 2. An example of a planar point set, its Voronoi diagram, and the dual Delaunay triangulation.

We summarize our results in Table 1.
In order to simplify the presentation, we assume throughout the article that the points in the input point sets are in general position

(i.e., neither any three input points are co-linear nor any four input points are co-circular). We also refer to the points of the input
point set as vertices, while reserving the word nodes to refer to the communicating parties in the underlying congested clique network.

Our article is structured as follows. The next section contains basic mathematical/geometric definitions and facts on routing and
sorting in the congested clique model. Section 3 shows our 𝑂(1)-round protocol for the Voronoi diagram of a uniform random planar
point set in a unit square. Section 4 presents our 𝑂(log𝑛)-round protocol for the Voronoi diagram and Delaunay triangulation of a
weakly smooth planar point set within a square. Our 𝑂(log𝑛)-round protocol for a triangulation of a planar point set is presented in
Section 5. We conclude with final remarks in Section 6.

2. Preliminaries

The cardinality of a set 𝑆 is denoted by |𝑆|. For a positive integer 𝑟, [𝑟] stands for the set of positive integers not exceeding 𝑟.
For a finite set 𝑆 of points in the Euclidean plane, the Voronoi diagram of 𝑆 is the partition of the plane into |𝑆| regions such that

each region consists of all points in the plane having the same closest point in 𝑆 ; see Fig. 2.
A Delaunay triangulation of 𝑆 is a maximal set of non-crossing edges between pairs of points from 𝑆 such that no point from 𝑆 is

placed inside any of the formed triangles’ circumcircles. It is well known that if no four points in 𝑆 are co-circular then the Delaunay
triangulation of 𝑆 is a dual of the Voronoi diagram of 𝑆 in the following sense [12]: for each edge 𝑒 of each region in the Voronoi
diagram of 𝑆 , if 𝑒 is a part of the bisector of the points 𝑢, 𝑣 in 𝑆 then (𝑢, 𝑣) is an edge of the Delaunay triangulation of 𝑆 ; again, see
Fig. 2.

Let 𝑆 = {𝑝1, ..., 𝑝𝑛} be a set of 𝑛 distinct points in the Euclidean plane such that the 𝑥-coordinate of each point is not smaller than
that of 𝑝1 and not greater than that of 𝑝𝑛. The convex hull of 𝑆 is the smallest convex polygon 𝑃 for which every 𝑞 ∈ 𝑆 lies in the
interior of 𝑃 or on the boundary of 𝑃 . The upper hull of 𝑆 (with respect to (𝑝1, 𝑝𝑛)) is the part of the convex hull of 𝑆 beginning in
𝑝1 and ending in 𝑝𝑛 in clockwise order. Symmetrically, the lower hull of 𝑆 (with respect to (𝑝1, 𝑝𝑛)) is the part of the convex hull of
𝑆 beginning in 𝑝𝑛 and ending in 𝑝1 in clockwise order.

A supporting line for the convex hull or upper hull or lower hull of a finite point set in the Euclidean plane is a straight line that
touches the hull without crossing it properly. Let 𝑆1 , 𝑆2 be two finite sets of points in the Euclidean plane separated by a vertical
line. The bridge between the upper (or lower) hull of 𝑆1 and the upper (or, lower, respectively) hull of 𝑆2 is a straight line that is a
supporting line for both of the upper (lower, respectively) hulls. See Fig. 3 for an illustration.

Our concept of weak smoothness is formally defined in terms of two parameters as follows.

Definition 1. Let 𝜀, 𝑑 be two positive real constants. A set of 𝑁 points in a unit square is (𝜀, 𝑑)-smooth if for any two equal size, axis
parallel squares 𝑄, 𝑅 within the unit square the following implication holds:

if 𝑄 contains at least 𝑁𝜀 points of 𝑆 and 𝑅 is at distance at most 𝑑 ⋅ 𝓁 from 𝑄, where 𝓁 is the length of each edge of 𝑄 and 𝑅,
then 𝑅 contains at least one point of 𝑆 .

Intuitively, the smoothness means that if a square 𝑄 contains sufficiently many points, then there must be a point nearby in the
square 𝑅.

Theoretical Computer Science 1055 (2025) 115491

3

J. Jansson, C. Levcopoulos, A. Lingas et al.

Fig. 3. An example of the bridge between the upper hulls of 𝑆1 and 𝑆2 .

Fig. 4. An example of the configuration in the proof of Lemma 1. The basic square 𝑅 is the small square in the middle of the figure, 𝑒 is an edge of the Voronoi diagram
that passes through 𝑅, and 𝑇𝐿𝑖(𝑅) consists of the 25 basic squares inside the big square indicated by thick lines.

We also need to define a sequence of grids within a unit square and related notions.

Definition 2. For a nonnegative integer 𝑖, we shall denote by 𝐺𝑖(𝑈) the orthogonal grid within the unit orthogonal square 𝑈 that
includes the edges of 𝑈 such that the distance between two neighboring vertical or horizontal grid line segments is 1

2𝑖 . A basic square
of 𝐺𝑖(𝑈) is a square within 𝑈 such that the endpoints of each of its edges are a pair of neighboring grid points. For a basic square
𝑅 in 𝐺𝑖(𝑈), we shall denote the orthogonal region consisting of 𝑅 and the two layers of basic squares around 𝑅 by 𝑇𝐿𝑖(𝑅) (if there
are less than two layers between 𝑅 and an edge of the unit square then 𝑇𝐿𝑖(𝑅) includes only zero or one layers from that side).

The proof of the following lemma corresponds to the second paragraph of the proof of Theorem 4 in [6].

Lemma 1. Let 𝑅 be a basic square in a grid 𝐺𝑖(𝑈) within the unit square 𝑈 . Consider a finite set 𝑆 of points within the unit square. If 𝑅
contains a point in 𝑆 then the Voronoi diagram of 𝑆 within 𝑅 can be computed by taking into account only the points of 𝑆 within 𝑇𝐿𝑖(𝑅).
Hence, in particular all edges (𝑢, 𝑣) of the Delaunay triangulation of 𝑆 such that a part of the bisector of 𝑢 and 𝑣 borders some region of the
Voronoi diagram of 𝑆 within 𝑅 can be determined.

