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Abstract. We consider a generalization of the rooted triplet distance be-
tween two phylogenetic trees to two phylogenetic networks. We show that
if each of the two given phylogenetic networks is a so-called galled tree with
n leaves then the rooted triplet distance can be computed in o(n2.688) time.
Our upper bound is obtained by reducing the problem of computing the
rooted triplet distance to that of counting monochromatic and almost-
monochromatic triangles in an undirected, edge-colored graph. To count
different types of colored triangles in a graph efficiently, we extend an ex-
isting technique based on matrix multiplication and obtain several new
related results that may be of independent interest.

1 Introduction

Phylogenetic trees and their generalization to non-treelike structures, phyloge-
netic networks, are commonly used by scientists to describe evolutionary relat-
ionships among a set of objects such as biological species or natural languages
[2, 3, 6–8, 10–14]. Various metrics for measuring the (dis-)similarity of two given
phylogenetic trees have been proposed and analyzed in the literature; see, e.g., [2]
and the references therein. In this paper, we consider an extension of one particu-
lar, well-known method called the rooted triplet distance [2, 6] to the phylogenetic
network model and describe how to compute it efficiently.

The rooted triplet distance between two phylogenetic trees provides an intu-
itive measure of their dissimilarity and exhibits many attractive mathematical
properties [2, 6]. It counts the number of substructures (more precisely, subtrees
induced by three leaves) that differ between the two trees. More formally, it
is defined as follows. A rooted phylogenetic tree is an unordered, rooted tree in
which every internal node has at least two children and all leaves are distinctly
labeled. A rooted phylogenetic tree with three leaves is called a rooted triplet. A
non-binary rooted triplet leaf-labeled by {a, b, c} is called a rooted fan triplet and
is denoted by a|b|c (see the leftmost tree in Fig. 1), and a binary rooted triplet
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Fig. 1. The rooted fan triplet a|b|c and the rooted proper triplets ab|c, ac|b, and bc|a

is called a rooted proper triplet ; in the latter case, there are three possibilities,
denoted by ab|c, ac|b, and bc|a, corresponding to the three possible topologies
(see also Fig. 1). A rooted triplet t is said to be consistent with a rooted phy-
logenetic tree T if t is an embedded subtree of T . 1 Now, given two rooted
phylogenetic trees T1, T2 with the same set L of leaf labels, the rooted triplet
distance drt(T1, T2) is the number of rooted triplets over L that are consistent
with exactly one of T1 and T2.

The naive algorithm for computing drt(T1, T2) between two trees T1 and T2

with a leaf label set of cardinality n runs inO(n3) time: Just preprocess T1 and T2

in O(n) time so that lowest common ancestor queries can be answered in O(1)
time by the method in [9, 17], and then check each of the O(n3) possible rooted
triplets for consistency with T1 and T2 in O(1) time. Critchlow et al. [6] provided
a more efficient algorithm for computing the rooted triplet distance between two
binary phylogenetic trees with O(n2) running time, and Bansal et al. [2] extended
the O(n2)-time upper bound to two phylogenetic trees of arbitrary degrees.

Due to the recently increasing focus on phylogenetic networks (see, e.g., the
two new textbooks [10, 13]), it is compelling to consider generalizations of the
rooted triplet distance to the network case. For this case, it seems much harder
to improve on the naive O(n3)-time algorithm and to derive a subcubic upper
bound on the running time. Therefore, one would like to know if any important
special classes of phylogenetic networks such as the galled trees [8, 10] admit fast
algorithms for the rooted triplet distance. Galled trees are structurally restricted
phylogenetic networks in which all underlying cycles are vertex-disjoint (for a
detailed definition, refer to Section 2.2 below). This kind of phylogenetic network
was first considered by Wang et al. [18] and later by Gusfield et al. [8], and is also
known in the literature as a level-1 phylogenetic network [4, 10]. Galled trees have
turned out to be useful in certain settings where reticulation events do occur but
are known to be rare. 2 As a consequence, a number of algorithms for building
galled trees from different kinds of data have been published [3, 8, 10–12].

1 There are several equivalent ways to define this. For example, for any two leaf la-
bels x, y, let lcaT (x, y) denote the lowest common ancestor in T of the leaves labeled
by x and y. Then a|b|c is consistent with T if lcaT (a, b) = lcaT (a, c) = lcaT (b, c), and
ab|c is consistent with T if lcaT (a, b) is a proper descendant of lcaT (a, c) = lcaT (b, c).
See also Section 2.1 below.

