
Computing the Rooted Triplet Distance
Between Phylogenetic Networks

Jesper Jansson1, Konstantinos Mampentzidis2, Ramesh Rajaby3,
and Wing-Kin Sung3(B)

1 The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
jesper.jansson@polyu.edu.hk

2 Department of Computer Science, Aarhus University, Aarhus, Denmark
kmampent@cs.au.dk

3 School of Computing, National University of Singapore, Singapore, Singapore
e0011356@u.nus.edu, ksung@comp.nus.edu.sg

Abstract. The rooted triplet distance measures the structural dissim-
ilarity of two phylogenetic trees or networks by counting the number
of rooted trees with exactly three leaf labels that occur as embedded
subtrees in one, but not both of them. Suppose that N1 = (V1, E1)
and N2 = (V2, E2) are rooted phylogenetic networks over a common
leaf label set of size λ, that Ni has level ki and maximum in-degree di

for i ∈ {1, 2}, and that the networks’ out-degrees are unbounded.
Denote n = max(|V1|, |V2|), m = max(|E1|, |E2|), k = max(k1, k2), and
d = max(d1, d2). Previous work has shown how to compute the rooted
triplet distance between N1 and N2 in O(λ log λ) time in the special
case k ≤ 1. For k > 1, no efficient algorithms are known; a trivial app-
roach leads to a running time of Ω(n7λ3) and the only existing non-trivial
algorithm imposes restrictions on the networks’ in- and out-degrees (in
particular, it does not work when non-binary nodes are allowed). In this
paper, we develop two new algorithms that have no such restrictions.
Their running times are O(n2m + λ3) and O(m + k3d3λ + λ3), respec-
tively. We also provide implementations of our algorithms and evaluate
their performance in practice. This is the first publicly available software
for computing the rooted triplet distance between unrestricted networks
of arbitrary levels.

1 Introduction

Background. Trees are commonly used in biology to represent evolutionary
relationships, with the leaves corresponding to species that exist today and
internal nodes to ancestor species that existed in the past. When studying the
evolution of a fixed set of species, different available data and tree construction
methods [7] can lead to trees that look structurally different. Quantifying this
difference is essential to make better evolutionary inferences, which has led to the
proposal of several tree distance measures in the literature, e.g., the Robinson-
Foulds distance [17], the rooted triplet distance [5] for rooted trees, and the
unrooted quartet distance [6] for unrooted trees.
c© Springer Nature Switzerland AG 2019
C. J. Colbourn et al. (Eds.): IWOCA 2019, LNCS 11638, pp. 290–303, 2019.
https://doi.org/10.1007/978-3-030-25005-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25005-8_24&domain=pdf
https://doi.org/10.1007/978-3-030-25005-8_24

Computing the Rooted Triplet Distance Between Phylogenetic Networks 291

a6

a5 a3

a1

a4

a2

N1

a5

a1 a3

a6

a2

a4

N2

Fig. 1. N1 is a level-2 network and N2 is a level-3 network with L(N1) = L(N2) =
{a1, a2, . . . , a6}. In this example, D(N1, N2) = 33. Some shared triplets are: a2|a4|a6,
a2a4|a6, a4a6|a2. Some triplets consistent with only one network are: a1|a3|a6, a2a6|a4.

A rooted phylogenetic network is an extension of a rooted phylogenetic tree
(i.e., a rooted, unordered, distinctly leaf-labeled tree with no degree-1 nodes)
that allows internal nodes to have more than just one parent. Such networks are
designed to capture more complex evolutionary relationships when reticulation
events such as horizontal gene transfer and hybridization are involved. Similarly
to phylogenetic trees, it becomes useful to have distance measures for comparing
phylogenetic networks. In this paper we study a natural extension, by Gambette
and Huber [10], of the rooted triplet distance from the case of rooted phylogenetic
trees to the case of rooted level-k phylogenetic networks.

Problem Definitions. A rooted phylogenetic network N = (V,E) is a rooted,
directed acyclic graph with one root (a node with in-degree 0), distinctly labeled
leaves, and no nodes with both in-degree 1 and out-degree 1. Below, when refer-
ring to a “tree” we imply a “rooted phylogenetic tree” and when referring to
a “network” we imply a “rooted phylogenetic network”. For a node u in N ,
let in(u) and out(u) be the in-degree and out-degree of u. The network N can
have three types of nodes. A node u is an internal node if out(u) ≥ 1, a leaf node
if in(u) = 1 and out(u) = 0, and a reticulation node if out(u) ≥ 1 and in(u) ≥ 2.
By definition, N cannot have a node u with in(u) > 1 and out(u) = 0. Let r(N)
be the root of N and L(N) the set of leaves in N . A directed edge from a node u to
a node v in N is denoted by u → v. A path from u to v in N is denoted by u � v.
Let the height h(u) be the length (number of edges) of the longest path from u
to a leaf in N . By definition, if v is a parent of u in N , we have h(v) > h(u).