Proof. Let 𝑒 be an edge of the Voronoi diagram of 𝑆 within 𝑅. The edge 𝑒 has to be a part of the bisector of some pair of points 𝑠1
and 𝑠2 in 𝑆 . Consider an arbitrary point 𝑞 on 𝑒. Suppose that 𝑠1 or 𝑠2 is placed outside 𝑇𝐿𝑖(𝑅), i.e., the orthogonal area consisting of
at most 1 + 8 + 16 = 25 squares including 𝑅. See Fig. 4. Without loss of generality, let 𝑠2 be such a point. Then the distance between
𝑞 and 𝑠2 is at least 2 ⋅ 1

2𝑖 , while the distance between 𝑞 and every point inside 𝑅 is at most
√
2 ⋅ 1

2𝑖 . We obtain a contradiction because
𝑅 contains at least one point from 𝑆 and 𝑞 is closer to such a point than to 𝑠2. □

Lenzen gave an efficient solution to the following fundamental routing problem in the congested clique model, known as the
Information Distribution Task (IDT) [7]:
Each node of the congested 𝑛-clique holds a set of exactly 𝑛 𝑂(log𝑛)-bit messages with their destinations, with multiple messages
from the same source node to the same destination node allowed. Initially, the destination of each message is known only to its
source node. Each node is the destination of exactly 𝑛 of the aforementioned messages. The messages are globally lexicographically
ordered by their source node, their destination, and their number within the source node. For simplicity, each such message explicitly
contains these values, in particular making them distinguishable. The goal is to deliver all messages to their destinations, minimizing
the total number of rounds.

Theoretical Computer Science 1055 (2025) 115491

4

J. Jansson, C. Levcopoulos, A. Lingas et al.

Lenzen proved that by partitioning the nodes into subsets and applying a bipartite multigraph edge-coloring algorithm to rearrange
the messages before sending them to their final destinations, IDT can be solved in 16 rounds (Theorem 3.7 in [7]). He also noted
that the relaxed IDT, where each node is required to send and receive at most 𝑛 messages, easily reduces to IDT and is therefore also
solvable in 𝑂(1) rounds. From here on, we shall refer to this important result as:

Fact 1. [7] The relaxed Information Distribution Task can be solved deterministically within 𝑂(1) rounds.

The Sorting Problem (SP) is defined as follows:
Each node 𝑖 of the congested 𝑛-clique holds a set of 𝑛 𝑂(log𝑛)-bit keys. All the keys are different w.l.o.g. Each node 𝑖 needs to learn
all the keys of indices in [𝑛(𝑖− 1) + 1, 𝑛𝑖] (if any) in the total order of all keys.

Lenzen showed that SP can be solved in 37 rounds if each node holds a set of exactly 𝑛 keys (Theorem 4.5 in [7]). In order to
relax the requirement that each node holds exactly 𝑛 keys to that of with at most 𝑛 keys, we can determine the maximum key and
add appropriate different dummy keys in 𝑂(1) rounds. We summarize this result as follows:

Fact 2. [7] The relaxed Sorting Problem can be solved in 𝑂(1) rounds.

3. Voronoi diagram of uniform random planar point sets

When the 𝑛2 points with 𝑂(log𝑛)-bit coordinates are drawn uniformly at random from a unit square or circle then the expected
number of required rounds to compute the Voronoi diagram or the dual Delaunay triangulation on the congested clique becomes
𝑂(1) (cf. [8,14]). This can be deduced from Goodrich’s 𝑂(1)-round randomized protocol for the Voronoi diagram of arbitrary planar
point sets in the BSP model [5]. Simply, while running Goodrich’s protocol on the uniform random point set, one can use the input
points’ coordinates as the source of randomness for the protocol. However, Goodrich’s general protocol is quite involved and many
details are missing in the available proceedings version. In this section, we demonstrate that Lemma 1 combined with the Chernoff
bounds yields a much simpler protocol for the Voronoi diagram or Delaunay triangulation for a planar point set drawn uniformly at
random from a unit square.

We need to recall the Chernoff bounds and the union bound.

Fact 3. (multiplicative Chernoff lower bound) Suppose 𝑋1, ...,𝑋𝑛 are independent random variables taking values in {0,1}. Let X

denote their sum and let 𝜇 = 𝐸[𝑋] denote the sum’s expected value. Then, for any 𝛿 ∈ [0,1], 𝑃𝑟𝑜𝑏(𝑋 ≤ (1 − 𝛿)𝜇) ≤ 𝑒
− 𝛿2𝜇

2 holds.

Similarly, for any 𝛿 ≥ 0, 𝑃𝑟𝑜𝑏(𝑋 ≥ (1 + 𝛿)𝜇) ≤ 𝑒
− 𝛿2𝜇

2+𝛿 holds.

Fact 4. (The union bound) For a sequence 𝐴1, 𝐴2,,𝐴𝑟 of events,
𝑃𝑟𝑜𝑏(𝐴1 ∪𝐴2 ∪ ... ∪𝐴𝑟) ≤

∑𝑟

𝑖=1 𝑃𝑟𝑜𝑏(𝐴𝑖).

We shall say that an event dependent on 𝑛2 input points in the plane holds with high probability (w.h.p.) if its probability is at
least 1− 1

𝑛𝛼
asymptotically (i.e., there is an integer 𝑛0 such that for all 𝑛 ≥ 𝑛0, the probability is at least 1− 1

𝑛𝛼
), where 𝛼 is a constant

not less than 2.

Theorem 1. The Voronoi diagram of 𝑛2 points with 𝑂(log𝑛)-bit coordinates drawn uniformly at random from a unit square in the Euclidean
plane can be computed within the square w.h.p. in 𝑂(1) rounds on the congested clique.

Proof. Let 𝑆 denote the set of the 𝑛2 input points. Partition the unit square into 𝑛 squares of size 1 √
𝑛
× 1 √

𝑛
, i.e., consider the 𝑛 basic

squares in the grid 𝐺 1
2 log𝑛(𝑈). For any of the 𝑛 squares, the expected number of points from 𝑆 that lie inside it is 𝑛, and so by using

𝜇 = 𝑛 and selecting 𝛿 =
√

7 ln𝑛
𝑛 in Fact 3, we see that each of the 𝑛 squares contains Θ(𝑛) points from 𝑆 with probability at least

1 − 1
𝑛3

.
Assign to each of the 𝑛 squares 𝑅 a distinct clique node. Deliver to each node assigned 𝑅 all the points in 𝑇𝐿 1

2 log𝑛(𝑅) in 𝑂(1)
rounds w.h.p. by Lenzen’s routing protocol given in Fact 1. The total number of points that need to be delivered to each node is 𝑂(𝑛)
w.h.p. since each of the at most 1 + 8 + 16 = 25 basic squares in 𝑇𝐿 1

2 log𝑛(𝑅) contains 𝑂(𝑛) points w.h.p.