2 See [8] for a discussion about the biological relevance of galled trees.
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1.1 New Results

The main contribution of our paper is an o(n2.688)-time algorithm for com-
puting the rooted triplet distance between two galled trees with n leaves each
[Theorem 4]. From a computational complexity point of view, this is significant
because it breaks the natural O(n3)-time barrier for any kind of non-tree phy-
logenetic networks for the first time. The precise running time is O(n(3+ω)/2),
where ω denotes the exponent in the running time of the fastest existing method
for matrix multiplication. It is well known that ω < 2.376 [5], and recent devel-
opments [16, 20] suggest slightly tighter bounds on ω.

Our main result is obtained in part by a reduction to the problem of counting
monochromatic and “almost-monochromatic” triangles in an undirected graph
with colored edges. To solve the latter efficiently, we strengthen a technique based
on matrix multiplication used in [1] and [19] for detecting if a graph contains
a triangle to also count the number of triangles in the graph. More exactly, we
show that:

• The number of triangles in a connected, undirected graph with m edges can

be computed in O(m
2ω

ω+1 ) ≤ o(m1.408) time [Theorem 1].

• If G is a connected, undirected, edge-colored graph with n vertices and C is a
subset of the set of edge colors then the number of monochromatic triangles
of G with colors in C can be computed in O(n(3+ω)/2) ≤ o(n2.688) time
[Theorem 2].

We also need to relax the concept of a monochromatic triangle to what we call
an R-chromatic triangle (see Section 3 for the definition), and obtain:

• If G is a connected, undirected, edge-colored graph with n vertices and R
is a binary relation on the colors that is computable in O(1) time then the
number of R-chromatic triangles in G can be computed in O(n(3+ω)/2) ≤
o(n2.688) time [Theorem 3].

Our new results on counting triangles in a graph may be of general interest and
could be useful in other applications unrelated to the main problem studied here.

2 Preliminaries

2.1 Basic Definitions

A (rooted) phylogenetic network U is a directed acyclic graph with a single root
vertex and a set L of distinctly labeled leaves, and no vertices having both inde-
gree 1 and outdegree 1. A vertex u is an ancestor of a vertex v (or, equivalently,
v is a descendant of u) in U if and only if there is a directed path from u to v
in U . In particular, u is an ancestor and descendant of itself. If the path from u
to v has non-zero length then v is a proper descendant of u. Next, a vertex w
is a common ancestor of vertices u and v in U if and only if w is an ancestor
of both u and v in U . Furthermore, w is a junction common ancestor (jca) of u
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and v in U if and only if there are two directed non-zero length paths from w
to u and v, respectively, which are vertex disjoint but for the start vertex w.
Finally, w is a lowest common ancestor (lca) of u and v in U if and only if:
(1) w is a common ancestor of u and v; and (2) w has no proper descendant that
is a common ancestor of u and v. As an example, in Fig. 2 (i), vertices w and z
are two different jca’s of a and c, w is an lca of a and c, and z is not an lca of a
and c.

We now define rooted triplet consistency for a phylogenetic network U . Fol-
lowing [10, 11], for any three leaf labels a, b, c, say that the rooted proper triplet
ab|c is consistent with U if and only if U contains a junction common ancestor w
of a and b as well as a junction common ancestor z of c and w such that there
are four directed paths from w to a, from w to b, from z to w, and from z to c
that are vertex disjoint except for in the vertices w and z. Secondly, say that the
rooted fan triplet a|b|c is consistent with U if and only if U contains a vertex w
such that there are three directed paths from w to a, from w to b, and from w to c
that are vertex-disjoint except for in the common start vertex w. Observe that in
the special case where U is a tree, the concepts of a lowest common ancestor and
a junction common ancestor between two leaves coincide, and the definitions of
rooted triplet consistency thus reduce to the definitions in footnote 1.

Next, we define the rooted triplet distance between phylogenetic networks as:

Definition 1. Let U1, U2 be two phylogenetic networks on the same leaf label
set L. The rooted triplet distance between U1 and U2, denoted by drt(U1, U2), is
the number of rooted fan triplets and rooted proper triplets with leaf labels from L
that are consistent with exactly one of U1 and U2.

This definition of drt differs slightly from the one restricted to trees in [2, 6].
The definition in [2, 6] counts the number of “bad” cardinality-3 subsets L′ of L
for which the rooted triplet with leaf set L′ consistent with U1 differs from the
rooted triplet with leaf set L′ consistent with U2. Therefore, when restricted to
trees, our definition of drt is exactly two times drt from [2, 6] because each “bad”
subset will contribute twice to our drt (once for the rooted triplet in U1 and once
for the rooted triplet in U2); obviously, our definition of drt could be normalized
by dividing by two but then drt would no longer always be an integer in the
non-tree case. We believe that our definition is more suitable in the context of
phylogenetic networks because it allows us to distinguish between cases such as:
(i) ab|c and bc|a are consistent with U1 whereas only bc|a is consistent with U2;
and (ii) ab|c is consistent with U1 and bc|a is consistent with U2.