Let U(N) be the undirected graph created by replacing every directed edge
in N with an undirected edge. An undirected graph H is called biconnected if
it has no node whose removal makes H disconnected. We call H ′ a biconnected
component of U(N) if H ′ is a maximal subgraph of U(N) that is biconnected.
The biconnected components of U(N) are edge-disjoint but not necessarily node-
disjoint. We say that N is a level-k network, equivalently N has level k, if every
biconnected component of U(N) contains at most k reticulation nodes. The level
of a network was introduced by Choy et al. [4] as a parameter to measure the
treelikeness of a network, with the special case of a level-0 network corresponding

292 J. Jansson et al.

to a tree and a level-1 network a galled tree [11]. Figure 1 shows a level-2 and a
level-3 network.

A rooted triplet τ is a tree with three leaves. If it is binary we say that τ is
a rooted resolved triplet, and if it is non-binary we say that τ is a rooted fan triplet.
Following [13] and similarly to the case of trees in [1], for a network N we say that
the rooted fan triplet x|y|z is consistent with N , if there exists an internal node u
in N and three directed paths of non-zero length that are node-disjoint, except
for u, one going from u to x, one from u to y and one from u to z. Similarly, we
say that the rooted resolved triplet xy|z is consistent with N , if N contains two
internal nodes u and v such that u �= v, and there are four directed paths of non-
zero length that are node-disjoint, except for u and v, one going from u to v, one
from v to x, one from v to y and one from u to z. See Fig. 1 for an example. From
here on, by “disjoint paths” we imply “node-disjoint paths of non-zero length”.
Moreover, when referring to a “triplet” we imply a “rooted triplet”.

Given two networks N1 = (V1, E1) and N2 = (V2, E2) built on the same leaf
label set Λ of size λ, the rooted triplet distance D(N1, N2), or triplet distance for
short, is the number of triplets over Λ that are consistent with exactly one of the
two input networks [10] (see also [12, Sect. 3.2] for a discussion). Let S (N1, N2) be
the total number of triplets that are consistent with both N1 and N2, commonly
referred to as shared triplets. We then have:

D(N1, N2) = S (N1, N1) + S (N2, N2) − 2S (N1, N2) (1)

Note that a shared triplet contributes a +1 to S(N1, N1), S(N2, N2), and
S(N1, N2), e.g., the triplet a2|a4|a6 in Fig. 1. On the other hand, a triplet
from either network that is not shared contributes a +1 to either S(N1, N1)
or S(N2, N2), and a 0 to S(N1, N2), e.g., a1|a3|a6 from Fig. 1 contributes a +1 to
S(N1, N1) and a 0 to S(N2, N2) and S(N1, N2). Let Sr(N1, N2) and Sf (N1, N2)
be the total number of resolved and fan triplets respectively that are consistent
with both N1 and N2. We then have that S (N1, N2) = Sr(N1, N2)+Sf (N1, N2).

We define the following notation that we use from here on. A network Ni is
built on a leaf label set of size λ and is defined by the node set Vi and the edge
set Ei. Moreover, Ni has level ki and the maximum in-degree of every node in Ni

is di. Two given networks N1 and N2 are built on the same leaf label set and
n = max(|V1|, |V2|), m = max(|E1|, |E2|), k = max(k1, k2) and d = max(d1, d2).

Related Work. Table 1 lists the running times of different algorithms for com-
puting D(N1, N2). When k = 0, both N1 and N2 are trees. This case has been
extensively studied in the literature, with the fastest algorithm in theory and
practice by Brodal et al. [1] running in O(λ log λ) time. For k = 1, an O(λ2.687)-
time algorithm based on counting 3-cycles in an auxiliary graph was given in [12],
and a faster, O(λ log λ)-time algorithm that transforms the input to a constant
number of instances with k = 0 was given in [13]. All algorithms mentioned
above allow nodes of arbitrary degree in the input networks. Moreover, software
packages implementing the O(λ log λ)-time algorithms are available.