For the delivery purpose, each node locally computes the grid 𝐺 1
2 log𝑛(𝑈) and the assignment of the basic squares in the grid to

clique nodes in the same way. This enables each node to figure out the node destinations of the points held by it. Note that if a point 𝑝
belongs to a basic square 𝑄 in 𝑇𝐿 1

2 log𝑛(𝑅), where 𝑅 is some basic square in 𝐺 1
2 log𝑛(𝑈), then symmetrically, 𝑅 has to be included in

𝑇𝐿 1
2 log𝑛(𝑄). Since each node holds 𝑂(𝑛) points w.h.p. and each point 𝑝 has to be sent solely to the at most 25 nodes assigned to the

basic squares in 𝑇𝐿 1
2 log𝑛(𝑄), where 𝑄 is the basic square containing 𝑝, all the points can be sent and delivered to their destinations

by running Lenzen’s protocol 𝑂(1) times, totally in 𝑂(1) rounds.

Theoretical Computer Science 1055 (2025) 115491

5

J. Jansson, C. Levcopoulos, A. Lingas et al.

Fig. 5. An example of a Voronoi edge stretching through three basic squares in 𝐺 1
2 log𝑛(𝑈).

By Lemma 1, each node can compute the Voronoi diagram within the square 𝑅 it is assigned to locally with probability at least
1− 1

𝑛3
. For this purpose, any standard sequential algorithm for the Voronoi diagram of a planar point set can be used, e.g., [4]. Hence,

the union bound (Fact 4) implies that the probability that all nodes compute their local Voronoi diagrams correctly is at least 1 − 1
𝑛2

.
It remains to output the union of the Voronoi diagrams. Local Voronoi edges within neighboring squares belonging to the bisector

of the same pair of input points have to be glued together; see Fig. 5. For this purpose, each node equips each Voronoi edge 𝑒 in its
square with a prefix (𝑝, 𝑞), where 𝑝, 𝑞 are the input points on whose bisector 𝑒 is placed. Then, all the local Voronoi edges are sorted
by their prefixes in 𝑂(1) rounds by employing Fact 2. Assuming that each square contains Θ(𝑛) points, for each given prefix there are
𝑂(1) local Voronoi edges that need to be glued.

Simply, if a local edge with a prefix (𝑝, 𝑞) occurs in a basic square 𝑅 in 𝐺 1
2 log𝑛(𝑈) then 𝑝 and 𝑞 have to belong to 𝑇𝐿 1

2 log𝑛(𝑅)
by Lemma 1, since 𝑅 contains Θ(𝑛) input points. E.g., consider the basic square 𝑄 in 𝑇𝐿 1

2 log𝑛(𝑅) that contains the point 𝑞. Then,
symmetrically 𝑅 has to be included in 𝑇𝐿 1

2 log𝑛(𝑄). We conclude that there are at most 25 such squares 𝑅 in 𝐺 1
2 log𝑛(𝑈), and

consequently there are at most 25 local edges sharing the prefix (𝑝, 𝑞).
After the sorting of the local edges by prefixes, each node can easily glue the complete families of at most 25 local edges sharing

the same prefix. It can happen that two consecutively numbered clique nodes share such a single family. Then, they can exchange
𝑂(1) messages in order to compute the whole edge gluing the local edges from the family. □

4. The extended local approach

Consider a (12 ,4
√
2)-smooth set of 𝑛2 points with 𝑂(log𝑛)-bit coordinates in a unit orthogonal square. We shall first describe a

protocol for listing the edges of the Delaunay triangulation of the set that are dual to the edges of the Voronoi diagram of the set
within the unit square. Roughly, it implicitly grows a quadtree of squares rooted at the unit square in phases corresponding to the
levels of the quadtree. If a square 𝑅 currently at a leaf of the quadtree and the two layers of equal size squares around it jointly
include at most 𝑐𝑛 input points, for an appropriate positive constant 𝑐, then the intersection of the Voronoi diagram of the input
point set with 𝑅 and the dual edges of the Delaunay triangulation of the input point set can be computed locally. This follows from
the smoothness condition and Lemma 1 combined with the fact that the parent square of 𝑅 and the two layers of equal size squares
around it jointly include more than 𝑐𝑛 input points. Otherwise, four child squares whose union forms 𝑅 are created on the next
level of the quadtree. In particular, checking the aforementioned condition in parallel for the squares at the current front level of the
quadtree and delivering the necessary points to the nodes representing respective frontier squares in 𝑂(1) rounds on the congested
𝑛-clique are highly non-trivial.

protocol 𝐷𝑇 −𝑆𝑄𝑈𝐴𝑅𝐸(𝑆,𝑈)
Input: A (12 ,4

√
2)-smooth set of 𝑛2 points with 𝑂(log𝑛)-bit coordinates in a unit orthogonal square 𝑈 held in 𝑛-point batches at the

𝑛 nodes of the congested clique.
Output: The set of the edges of the Delaunay triangulation of 𝑆 dual to the edges of the Voronoi diagram of 𝑆 within 𝑈 held in
𝑂(𝑛)-edge batches at clique nodes.

1. Initialize an empty list 𝐿 of edges of the Delaunay triangulation of 𝑆 .
2. Activate the basic square 𝑈 in 𝐺0(𝑈) and assign it to the first node.
3. For 𝑖= 0,1,… do

(a) Each node for each point 𝑝 in its batch determines the number 𝑛𝑢𝑚(𝑝) of the basic square of 𝐺𝑖(𝑈) containing 𝑝 in a
common fixed numbering of the basic squares in 𝐺𝑖(𝑈) (e.g., column-wise and top-down-wise in each column). Next, a
prefixed representation of 𝑝 is formed by the concatenation of the fixed size bit representation of 𝑛𝑢𝑚(𝑝) with the fixed size
bit representations of the coordinates of 𝑝.

(b) The points in 𝑆 are sorted by their prefixed representation. After that each node informs all other nodes about the range of
numbers of the basic squares in 𝐺𝑖(𝑈) holding the prefixed representations of points in 𝑆 that landed at the node after the
sorting of the prefixed representations of all the points.

Theoretical Computer Science 1055 (2025) 115491

6

J. Jansson, C. Levcopoulos, A. Lingas et al.

Fig. 6. An example of the configuration in the proof of Lemma 3.

(c) For each basic square 𝑊 in 𝐺𝑖(𝑈) such that the prefixed representations of points belonging to 𝑊 that are held in a sequence
𝐶 of at least two consecutive nodes, the nodes in 𝐶 inform additionally the other nodes in 𝐶 about the number of the prefixed
representations of the points in 𝑊 they got so in particular the node in 𝐶 with the smallest index can compute the total
number of the points in 𝑊 .

(d) For each active basic square 𝑅 in 𝐺𝑖(𝑈), the node representing 𝑅 sends queries to the nodes holding the prefixed point
representations of the points in the basic squares in 𝑇𝐿𝑖(𝑅) (i.e., in 𝑅 and the two layers of basic squares around 𝑅 in 𝐺𝑖(𝑈))
about the number of points in these squares. If several nodes hold the prefixed point representation of points in a basic square
in 𝑇𝐿𝑖(𝑅), the query is sent only to that node with the smallest index.