2.2 Galled Trees

Here, we recall the definition of the class of phylogenetic networks called the
galled tree [8, 10], and investigate some of its properties.

A reticulation vertex of a phylogenetic network is any vertex of indegree
greater than 1. For any phylogenetic network U , define its underlying undirected
graph as the undirected graph obtained by replacing every directed edge in U by
an undirected edge. A phylogenetic network U is called a galled tree if all cycles
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in its underlying undirected graph are vertex-disjoint [8, 10]. A cycle C in a
galled tree is any set of vertices that induce a cycle in the underlying undirected
graph, and the vertex of C in U that is an ancestor of all vertices on C is called
the root of C. Thus, every cycle C in a galled tree has exactly one root and
one reticulation vertex, and C consists of two directed paths from its root to its
reticulation vertex. Also, any directed path from the root of the galled tree to a
vertex on such a cycle must pass through the root of the cycle. The next lemma
summarizes some useful properties of galled trees:

Lemma 1. Let U be a galled tree with n leaves and let u, v be any two vertices
in U . Then:

1. The lowest common ancestor in U of u and v is unique.
2. There are at most two different junction common ancestors of u and v.
3. If there are two junction common ancestors of u and v then both of them lie

on the same cycle C in U . Furthermore, one of them is the root of C and
the other one is the lowest common ancestor of u and v in U .

4. The number of vertices in U as well as the number of edges in U is O(n).
5. All junction common ancestors of pairs of vertices in U can be listed in O(n2)

time.

Proof. To prove property 1, suppose there were two different lowest common
ancestors w1 and w2 of u and v in U . Consider any path from w1 to u in U
and any path from w2 to u in U . Since both paths lead to u, they must meet
at some ancestor u′ of u which then has indegree larger than 1, where u′ is a
proper descendant of w1 and also a proper descendant of w2. In the same way,
there exists an ancestor v′ of v with indegree larger than 1 which is a proper
descendant of both w1 and w2, with u′ �= v′. Now let x be a lowest common
ancestor of w1 and w2 in U . In the underlying undirected graph of U , there
is a cycle containing x and u′ and another cycle containing x and v′, i.e., two
non-vertex-disjoint cycles, contradicting the definition of a galled tree.

Next, we prove properties 2 and 3. For each cycle in U , arbitrarily term one
of the two edges on C incident to the reticulation vertex as the left reticulation
edge and the other one as the right reticulation edge. Let UL be the tree obtained
from U by removing all right reticulation edges in U and define UR symmetrically.
Then, every junction common ancestor of u and v in U is a lowest common
ancestor of u and v in at least one of UL and UR. Property 2 follows. According
to the definitions, if w is a lowest common ancestor of u and v in U then w is
also a junction common ancestor of u and v in U , which yields property 3.

To upper-bound the number of vertices in U , construct a binary galled tree U ′

(where every vertex has outdegree at most 2) by repeatedly selecting any ver-
tex w with outdegree larger than 2 and replacing any two of its outgoing
edges (w, c1) and (w, c2) by a single edge (w, x) and two edges (x, c1) and (x, c2)
where x is a newly created vertex, until no vertex with outdegree larger than 2
remains. This will not introduce any vertices having both indegree 1 and outde-
gree 1, and U ′ is still a galled tree with n leaves, but U ′ contains at least as many
vertices as U . According to Lemma 3 in [4], the number of vertices in any binary
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galled tree U ′ with n leaves is O(n), so this gives an upper bound for U as well.
Furthermore, any vertex in a galled tree can have indegree at most 2 (otherwise,
there would exist two non-vertex-disjoint cycles in the underlying undirected
graph), so the total number of edges in U is O(n). Thus, property 4 holds.

Finally, since the trees UL, UR can be preprocessed in linear time to answer
ancestor or descendant queries as well as lca queries in constant time [9, 17], and
lca’s in a tree are unique, property 5 follows. ��
When the phylogenetic network U is a galled tree, the definitions of consistency
of a rooted proper triplet ab|c or a rooted fan triplet a|b|c with U can be expressed
as in Lemma 2 and Lemma 3 below. (These two key lemmas are used by our
main algorithm in Section 4 to efficiently count the number of shared rooted
triplets in two galled trees.) See Fig. 2 for some examples.

A junction common ancestor z of two vertices u, v in U is said to use another
vertex w if, after the removal of w from U , the vertex z is no longer a junction
common ancestor of u and v.

Lemma 2. Let U be a galled tree. For any three leaves a, b, c in the leaf label set
of U , the rooted proper triplet ab|c is consistent with U if and only if U contains
a junction common ancestor w of a and b as well as a different junction common
ancestor z of c and w such that if both w and z belong to the same cycle C of U
then at least one of them does not use the reticulation vertex of C.