For k > 1, Byrka et al. [2] considered the special case of networks whose
roots have out-degree 2 and whose other non-leaf nodes have in-degree 2 and

Computing the Rooted Triplet Distance Between Phylogenetic Networks 293

Table 1. Previous and new results for computing D(N1, N2), where N1 and N2 are
two level-k networks built on the same leaf label set of size λ.

Year Reference k Degrees Time complexity

1980 Fortune et al. [8] Arbitrary Arbitrary Ω(n7λ3)

2010 Byrka et al. [2] Arbitrary Binary O(n3 + λ3)

2010 Byrka et al. [2] Arbitrary Binary O(n + k2n + λ3)

2017 Brodal et al. [1] 0 Arbitrary O(λ log λ)

2017 Jansson et al. [13] 1 Arbitrary O(λ log λ)

2019 New Arbitrary Arbitrary O(n2m + λ3)

2019 New Arbitrary Arbitrary O(m + k3d3λ + λ3)

out-degree 1 or in-degree 1 and out-degree 2. Given such a network N = (V,E),
they defined a data structure D that can be constructed in O(|V |3) time by
dynamic programming and then used to determine in O(1) time if any resolved
triplet xy|z is consistent with N . This result was then strengthened by obtaining
a new data structure D′ that requires O(|V |+k2|V |) construction time, where k
is the level of N . If N1 and N2 have arbitrary levels and follow the degree
constraints of N , D can be used to compute D(N1, N2) in O(n3 + λ3) time
and D′ can be used to compute D(N1, N2) in O(n + k2n + λ3) time.

Contribution. The data structures D and D′ of Byrka et al. [2] can only sup-
port consistency queries for resolved triplets. However, a network with nodes of
arbitrary degree may contain fan triplets. Moreover, D′ exploits the fact that
given the degree constraints in N , all biconnected components of U(N) are node-
disjoint. However, even a small change in these constraints, e.g., if we allow nodes
with in-degree 2 to have an out-degree 2 instead of 1, could produce a network
with biconnected components that are not node-disjoint, thus making the appli-
cation of D′ impossible.

Without any degree constraints in N1 and N2 and when k1 and k2 are arbi-
trary, an algorithm for computing D(N1, N2) that iterates over all 4

(
λ
3

)
triplets

and for each triplet applies the pattern matching algorithm in [8] to determine its
consistency with N1 and N2, has a Ω(n7λ3) running time. In this paper we give
two algorithms that improve significantly upon this approach. The running time
of the first algorithm is O(n2m+λ3) and the second algorithm O(m+k3d3λ+λ3).
For networks N1 and N2 that satisfy the degree constraint in Byrka et al. [2], we
prove that our algorithms can compute D(N1, N2) using the same time complex-
ity as that of Byrka et al. [2]. To determine the efficiency of the two algorithms
in practice, we provide an implementation as well as extensive experiments on
both simulated and real datasets. We note that this is the first publicly avail-
able software that can compute the triplet distance between two unrestricted
networks of arbitrary levels.

Organization of the Article. In Sect. 2 we present the first algorithm and in
Sect. 3 the second algorithm. Section 4 presents an implementation of the two

294 J. Jansson et al.

algorithms as well as experiments illustrating their practical performance. Due
to space constraints, the proofs and most of the experimental results have been
deferred to the journal version.

2 A First Approach

In this section we describe an algorithm that for two given networks N1 and N2

can compute D(N1, N2) in O(n2m + λ3) time.

Overview. The algorithm consists of a preprocessing step and a triplet distance
computation step. In the preprocessing step, we extend a technique introduced by
Shiloach and Perl [18] in 1978 to construct suitably defined auxiliary graphs that
compactly encode disjoint paths within N1 and N2. Two graphs, the fan graph
and resolved graph, are created that enable us to check the consistency of any
fan triplet and any resolved triplet, respectively, with N1 and N2 in O(1) time.
In the triplet distance computation step, we compute D(N1, N2) by iterating
over all possible 4

(
λ
3

)
triplets and using the fan and resolved graphs to check the

consistency of each triplet with N1 and N2 efficiently.