(e) After getting answers to the queries, each node proceeds as follows for each active basic square in 𝑅 in 𝐺𝑖(𝑈) it represents.
If the total number of points of 𝑆 in 𝑇𝐿𝑖(𝑅) does not exceed 100𝑛 then the node asks the nodes holding the prefixed
representations of the points in the basic squares in 𝑇𝐿𝑖(𝑅) for sending the points to the node. After that the node computes
the Voronoi diagram of all these points and then the intersection of the diagram with 𝑅 locally. Next, the node appends to 𝐿 all
edges (𝑢, 𝑣) where a part of the bisector of 𝑢 and 𝑣 borders some region of the Voronoi diagram in the computed intersection.
Otherwise, the node activates the four basic squares in 𝐺𝑖+1(𝑈) whose union forms 𝑅 and assigns them temporarily to itself.

(f) The nodes balance the assignment of active basic squares in 𝐺𝑖+1(𝑈) by informing all other nodes about the number of active
basic squares in 𝐺𝑖+1(𝑈) they are assigned and following the results of the same assignment balancing algorithm run by each
of them separately locally.

(g) The list 𝐿 is sorted in order to remove multiple copies of the same edge.

Lemma 2. 𝐷𝑇 −𝑆𝑄𝑈𝐴𝑅𝐸(𝑆,𝑈) activates basic squares solely in the grids 𝐺𝑖(𝑈), where 𝑖=𝑂(log𝑛).

Proof. Simply, the points in 𝑆 have 𝑂(log𝑛)-bit coordinates so at depth at most 𝑂(log𝑛) the condition in Step 3(e) of 𝐷𝑇 −
𝑆𝑄𝑈𝐴𝑅𝐸(𝑆,𝑈) has to be satisfied. □

Lemma 3. The protocol 𝐷𝑇 − 𝑆𝑄𝑈𝐴𝑅𝐸(𝑆,𝑈) is correct.

Proof. When the Voronoi diagram of the points of 𝑆 in 𝑇𝐿𝑖(𝑅) for a basic square 𝑅 of the grid 𝐺𝑖(𝑈) is computed then there must
be square 𝑄′ in the grid 𝐺𝑖−1(𝑈) that contains at least 100𝑛∕25 points in 𝑆 and is at distance at most

√
2

2𝑖−1 from the basic square in
𝐺𝑖−1(𝑈) that is the parent of 𝑅. Hence, there is a basic square 𝑄 in 𝐺𝑖(𝑈) that is part of 𝑄′ and contains at least 100𝑛∕100 points
in 𝑆 ; see Fig. 6. By straightforward calculations, the distance between 𝑄 and 𝑅 is at most 4

√
2 1
2𝑖 . Thus, by the assumed (12 ,4

√
2)-

smoothness property, the square 𝑅 contains at least one point in 𝑆 . It follows from Lemma 1 that the intersection of the Voronoi
diagram of the points of 𝑆 in 𝑇𝐿𝑖(𝑅) with 𝑅 yields the Voronoi diagram of 𝑆 within 𝑅. Hence, the edges appended to the list 𝐿 are
the edges of the Delaunay triangulation of 𝑆 dual to the edges of the Voronoi diagram of 𝑆 within 𝑈 . It easily follows by induction
on 𝑖 during forming the quadtree of active basic squares that the leaf active basic squares form a partition of the unit square 𝑈 .
Therefore, for each edge (𝑢, 𝑣) of the Delaunay triangulation of 𝑆 dual to an edge of the Voronoi diagram of 𝑆 within 𝑈 there must
exist a positive integer 𝑖 and an active basic square 𝑅 in 𝐺𝑖(𝑈) such that 𝑅 does not have any child active basic squares in 𝐺𝑖+1(𝑈)
and a part of the bisector of 𝑢 and 𝑣 borders some region in the Voronoi diagram of 𝑆 within 𝑅. Hence, the list 𝐿 is complete. □

Lemma 4. For 𝑖 = 0,1,… ,𝑂(log𝑛), the number of active basic squares in the grid 𝐺𝑖(𝑈) is 𝑂(𝑛) during the execution of 𝐷𝑇 −
𝑆𝑄𝑈𝐴𝑅𝐸(𝑆,𝑈).

Proof. We argue similarly as at the beginning of the proof of Lemma 3. If 𝑅 is an active basic square in 𝐺𝑖(𝑈) different from the
unit square 𝑈 then there must exist a basic square 𝑄 in 𝑇𝐿𝑖−1(𝑅′), where 𝑅′ is the parent of 𝑅 in 𝐺𝑖−1(𝑈), such that 𝑄 contains at

Theoretical Computer Science 1055 (2025) 115491

7

J. Jansson, C. Levcopoulos, A. Lingas et al.

least 100𝑛∕25 points in 𝑆 . Now it is sufficient to note that: (i) there are at most 𝑂(𝑛) basic squares in 𝐺𝑖−1(𝑈) that contain at least
100𝑛∕25 points in 𝑆 ; (ii) there are at most 𝑂(1) basic squares 𝑄′ in 𝐺𝑖−1(𝑈) different from 𝑅′ such that 𝑄 is included in 𝑇𝐿𝑖−1(𝑄′);
(iii) an active basic square in 𝐺𝑖−1(𝑈) can be a parent to at most four active basic squares in 𝐺𝑖(𝑈). □

Lemma 5. The protocol 𝐷𝑇 − 𝑆𝑄𝑈𝐴𝑅𝐸(𝑆,𝑈) can be implemented in 𝑂(log𝑛) rounds on the congested clique.

Proof. Steps 1, 2 can be easily implemented in 𝑂(1) rounds. By Lemma 2, the block under the for loop in Step 3 is iterated 𝑂(log𝑛)
times. It is sufficient to show that this block (a-g) can be implemented in 𝑂(1) rounds.

Step 3(a) can be performed totally locally.
The sorting of the prefixed representations of points in 𝑆 in Step 3(b) can be done in 𝑂(1) rounds by Fact 2.
For each node, the range of the numbers of the basic squares in 𝐺𝑖(𝑈) holding the prefixed representations of points in 𝑆 at the

node after the sorting of the prefix representations of the points can be specified by two 𝑂(log𝑛)-bit numbers. Hence, all nodes can
inform all other nodes about their ranges in 𝑂(1) rounds. Thus, Step 3(b) requires 𝑂(1) rounds in total.

The situation described in Step 3(c) can happen for at most 𝑛 basic squares 𝑊 in 𝐺𝑖(𝑈). It requires sending by each node at most
two different messages to at most 𝑛 nodes in total and also receiving at most 𝑛 messages. Hence, Step 3(c) can be implemented in
𝑂(1) rounds by using the routing protocol from Fact 1.