Proof. The necessity of the condition stated in the lemma follows directly from
the definition of consistency of ab|c with U. It remains to show the sufficiency of
this condition for galled trees.

The proof is by contradiction. First of all, the path from z to w crosses neither
that from w to a or that from w to b since U is an acyclic directed graph. Next,
if the path from z to c had to cross that from w to a (or b, respectively) in an
inner vertex x then z and w would lie on a common cycle whose reticulation
vertex is exactly x, and both would use x. We obtain a contradiction. ��
Lemma 3. Let U be a galled tree, and let a, b, c be three leaf labels in U . The
rooted fan triplet a|b|c is consistent with U if and only if there exists a vertex w
in U such that: (1) w is a junction common ancestor of all three pairs of leaves
{a, b}, {a, c}, {b, c}; and (2) w is the lowest common ancestor of at least two pairs
of leaves among {a, b}, {a, c}, {b, c}.
Proof. ⇒) Suppose a|b|c is consistent with U . Then U contains a vertex w such
that there are three directed paths Pa, Pb, and Pc from w to a, b, and c, respec-
tively, that are vertex-disjoint except for in the common start vertex w. Thus,
property (1) always holds. Next, since U is a galled tree, at most two of the three
paths Pa, Pb, and Pc overlap with edges from the same cycle in U . Clearly, if none
of them overlap with the same cycle then lca(a, b) = lca(a, c) = lca(b, c) = w;
on the other hand, if w.l.o.g. Pa and Pb overlap with the same cycle then no
path from w to c can intersect Pa or Pb except for in the starting vertex w, so
lca(a, c) = lca(b, c) = w.
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Fig. 2. Illustrating Lemmas 2 and 3. In (i), w is a jca of a and b that does not use the
reticulation vertex, and z is a jca of c and w, so Lemma 2 gives us the rooted proper
triplet ab|c. In (ii), w is a jca and also the lca for all three pairs {a, b}, {a, c}, {b, c}, so
the network is consistent with a|b|c according to Lemma 3. Similarly, in (iii), w is a jca
for all three pairs {a, b}, {a, c}, {b, c} and the lca for exactly two pairs {a, b}, {a, c}, so
the network is consistent with a|b|c according to Lemma 3. Note that in addition to
the above, Lemma 2 also correctly identifies bc|a in (i), ab|c in (ii), and bc|a in (iii).

⇐) Suppose there exists a vertex w that satisfies properties (1) and (2). There
are two cases.

• First case: w is the lca of all three pairs of leaves in {a, b, c}, i.e., w =
lca(a, b) = lca(a, c) = lca(b, c). By the definition of a lowest common ances-
tor, no proper descendant of w can be an ancestor of any two of the three
leaves {a, b, c}. Hence, there are three internally vertex-disjoint paths w � a,
w � b, and w � c, i.e., a|b|c is consistent with U . See also Fig. 2 (ii).

• Second case: w is the lca of exactly two pairs of leaves in {a, b, c}, say w =
lca(a, b) = lca(a, c) but w �= lca(b, c) = v. Then there are two junction
common ancestors of b and c, namely w and v, so by Lemma 1, both v and w
lie on the same cycle C in U . Note that exactly one of the leaves b and c is a
descendant of the reticulation vertex of C. Let Pb and Pc be two internally
disjoint paths from w to b and c, respectively, where one of Pb and Pc passes
through the reticulation vertex of C and the other one passes through v.
Since w = lca(a, b), there is no path from w to a that intersects Pb. In the
same way, since w = lca(a, c), there is no path from w to a that intersects Pc.
Thus, there are three internally vertex-disjoint paths w � a, w � b, and
w � c, so a|b|c is consistent with U . See also Fig. 2 (iii). ��

3 Counting Monochromatic and Almost-Monochromatic
Triangles

A triangle in an undirected graph is a cycle of length 3. In [1], Alon et al. showed
how to determine if a connected, undirected graph with m edges contains a
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triangle, and if so, how to find a triangle in O(m
2ω

ω+1 ) ≤ o(m1.408) time. In
the same paper, they also showed how to count the number of triangles in an
undirected graph with n vertices in O(nω) ≤ o(n2.376) time. We first improve
their technique to count the number of triangles more efficiently in case m � n2:

Theorem 1. Let G be a connected, undirected graph with m edges. The number

of triangles in G can be computed in O(m
2ω

ω+1 ) ≤ o(m1.408) time.

Proof. First, we count the number of triangles in G whose three vertices all have
degree at least t in G, where t is a threshold parameter that will be set later.
To do this, we take the subgraph of G induced by all vertices of degree ≥ t, and
apply the triangle counting method from [1] which runs in O(|V |ω) time for any
graph with |V | vertices. Since the number of vertices with degree ≥ t is O(mt ),

the aforementioned method takes O(m
ω

tω ) time. Let NΔ be the computed number
of triangles in the subgraph.

Secondly, we count the number of triangles with at least one vertex of degree
strictly less than t. For this purpose, we enumerate the set Et of edges in G with
at least one endpoint of degree < t, and for i = 1, . . . , |Et|, iterate the following:

• Pick an endpoint v of the i-th edge ei in Et of degree less than t; for each
edge e incident to ei at v, check if ei and e induce a triangle in G which does
not include any edge ej ∈ Et where j < i; if yes then increase NΔ by one.

The above steps can be implemented in O(t) time, so counting the remaining
triangles takes O(mt) time. By solving the equation mω

tω = mt, we obtain and

set t = m
ω−1
ω+1 . ��

Next, we similarly refine the part of Theorem 1.8 in [19] which states that a
monochromatic triangle in a connected, undirected, edge-colored graph with n
vertices can be found (if one exists) in O(n(3+ω)/2) ≤ o(n2.688) time. We obtain:

Theorem 2. Let G be a connected, undirected, edge-colored graph with n ver-
tices and let C be a subset of the set of edge colors. The number of monochromatic
triangles of G with colors in C can be computed in O(n(3+ω)/2) ≤ o(n2.688) time.

Proof. For each color i ∈ C, let Ei be the set of edges in G colored by i. Follow-
ing [19], we say that i is heavily used if |Ei| ≥ n(ω+1)/2. For each heavily used
color, we count the number of monochromatic triangles by directly applying the
triangle counting method from [1] to the subgraph induced by edges colored
with i in O(nω) time. This takes O(n2/n(ω+1)/2) ·O(nω) = O(n2−(ω+1)/2+ω) =
O(n(3+ω)/2) time in total.

To count the remaining monochromatic triangles, for each non-heavily used
color i ∈ C, we apply the method of Theorem 1 above to the subgraph induced by
the edges in Ei. This takes O(|Ei|2ω/(ω+1)) time. As in the proof of Theorem 1.8
in [19], we observe that the total time taken by the non-heavily used colors i ∈ C
is maximized if |Ei| = Θ(n(ω+1)/2) holds for each of them, and thus there are

Θ(n2−(ω+1)/2) of them. Since O(n2−(ω+1)/2) ·O((n(ω+1)/2)
2ω

ω+1 ) = O(n(3−ω)/2) ·
O(nω) = O(n(3+ω)/2), this shows that the total time taken by counting the
remaining monochromatic triangles is O(n(3+ω)/2), too. ��
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Finally, we consider a kind of relaxation of the concept of a monochromatic
triangle to an “almost-monochromatic triangle” in an undirected, edge-colored
graph G. Let R be a binary relation on the edge colors. A triangle in G with two
edges of the same color i and the third one of color k such that iRk holds is called
an R-chromatic triangle (e.g., if R stands for < then k is simply required to be
larger than i.). We need to extend Theorem 2 to count R-chromatic triangles.
We begin with the following technical generalization of Theorem 1:

Lemma 4. Suppose that an undirected graph G with colored edges is prepro-
cessed so that for any color edge i, the subgraph induced by the edges of color i
can be extracted in O(mi) time, where mi is the number of edges with color i in
G. Let R be a binary relation on the colors of G computable in constant time.
The number of R-chromatic triangles with at least two edges of color i in G can

be computed in O(m
2ω

ω+1

i ) time.

Proof. First, extract the subgraph Gi induced by the edges of G with color i
in O(mi) time. Then, run the method of Theorem 1 on Gi with the following
modifications which do not affect the asymptotic time complexity:

1. Once the square Ci of the adjacency matrix of the subgraph of Gi consisting
of all vertices of degree at least t is computed then for each entry Ci[k, l] we
check if (k, l) is an edge of G whose color j is in the relation R with the color
i, i.e., R(i, j) holds. Only in this case we increase the count of triangles by
the arithmetic value of C[k, l] (in case (k, l) is an edge whose color is also i
and R(i, i) holds, we increase the count of triangles by C[k, l]/3 only).

2. When we scan the edges e of Gi with at least one vertex v of degree smaller
than t, then for each edge e′ of G incident to e at v, we check if these two
edges induce an R-chromatic triangle that was not counted before. If so, we
increase the count by one. ��

We now generalize Theorem 2 to R-chromatic triangles by applying Lemma 4:

Theorem 3. Let G be a connected, undirected graph with n vertices and col-
ored edges, and let R be a binary relation on the colors of G computable in
constant time. The number of R-chromatic triangles in G can be computed in
O(n(3+ω)/2) ≤ o(n2.688) time.