In Step 3(d), for each active basic square, a node representing the square has to send 𝑂(1) 𝑂(log𝑛)-bit queries to 𝑂(1) other nodes.
The total number of active basic squares in 𝐺𝑖(𝑈) is 𝑂(𝑛) by Lemma 4. Hence, by using the routing protocol from Fact 1 this task can
be done in 𝑂(1) rounds.

Consider Step 3(e). Answering the queries sent in Step 3(c) can be done by local computations and the routing reverse to that in
Step 3(d) in 𝑂(1) rounds. After that, each node for each active square assigned to it determines locally if the criterion for computing
the Voronoi diagram of 𝑆 within 𝑅 is satisfied. If so the node sends messages asking the nodes holding the prefixed representations of
points in the squares of 𝑇𝐿𝑖(𝑅) for sending the points. This requires sending 𝑂(𝑛) messages for each active basic square in 𝐺𝑖(𝑈). Since
the total number of such squares is 𝑂(𝑛) by Lemma 4 and each node represents 𝑂(1) active squares in 𝐺𝑖(𝑈), it can be accomplished
in 𝑂(1) rounds by Fact 1. Delivering the requested points to the nodes representing respective active basic squares can also be done in
𝑂(1) rounds for the following reasons. For each active basic square the node representing it needs to receive 𝑂(𝑛) points. Furthermore,
by Lemma 4 there are 𝑂(𝑛) active basic squares in 𝐺𝑖(𝑈). Hence, since the active squares are assigned to the 𝑛 nodes in a balanced
way, each node needs to receive 𝑂(𝑛) points. Also, the points contained in a given basic square in 𝐺𝑖(𝑈) can be requested by at most
𝑂(1) nodes since there are at most 𝑂(1) active basic squares behind these requests to the given square. Since the sorted prefixed
representations of the points in 𝑆 are divided between the nodes in a balanced way, each node needs to send 𝑂(𝑛) points, each of
them to 𝑂(1) nodes. We conclude that this part of Step 3(d) can be implemented in 𝑂(1) rounds by Fact 1. The remaining parts of
Step 3(d) are done locally.

Step 3(f) requires sending and receiving by each node 𝑂(1) messages so it can be done in 𝑂(1) rounds.
Consider an edge (𝑢, 𝑣) dual to some edge of the Voronoi diagram of the points of 𝑆 included in 𝑇𝐿𝑖(𝑅) within an active basic

square 𝑅 in 𝐺𝑖(𝑈). The edge can be appended to 𝐿 at most for 𝑂(1) different squares 𝑅 as 𝑢, 𝑣 are in 𝑇𝐿𝑖(𝑅). Therefore, the list 𝐿
may contain at most 𝑂(1) copies of an edge of the Delaunay triangulation of 𝑆 so Step 3(g) can be implemented in 𝑂(1) rounds by
using the sorting protocol from Fact 2. □

Lemmata 3 and 5 yield the first main result of this section.

Theorem 2. Let 𝑆 be a (12 ,4
√
2)-smooth set of 𝑛2 points with 𝑂(log𝑛)-bit coordinates in an orthogonal unit square, held in 𝑛-point batches

at the 𝑛 nodes of the congested clique. The set of edges of the Delaunay triangulation of 𝑆 dual to the edges of the Voronoi diagram of 𝑆
within the unit square can be constructed in 𝑂(log𝑛) rounds on the congested clique.

Lemma 6. Let 𝑆 be defined as in Theorem 2. Suppose that a list 𝐿 of the edges of the Delaunay triangulation of 𝑆 dual to the edges of the
Voronoi diagram of 𝑆 within the unit square is held in 𝑂(𝑛)-edge batches at the 𝑛 nodes of the congested clique. The Voronoi diagram of 𝑆
within the unit square can be constructed in 𝑂(1) rounds on the congested clique.

Proof. Double the list 𝐿 by inserting for each (𝑢, 𝑣) ∈ 𝐿 also (𝑣, 𝑢) into 𝐿. For each edge (𝑢, 𝑣) locally determine an 𝑂(log𝑛)-bit
representation of the angle 𝛽(𝑢, 𝑣) between (𝑢, 𝑣) and the horizontal line passing through 𝑢. For instance, the representation can
specify the tangent of the angle by (𝑣𝑦 − 𝑢𝑦, 𝑣𝑥 − 𝑢𝑥). Sort the edges (𝑥, 𝑦) by (𝑥, 𝛽(𝑢, 𝑣)), letting the nodes compare the angle tangents
locally, using the sorting protocol from Fact 2. In this way, for each point 𝑢 ∈ 𝑆 , a sub-list of all edges of the Delaunay triangulation
incident to 𝑢 in the angular order is created. Some of the sub-lists can stretch through several nodes of the clique network. Given the
edges of the Delaunay triangulation incident to 𝑢 in the angular order, the edges of the Voronoi region of 𝑢 within the unit square can
be easily produced. This is done by intersecting the bisectors of 𝑢 and the other endpoints of consecutive edges incident to 𝑢 in the
angular order as long as the intersection of two consecutive bisectors is within the unit square. Otherwise, the border of the region
of 𝑢 has to be filled with the fragment of the perimeter of the unit square between the intersections of the two bisectors with the
perimeter. □

Theorem 2 combined with Lemma 6 yields the second main result of this section.

Theoretical Computer Science 1055 (2025) 115491

8

J. Jansson, C. Levcopoulos, A. Lingas et al.

Fig. 7. An example of the partition of the polygon 𝑃 into the subpolygons 𝑃1,… , 𝑃𝑘+1 in the procedure 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒.

Theorem 3. Let 𝑆 be a (12 ,4
√
2)-smooth set of 𝑛2 points with 𝑂(log𝑛)-bit coordinates in an orthogonal unit square held in 𝑛-point batches at

the 𝑛 nodes of the congested clique. The Voronoi diagram of 𝑆 within the unit square can be constructed in 𝑂(log𝑛) rounds on the congested
clique.

5. Planar point set triangulation in 𝑶(𝐥𝐨𝐠𝒏) rounds

Our method of triangulating a set of 𝑛2 points in the congested 𝑛-clique model initially resembles the merging method of con-
structing the convex hull of the points [6]. That is, first the input point set is sorted by 𝑥-coordinates. Then, each node triangulates its
sorted batch of 𝑛 points locally. Next, the triangulations are pairwise merged and extended to triangulations of doubled point sets by
using the procedure 𝑀𝑒𝑟𝑔𝑒 in parallel in 𝑂(log𝑛) phases. In the general case, the procedure 𝑀𝑒𝑟𝑔𝑒 calls the procedure 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒

in order to triangulate the area between the sides of the convex hulls of the two input triangulations, facing each other.
The main idea of the procedure 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒 is to select up to 𝑛−2 inner vertices 𝑣 with almost equal interdistances on the longer

of the convex hulls sides and send their coordinates and the coordinates of their neighbors to the nodes holding the facing side of the
other hull (in particular, if the longest chain contains at most 𝑛 vertices then all its inner vertices are selected). The latter nodes send
back candidates (if any) for highest mates 𝑢 of the selected vertices 𝑣 (i.e., highest vertices 𝑢 on the facing side of the other hull such
that the segments between 𝑣 and 𝑢 can be edges of a triangulation extending the existing partial triangulation). The segments are
used to split the polygon area to triangulate into several subpolygons that are triangulated by several recursive calls of 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒

in parallel. See Fig. 7. Before the recursive calls, the edges bordering the subpolygons are moved to new node destinations so edges
of each of the subpolygons are kept in a sequence of consecutive clique nodes. This is done by a global routing in 𝑂(1) rounds serving
all parallel calls of 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒 on a given recursion level, for a given phase of 𝑀𝑒𝑟𝑔𝑒 (its first argument).

Since the recursion depth of 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒 is 𝑂(1) and 𝑀𝑒𝑟𝑔𝑒 is run in 𝑂(log𝑛) phases, the total number of required rounds becomes
𝑂(log𝑛).

To simplify the presentation, we shall assume that the size 𝑛 of the clique network is a power of 2.

procedure 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑆)

1. Sort the points in 𝑆 by their 𝑥-coordinates so each node receives a subsequence consisting of 𝑛 consecutive points in 𝑆 , in the
sorted order.

2. Each node sends the first point and the last point in its subsequence to the other nodes.
3. Each node 𝑞 constructs a triangulation 𝑇 (𝑞, 𝑞) of the points in its sorted subsequence locally.
4. For 1 ≤ 𝑝 < 𝑞 ≤ 𝑛, 𝑇 (𝑝, 𝑞) will denote a triangulation of the points in the sorted subsequence held in the nodes 𝑝 through 𝑞. For

𝑖 = 0,… , log𝑛 − 1, in parallel, for 𝑗 = 1,1 + 2𝑖+1,1 + 2 ⋅ 2𝑖+1,1 + 3 ⋅ 2𝑖+1,… the union of the triangulations 𝑇 (𝑗, 𝑗 + 2𝑖 − 1) and
𝑇 (𝑗 + 2𝑖, 𝑗 + 2𝑖+1 − 1) is transformed to a triangulation 𝑇 (𝑗, 𝑗 + 2𝑖+1 − 1) of the sorted subsequence held in the nodes 𝑗 through
𝑗 + 2𝑖+1 − 1 by calling the procedure 𝑀𝑒𝑟𝑔𝑒(𝑖, 𝑗).

procedure 𝑀𝑒𝑟𝑔𝑒(𝑖, 𝑗)
Input: A triangulation 𝑇 (𝑗, 𝑗+2𝑖−1) of the subsequence held in the nodes 𝑗 through 𝑗+2𝑖−1 and a triangulation 𝑇 (𝑗+2𝑖, 𝑗+2𝑖+1 −1)
of the subsequence held in the nodes 𝑗 + 2𝑖 through 𝑗 + 2𝑖+1 − 1.
Output: A triangulation 𝑇 (𝑗, 𝑗 + 2𝑖+1 − 1) of the subsequence held in the nodes 𝑗 through 𝑗 + 2𝑗+1 − 1.

1. Compute the bridges between the convex hulls of 𝑇 (𝑗, 𝑗 + 2𝑖 − 1) and 𝑇 (𝑗 + 2𝑖, 𝑗 + 2𝑖+1 − 1).
2. Determine the polygon 𝑃 formed by the bridges between the convex hulls of 𝑇 (𝑗, 𝑗 + 2𝑖 − 1) and 𝑇 (𝑗 + 2𝑖, 𝑗 + 2𝑖+1 − 1), the right

side of the convex hull of 𝑇 (𝑗, 𝑗 + 2𝑖 − 1), and the left side of the convex hull of 𝑇 (𝑗 + 2𝑖, 𝑗 + 2𝑖+1 − 1) between the bridges.
3. 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒(𝑃 , 𝑗, 𝑗 + 2𝑖+1 − 1)

procedure 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒(𝑃 , 𝑝, 𝑞)
Input: A simple polygon 𝑃 composed of two convex chains facing each other on opposite sides of a vertical line and two edges crossing
the line, held in nodes 𝑝 through 𝑞, with 𝑝 ≤ 𝑞.
Output: A triangulation of 𝑃 held in nodes 𝑝 through 𝑞.

Theoretical Computer Science 1055 (2025) 115491

9

J. Jansson, C. Levcopoulos, A. Lingas et al.

1. If 𝑝 = 𝑞 then the 𝑝 node triangulates 𝑃 locally and terminates the call of the procedure.
2. The nodes 𝑝 through 𝑞 determine the lengths of the convex chains on the border of 𝑃 and set 𝓁 to the length of the longest

chain. Then, the nodes holding the longest chain (in case of ties, the left chain) select 𝑘 =min{𝑛−2,𝓁 −1} inner vertices on the
longest chain with almost equal interdistances. Next, these nodes send the coordinates of all the selected vertices and all vertices
adjacent to the selected ones on the chain to all the nodes 𝑝 through 𝑞 holding the vertices of the opposite chain.

3. Each node holding some vertices of the opposite chain, for each received, selected vertex 𝑣, determines the highest vertex 𝑢 on
the opposite chain held by the node such that (𝑣, 𝑢) forms a diagonal of 𝑃 (if any). (The node can verify if (𝑣, 𝑢) is a diagonal
of 𝑃 by checking if the segment (𝑣, 𝑢) is within the intersection of the union of the half-planes on the side of 𝑃 induced by the
edges adjacent to 𝑣 with the union of the half-planes on the side of 𝑃 induced by the edges adjacent to 𝑢.) If (𝑣, 𝑢) is well defined
then the node sends it as a candidate diagonal (𝑣, 𝑢) to the node holding 𝑣.

4. Each node holding the vertices of the longest convex chain, for each selected vertex 𝑣, picks the diagonal (𝑣, 𝑢) with highest 𝑢
among the received candidate diagonals as the diagonal to draw from 𝑣. Then, it sends the coordinates of (𝑣, 𝑢) to all other nodes
𝑝 through 𝑞.