Proof. First construct the graphs Gi induced by the sets Ei of edges with color i.
This takes O(n2) time in total. Next, proceed as in the proof of Theorem 2. For
each heavily used color i, i.e., satisfying |Ei| ≥ n(ω+1)/2, count the number of R-
chromatic triangles with at least two edges with color i by squaring the adjacency
matrix of Gi and testing, for each entry Ci[k, l] of the resulting matrix, if (k, l) is
an edge whose color is in the relation R with i (analogously as in (1) in the proof
of Lemma 4). This takes O(n2−(ω+1)/2+ω) = O(n(3+ω)/2) time in total. To count
the remaining R-chromatic triangles, each with at least two edges colored with a
non-heavily used color i, use Lemma 4, which takes time O(|Ei|2ω/(ω+1)) for any
given color i. By an argument analogous to one in the proof of Theorem 2, the
total time to count the remaining monochromatic triangles is O(n(3+ω)/2). ��
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4 Computing the Rooted Triplet Distance between
Galled Trees

In this section, we apply the triangle counting techniques from Section 3 to obtain
a subcubic-time algorithm for computing the rooted triplet distance between two
galled trees. We first explain how to compute the number of rooted fan triplets
consistent with both networks in Section 4.1 and then the number of rooted
proper triplets consistent with both networks in Section 4.2. Combining these
two results gives us our main result (Theorem 4) in Section 4.3.

4.1 Counting the Number of Shared Rooted Fan Triplets

To count the number of rooted fan triplets consistent with two given galled trees,
we use Theorems 2 and 3 as detailed below. As a warm-up, we first present a
simple reduction from the problem of counting rooted fan triplets shared by two
trees to the problem of counting monochromatic triangles in a graph.

Lemma 5. Let U1, U2 be two trees on the same set L of n leaves. The num-
ber of rooted fan triplets consistent with both U1 and U2 can be computed in
O(n(3+ω)/2) ≤ o(n2.688) time.

Proof. Form an auxiliary undirected complete graph G = (L,E) in which every
edge is assigned a color of the form (v1, v2), where v1 is a vertex of U1 and v2 is
a vertex of U2, as follows: For each edge {u, v} ∈ E, let ji for i = 1, 2 be the
unique junction common ancestor of u and v in Ui, and color the edge {u, v}
in G with the color (j1, j2). By Lemma 1, G can be constructed in O(n2) time.

For any {a, b, c} ⊆ L, the rooted fan triplet a|b|c is consistent with U1 if
and only if the junction common ancestors in U1 of a and b, of a and c, and
of b and c are identical. The same holds for U2. Therefore, a|b|c is consistent
with both U1 and U2 if and only if all three edges {a, b}, {a, c}, {b, c} have the
same color in G. It follows that the number of rooted fan triplets which are
common to both trees equals the number of monochromatic triangles in G. By
Theorem 2, we can compute the number of rooted fan triplets that are consistent
with both U1 and U2 in O(n(3+ω)/2) time. ��
Next, we adapt the reduction in the proof of Lemma 5 to the more complicated
galled tree case:

Lemma 6. Let U1, U2 be two galled trees on the same set L of n leaves. The
number of rooted fan triplets consistent with both U1 and U2 can be computed in
O(n(3+ω)/2) ≤ o(n2.688) time.

Proof. By Lemma 3, we can distinguish two classes of rooted fan triplets in a
galled tree U : those where for each of its three pairs of leaves, the lca is equal to
the shared junction common ancestor as in the example in Fig. 2 (ii) (henceforth
referred to as “class 1”), and those where the equality holds for two pairs only,
as in Fig. 2 (iii) (henceforth referred to as “class 2”). For the sake of the proof,
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we need to consider a slightly different two-partition of rooted fan triplets in U.
We shall say that a rooted fan triplet in U is of type 1 iff it belongs to the class 1
and the unique lca of each pair of leaves in the triplet is also their lca in each of
the trees UL, UR. All remaining rooted fan triplets in U are said to be of type 2.

For i = 1, 2, consider the trees (Ui)L, (Ui)R defined as in the proof of
Lemma 1. By Lemma 5, we can compute the number of shared rooted fan triplets
between (U1)A and (U2)B for any A,B ∈ {L,R} in O(n(3+ω)/2) time. Note that
each rooted fan triplet of type 1 in U1 occurs in both (U1)L and (U1)R, while
each rooted fan triplet of type 2 in U1 occurs in only one of the trees. The reason
for the distinction is that a rooted fan triplet of type 2 contains exactly one pair
of leaves whose lca in U1 relies on one of the two edges directed to a reticulation
vertex of a cycle. Hence, the lca of the pair occurs in exactly one of the trees
(U1)L and (U1)R, and consequently the rooted fan triplet also occurs in exactly
one of (not necessarily the same as above) (U1)L and (U1)R. Analogous obser-
vations hold for U2. Hence, if we sum the number of shared rooted fan triplets
between (U1)A and (U2)B over all A,B ∈ {L,R}, then each rooted fan triplet
that is of type 1 both in U1 and U2 is counted four times, while those that are of
different types in U1 and U2 are counted twice, and finally those of type 2 both
in U1 and U2 are counted only once. Hence, if for p, q ∈ {1, 2}, Tp,q denotes the
number of rooted shared fan triplets that are of type p in U1 and of type q in U2

then the computed sum equals 4T1,1 + 2T1,2 + 2T2,1 + T2,2.
In fact, we can also determine T1,1 in O(n(3+ω)/2) time in the same way as

we have done for a pair of trees in Lemma 5. While constructing the auxiliary
complete graph, we require ji to be both the lca of u and v in (Ui)L and (Ui)R),
as well as a junction common ancestor of u and v in U. Then, we use Theorem 2
to determine the number of monochromatic triangles analogously.

It remains to determine the number of shared rooted fan triplets for U1 and
U2 that are of different types in U1 and U2 in order to cancel repetitions in the
aforementioned sum, i.e., T1,2 + T2,1. To compute, say T2,1, we again form the
auxiliary complete graph on the set L of leaves and color each edge {u, v} as
described next. Recall that lca’s are unique in a galled tree. For i = 1, 2, let ji
be the unique lca of of u and v in Ui. If, for i = 1, 2, ji is also a junction common
ancestor of u and v in Ui and it is the lca of u and v in both trees (Ui)L and
(Ui)R, then {u, v} is colored with (j1, j2) as before. Next, if for i = 1, 2, ji is also
a junction common ancestor of u and v in Ui, and j1 is the lca of u and v in
exactly one of the trees (U1)L and (U1)R while j2 is the lca of u and v in both
trees (U2)L and (U2)R then {u, v} is colored with ((j1)

∗, j2). Otherwise, {u, v}
is colored with the null color. To use Theorem 3, we define the relation R by:

• (j1, j2)R(l1, l2) holds iff l1 = (k)∗, where k is a proper descendant of j1 or
j1 = k, and j2 = l2.

The trees (Ui)A for i = 1, 2, A ∈ {L,R}, can be preprocessed to support O(1)-
time lca queries in O(n) time [9, 17]. By using (U1)L, (U1)R, we can spend O(n2)
time to build a data structure supporting O(1)-time proper descendant queries.

Now, we apply Theorem 3 to the auxiliary graph to obtain the number T2,1

of rooted shared triplets of type 2 in U1 and type 1 in U2 in O(n(3+ω)/2) time.
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The number T1,2 of rooted shared triplets of type 1 in U1 and type 2 in U2 is
obtained in O(n(3+ω)/2) time in the same way. ��

4.2 Counting the Number of Shared Rooted Proper Triplets

Lemma 7. Let U1, U2 be two galled trees on the same set L of n leaves. The
number of rooted proper triplets consistent with both U1 and U2 can be computed
in O(nω) ≤ o(n2.376) time.

Proof. First, for i = 1, 2, for each pair of leaves in Ui, compute their junction
common ancestors (if they exist) along with the information if the respective
junction common ancestor is located on a cycle of Ui, if it is the root of the
cycle, and if it uses the reticulation vertex of the cycle. By a straightforward
modification of the proof of Lemma 1, this takes O(n2) time.

For each vertex vi of Ui form two copies v0i , v1i . Next, for the set of pairs of
distinct leaves in L, form the classes C

v
b1
1 ,v

b2
2
, where {b1, b2} ⊂ {0, 1} and vi is

a vertex of Ui for i = 1, 2, such that (a, b) ∈ C
v
b1
1 ,v

b2
2

if and only if the following

three conditions hold for i = 1, 2: (1) vi is a junction common ancestor of a and b
in Ui; (2) vi is located on a cycle of Ui and uses the reticulation vertex of the
cycle iff bi = 1; and (3) if vi is the root of a cycle in Ui then there is no other
junction common ancestor of a and b. By Lemma 1, any pair of leaves a, b in a
galled tree can have at most two junction common ancestors. Moreover, if there
are two then they are located on the same cycle and one of them will be the root
of the cycle. Hence, from the point of view of a rooted triplet ab|c, it is sufficient
to consider the junction common ancestor of a, b that is a descendant of the root
vertex of the cycle in this case, since any path from an ancestor of the root of the
cycle can be extended to reach the descendant junction common ancestor. This
explains the third condition, which implies that the classes C