5. The nodes 𝑝 through 𝑞 split the polygon 𝑃 into subpolygons 𝑃1,… , 𝑃𝑘+1 by the picked diagonals (𝑣, 𝑢). Next, they compute the
new destinations for the edges of the subpolygons 𝑃1,… , 𝑃𝑘+1 so 𝑃𝑖 can be held in nodes 𝑟𝑖−1 through 𝑟𝑖, where 𝑟0 = 𝑝, 𝑟𝑖−1 ≤ 𝑟𝑖,
𝑟𝑘+1 = 𝑞, for 𝑖 = 1,… , 𝑘+ 1.

6. A synchronized global routing in 𝑂(1) rounds corresponding to the current phase of the calls to the procedure 𝑀𝑒𝑟𝑔𝑒 (given by
its first argument) and all parallel calls of the procedure 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒 on the same recursion level is implemented by using Fact 1.
In particular, the edges of 𝑃1 through 𝑃𝑘+1 are moved to the new consecutive destinations among nodes 𝑝 through 𝑞.

7. In parallel, 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒(𝑃𝑖, 𝑟𝑖−1, 𝑟𝑖) are performed for 𝑖 = 1,… , 𝑘+ 1.

The correctness of the procedure 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒 follows from the following lemma.

Lemma 7. Let 𝑃 be an input polygon for the procedure 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒. Next, let 𝑣 be an inner vertex on a convex chain of 𝑃 and let 𝑢 be the
highest vertex on the opposite convex chain of 𝑃 such that (𝑣, 𝑢) is a diagonal of 𝑃 . Similarly, let 𝑣′ be another inner vertex on the convex
chain of 𝑃 that 𝑣 is located below 𝑣 and let 𝑢′ be the highest vertex on the opposite convex chain of 𝑃 such that (𝑣′, 𝑢′) is a diagonal of 𝑃 .
The diagonals (𝑣, 𝑢) and (𝑣′, 𝑢′) do not intersect, i.e., 𝑢′ cannot be placed over 𝑢 on the opposite chain.

Proof. The proof is by contradiction. Suppose that the two diagonals (𝑣, 𝑢) and (𝑣′, 𝑢′) properly intersect. Then, (𝑣, 𝑢′) is also a
diagonal of 𝑃 and 𝑢′ is higher than 𝑢, a contradiction with the definition of 𝑢. □

At the beginning, we have outlined our triangulation method, in particular the procedures forming it, in a top-down fashion. We
now complement this outline with a bottom-up analysis.

In the analysis of the procedure 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒(𝑃 , 𝑝, 𝑞), it is important to remember that several calls of this procedure can be
run on the congested clique in parallel. The parallel calls of 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒 occur on the same recursion level, for a given phase of
the parallel calls of procedure 𝑀𝑒𝑟𝑔𝑒(𝑖,), i.e., for given 𝑖. Here, it is also important to note that a single node of the congested
clique can be involved in at most two such non-local calls shared with the preceding node or the following node (i.e., of the form
𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒(𝑃 , 𝑝, 𝑞), where 𝑝 < 𝑞). Besides this, the node can be assigned several calls of the procedure on smaller subpolygons totally
held within the node (i.e., of the form 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒(𝑃 , 𝑝, 𝑝)) that the node can solve locally. In particular, Steps 2-4, 6 can involve
sending and/or receiving 𝑂(𝑛) messages for a single node in the implementation of the parallel calls of the procedure which can be
achieved in 𝑂(1) rounds by using Lenzen’s global routing protocol. To implement the remaining steps but for the recursive calls, it is
sufficient to use the nodes 𝑝 through 𝑞 in 𝑂(1) rounds. The recursion depth of 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒 is 𝑂(1). Simply, 𝑂(1) recursion depth is
enough to reduce the lengths of the convex chains in the resulting subpolygons to at most 𝑛−1. After that, diagonals are drawn from
all inner vertices of the longest chain in a subpolygon so further 𝑂(1) recursion levels are sufficient to obtain a complete triangulation.
We conclude that the parallel calls of this procedure can be implemented in 𝑂(1) rounds.

The first two steps of the procedure 𝑀𝑒𝑟𝑔𝑒(𝑖, 𝑗), i.e., constructing the bridges and then the polygon 𝑃 between the convex hulls,
can be implemented in 𝑂(1) rounds by using the 𝑂(1)-round convex hull algorithm from [5] on the nodes 𝑗 through 𝑗 + 2𝑖+1 − 1 (by
[7], our application of the convex hull algorithm requires 𝑂(1) rounds on the congested

√
𝑛2𝑖+1-clique and can be easily implemented

in 𝑂(1) rounds by the 2𝑖 + 1 nodes of the congested 𝑛-clique). Finally, the call to 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒 in the last step of 𝑀𝑒𝑟𝑔𝑒 requires 𝑂(1)
rounds by our analysis of 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒. We conclude that 𝑀𝑒𝑟𝑔𝑒(𝑖, 𝑗) can be implemented in 𝑂(1) rounds.

Finally, all steps in 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑆) except the one involving parallel calls to 𝑀𝑒𝑟𝑔𝑒(𝑖, 𝑗) in 𝑂(log𝑛) phases can be done in 𝑂(1)
rounds. For a given phase, i.e., given 𝑖, each node is involved in 𝑂(1) parallel calls of 𝑀𝑒𝑟𝑔𝑒(𝑖, 𝑗), not counting the auxiliary global
routing steps. It follows from our analysis of 𝑀𝑒𝑟𝑔𝑒(𝑖, 𝑗) and 𝑖 = 𝑂(log𝑛) that 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑆) can be implemented in 𝑂(log𝑛)
rounds.

Theorem 4. Consider a congested 𝑛-clique network, where each node holds a batch of 𝑛 points in the Euclidean plane specified by 𝑂(log𝑛)-bit
coordinates. A triangulation of the set 𝑆 of the 𝑛2 input points can be computed by the procedure 𝑇 𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑆) in 𝑂(log𝑛) rounds on
the congested clique.

Theoretical Computer Science 1055 (2025) 115491

10

J. Jansson, C. Levcopoulos, A. Lingas et al.

6. Final remarks

The message complexity of a protocol in the congested clique model is the maximum total number of 𝑂(log 𝑛)-bit messages ex-
changed by the 𝑛 nodes of the congested clique during a run of the protocol (e.g., see [11]). In case of our protocols, it is easily seen
to be the product of the maximum number of messages that can be exchanged in a single round, i.e., Θ(𝑛2), times the number of
required rounds. Thus, the message complexity of our deterministic protocols for the Delaunay triangulation and the Voronoi diagram
of 𝑛2 point sets from Section 4 and the message complexity of our deterministic triangulation protocol for the input point set from
Section 5 is 𝑂(𝑛2 log𝑛) while that of our protocol for uniform random planar point sets from Section 3 is only 𝑂(𝑛2).

The remaining major open problem is the derivation of a low polylogarithmic upper bound on the number of rounds sufficient to
deterministically construct the Voronoi diagram of 𝑛2 points with 𝑂(log𝑛)-bit coordinates in the Euclidean plane (when the points
are not necessarily randomly distributed) on the congested clique with 𝑛 nodes. This seems feasible but it might require a substantial
effort as in the PRAM case [1,2]. Even the design of a faster, i.e., sub-logarithmic, deterministic protocol for the construction of a
triangulation of 𝑛2 points with 𝑂(log𝑛)-bit coordinates in the Euclidean plane seems to be an interesting open problem.

CRediT authorship contribution statement

Jesper Jansson: Writing – review & editing, Writing – original draft, Visualization, Validation, Investigation, Formal analysis,
Conceptualization. Christos Levcopoulos: Writing – review & editing, Writing – original draft, Validation, Investigation, Formal
analysis, Conceptualization. Andrzej Lingas: Writing – review & editing, Writing – original draft, Validation, Investigation, Formal
analysis, Conceptualization. Valentin Polishchuk: Writing – review & editing, Writing – original draft, Validation, Investigation,
Formal analysis, Conceptualization. Quan Xue: Writing – review & editing, Writing – original draft, Validation, Investigation, Formal
analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The authors are grateful to the anonymous reviewers for valuable comments. This research was in part funded by Swedish Research
Council grant 2018-04001 and JSPS KAKENHI JP20H05964.

References

[1] A. Aggarwal, B. Chazelle, L.J. Guibas, C. Ó’Dúnlaing, C.-K. Yap, Parallel computational geometry, Algorithmica 3 (1988) 293–327.
[2] M. Amato, F.P. Preparata, A time-optimal parallel algorithm for three-dimensional convex hull, Algorithmica 14 (2) (1995) 169–182.
[3] K. Censor-Hillel, P. Kaski, J.H. Korhonen, C. Lenzen, A. Paz, J. Suomela, Algebraic methods in the congested clique, Distrib. Comput. 32 (6) (2019) 461–478.
[4] S. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica 2 (1987) 153–174.
[5] M.T. Goodrich, Randomized fully-scalable BSP techniques for multi-searching and convex hull construction, in: Proceedings of the Eighth Annual Symposium on

Discrete Algorithms (SODA 1997), ACM-SIAM, 1997, pp. 767–776.
[6] J. Jansson, C. Levcopoulos, A. Lingas, V. Polishchuk, Convex hulls, triangulations, and Voronoi diagrams of planar point sets on the congested clique, arXiv:

2305.09987, 2023, Preliminary version in: Proceedings of the Thirty-Fifth Canadian Conference on Computational Geometry (CCCG 2023), 2023, pp. 183–189.
[7] C. Lenzen, Optimal deterministic routing and sorting on the congested clique, in: Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing

(PODC 2013), ACM, 2013, pp. 42–50.
[8] C. Levcopoulos, J. Katajainen, A. Lingas, An optimal expected-time parallel algorithm for Voronoi diagrams, in: Proceedings of the First Scandinavian Workshop

on Algorithm Theory (SWAT 88), in: Lecture Notes in Computer Science, vol. 318, Springer-Verlag, 1988, pp. 190–198.
[9] Z. Lotker, B. Patt-Shamir, E. Pavlov, D. Peleg, Minimum-weight spanning tree construction in 𝑂(log log𝑛) communication rounds, SIAM J. Comput. 35 (1) (2005)

120–131.
[10] K. Nowicki, A deterministic algorithm for the MST problem in constant rounds of congested clique, in: Proceedings of the Fifty-Third Annual ACM SIGACT

Symposium on Theory of Computing (STOC 2021), ACM, 2021, pp. 1154–1165.
[11] S. Pemmaraju, V. Sardeshmukh, Super-fast MST algorithms in the congested clique using 𝑜(𝑚) messages, in: Proceedings of the 36th Annual Conference on

Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016), LIPICS, 2016, pp. 47:1–47:15.
[12] F.P. Preparata, M.I. Shamos, Computational Geometry: An Introduction, Texts and Monographs in Computer Science., vol. 10, Springer-Verlag, 1985.
[13] P. Robinson, Brief announcement: what can we compute in a single round of the congested clique?, in: Proceedings of the 2023 ACM Symposium on Principles

of Distributed Computing (PODC 2023), ACM, 2023, pp. 168–171.
[14] B.C. Vemuri, R. Varadarajan, N. Mayya, An efficient expected time parallel algorithm for Voronoi construction, in: Proceedings of the Fourth Annual ACM

Symposium on Parallel Algorithms and Architectures (SPAA 1992), ACM, 1992, pp. 392–401.

Theoretical Computer Science 1055 (2025) 115491

11

http://refhub.elsevier.com/S0304-3975(25)00429-3/bibC5F34A2BAFA690B7A5F60A7EBCC2E9BAs1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bib8BA2D3748AC6A07C443543F17A869D58s1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bibD0C4F95B375DB463C95F230CEE151BCCs1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bib353CB0AAA58C5C1904E674E19ABD3425s1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bib891BAA38508E1C4542487DAA51D5018Fs1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bib891BAA38508E1C4542487DAA51D5018Fs1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bib46A497ABF1A283DAB9C2FE911E110BBBs1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bib46A497ABF1A283DAB9C2FE911E110BBBs1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bibD20CAEC3B48A1EEF164CB4CA81BA2587s1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bibD20CAEC3B48A1EEF164CB4CA81BA2587s1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bib3A871A6B605E2E4A0CCEA80B4EE3BBDEs1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bib3A871A6B605E2E4A0CCEA80B4EE3BBDEs1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bibC20D4E12B1D546AB8DFAB43B263F5F64s1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bibC20D4E12B1D546AB8DFAB43B263F5F64s1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bibF265AAC1F114E94BCDD58E456C82C281s1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bibF265AAC1F114E94BCDD58E456C82C281s1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bib4A9307CE469400348B44268D395D4286s1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bib4A9307CE469400348B44268D395D4286s1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bibD3D4C5DEB455AC79DD5FF47C88BD65D9s1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bibE1E1D3D40573127E9EE0480CAF1283D6s1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bibE1E1D3D40573127E9EE0480CAF1283D6s1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bibC0055FA4CDC19A2690BFEE3643413A7Ds1
http://refhub.elsevier.com/S0304-3975(25)00429-3/bibC0055FA4CDC19A2690BFEE3643413A7Ds1

	Deterministic protocols for Voronoi diagrams and triangulations of planar point sets on the congested clique
	1 Introduction
	2 Preliminaries
	3 Voronoi diagram of uniform random planar point sets
	4 The extended local approach
	5 Planar point set triangulation in O(logn) rounds
	6 Final remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