v
b1
1 ,v

b2
2

are pairwise

disjoint. These classes can be formed in O(n2) time by integer sorting.
Furthermore, for i = 1, 2, form matrices Mi such that the rows of Mi cor-

respond to the copies of vertices in Ui, the columns of Mi correspond to the
leaves in L, and Mi[v

bi
i , c] = 1 if and only if there is a junction common ancestor

of vi and c in Ui which in case bi = 1 does not use the reticulation vertex of the
cycle on which vi lies in Ui. Importantly, if Mi[v

bi
i , c] = 1 then c cannot occur in

any pair in a class of the form C
v
b1
1 ,v

b2
2
. Simply, in this case, an ancestor of c or

c itself would be a reticulation vertex used by both vi and any junction common
ancestor of vi and c. This in particular would imply bi = 1. Hence, Mi[v

bi
i , c]

would be set to 0, and we obtain a contradiction.
Next, compute Q = M1 × M t

2 in O(nω) time. By the definitions of M1 and
M2, the value of Q[vb11 , vb22 ] is exactly the number of leaves c in L that have
a junction common ancestor with vi in Ui not using the reticulation vertex
of the cycle on which vi lies if bi = 1, for i = 1, 2. Note that for {b1, b2} �=
{b′1, b′2}, Cv

b1
1 ,v

b2
2

∩ C
v
b′
1

1 ,v
b′
2

2

= ∅ and the aforementioned leaves c cannot occur

in any pair in C
v
b1
1 ,v

b2
2
. By Lemma 2, the sum

∑
{b1,b2}⊂{0,1} |Cv

b1
1 ,v

b2
2
|Q[vb11 , vb22 ]
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equals the number of proper rooted triplets ab|c consistent with both U1 and
U2 that use vi as a junction common ancestor of a and b in Ui, for i = 1, 2,
with the exception of the case when v1 or v2 is the root vertex of a cycle in
its galled tree and there is another junction common ancestor of a and b which
is a descendant of the root vertex in the galled tree. Due to the latter, for
different pairs of v1, v2, the sum counts different sets of the proper rooted triplets
ab|c consistent with both U1 and U2. Thus, it is sufficient to compute the sum∑

v1∈U1

∑
v2∈U2

∑
{b1,b2}⊂{0,1} |Cv

b1
1 ,v

b2
2
|Q[vb11 , vb22 ] to obtain the total number of

rooted triplets consistent with both U1 and U2. This takes O(n2) time. ��

4.3 Computing the Rooted Triplet Distance

By combining the results established in the previous two subsections, we obtain:

Theorem 4. Let U1, U2 be two galled trees on the same set L of n leaves. The
rooted triplet distance drt(U1, U2) can be computed in O(n(3+ω)/2) ≤ o(n2.688)
time.

Proof. For i = 1, 2, let Fi denote the set of rooted fan triplets consistent with Ui,
and let Pi denote the set of rooted proper triplets consistent with Ui. We have
drt(U1, U2) =

∑2
i=1(|Fi|+ |Pi|)− 2|F1 ∩ F2| − 2|P1 ∩ P2|. Compute |Fi ∩ Fi| =

|Fi| and |F1 ∩ F2| in O(n(3+ω)/2) ≤ o(n2.688) time by Lemma 6, and compute
|Pi ∩ Pi| = |Pi| and |P1 ∩ P2| in O(nω) ≤ o(n2.376) time by Lemma 7. ��

5 Concluding Remarks

We have demonstrated that the rooted triplet distance can be computed in
subcubic time for a well-known class of phylogenetic networks called galled
trees [8, 10]. More precisely, we have presented a new o(n2.688)-time algorithm
for computing the rooted triplet distance between two input galled trees with
n leaves each [Theorem 4]. We have also derived three results on counting trian-
gles in a graph [Theorems 1–3] that may have other applications. The first two
triangle counting results are generalizations of their known (weaker) detection
counterparts from [1] and [19], respectively.

Recently, Nielsen et al. [15] showed how to compute the unrooted quartet
distance between two unrooted phylogenetic trees with n leaves in o(n2.688) time.
Interestingly, they also rely on matrix multiplication. Their method does not
count triangles in an auxiliary graph as we have done here, but uses matrix
multiplication to count so-called shared and different butterflies between the
two input trees directly. In some sense, their problem seems inherently “easier”
than ours as it does not involve cycles. A lot of the conceptual complexity in our
paper stems from the non-uniqueness of junction common ancestors in galled
trees; compare the proofs of Lemmas 5 and 6, for example.

It is an open question whether the problem of computing the rooted triplet
distance drt(U1, U2) between two galled trees U1, U2 admits a quadratic-time
algorithm or not. Another important question is if our method can be enhanced
to include even larger classes of phylogenetic networks than galled trees.
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