2.1 Preprocessing

Fan Graph. For any network Ni, let the fan graph Nf
i = (V f

i , Ef
i) be a graph

such that V f
i = {s} ∪ {(u, v, w) | u, v, w ∈ Vi, u �= v, u �= w, v �= w} and Ef

i

includes the following edges:

1. {(u1, v1, w1) → (u2, v1, w1) | u1 → u2 ∈ Ei ∧ h(u1) ≥ max(h(v1), h(w1))}
2. {(u1, v1, w1) → (u1, v2, w1) | v1 → v2 ∈ Ei ∧ h(v1) ≥ max(h(u1), h(w1))}
3. {(u1, v1, w1) → (u1, v1, w2) | w1 → w2 ∈ Ei ∧ h(w1) ≥ max(h(u1), h(v1))}
4. {s → (u, v, w) | u → v ∈ Ei and u → w ∈ Ei}
Note that Nf

i contains O(|Vi|3) nodes, O(|Vi|2|Ei|) edges and also has the prop-
erty described in the following lemma:

Lemma 1. Consider a network Ni and its fan graph Nf
i = (V f

i , Ef
i). For any

three different leaves x, y and z in Ni, node s can reach node (x, y, z) in Nf
i if

and only if x|y|z is a fan triplet in Ni.

Corollary 1. Let Ni be a given network and r′ a dummy leaf attached to r(Ni).
For any two different leaves x and y in Ni that are not r′, there are two paths
from r(Ni) to x and y that are disjoint, except for r(Ni), if and only if s can
reach (r′, x, y) in Nf

i .

Resolved Graph. For any network Ni, let the resolved graph Nr
i = (V r

i , Er
i)

be a graph such that V r
i = {s} ∪ {(u, v) | u, v ∈ Vi, u �= v} ∪ {(u, v, w) |

u, v, w ∈ Vi, u �= v, u �= w, v �= w} and Er
i includes the following edges:

1. {s → (u, v) | u → v ∈ Ei}

Computing the Rooted Triplet Distance Between Phylogenetic Networks 295

2. {(u1, v1) → (u2, v1) | u1 → u2 ∈ Ei, h(u1) ≥ h(v1)}
3. {(u1, v1) → (u1, v2) | v1 → v2 ∈ Ei, h(v1) ≥ h(u1)}
4. {(u, v) → (u, v, w) | v → w ∈ Ei, h(v) ≥ h(u)}
5. {(u1, v1, w1) → (u2, v1, w1) | u1 → u2 ∈ Ei ∧ h(u1) ≥ max(h(v1), h(w1))}
6. {(u1, v1, w1) → (u1, v2, w1) | v1 → v2 ∈ Ei ∧ h(v1) ≥ max(h(u1), h(w1))}
7. {(u1, v1, w1) → (u1, v1, w2) | w1 → w2 ∈ Ei ∧ h(w1) ≥ max(h(u1), h(v1))}
Note that Nr

i contains O(|Vi|3) nodes, O(|Vi|2|Ei|) edges and also has the prop-
erty described in the following lemma:

Lemma 2. Consider a network Ni and its resolved graph Nr
i = (V r

i , Er
i). For

any three different leaves x, y and z in Ni, node s can reach node (x, y, z) in Nr
i

if and only if x|yz is a resolved triplet in Ni.

Corollary 2. Let Ni be a given network and r′ a dummy leaf attached to r(Ni).
For any two different leaves x and y in Ni that are not r′, there are two paths
from some internal node z �= r(Ni) in Ni, to x and y that are disjoint, except
for z, if and only if s can reach (r′, x, y) in Nr

i .

Given Nf
i and Nr

i , we define the λ × λ × λ fan table Af
i and the λ × λ × λ

resolved table Ar
i as follows. For three different leaves x, y and z, Af

i [x][y][z] = 1
if the fan triplet x|y|z is consistent with Ni and Af

i [x][y][z] = 0 otherwise.
Similarly, Ar

i [x][y][z] = 1 if the resolved triplet x|yz is consistent with Ni

and Ar
i [x][y][z] = 0 otherwise. Due to Lemmas 1 and 2, both Af

i and Ar
i

can be computed by a depth first traversal (starting from s) of Nf
i and Nr

i .
More precisely, Af

i [x][y][z] = 1 if s can reach (x, y, z) in Nf
i and 0 otherwise.

Finally, Ar
i [x][y][z] = 1 if s can reach (x, y, z) in Nr

i and 0 otherwise.

2.2 Triplet Distance Computation

Algorithm 1 summarizes all the procedures needed to compute the triplet dis-
tance between two given networks N1 and N2. For every i ∈ {1, 2} the tables Af

i

and Ar
i are built in lines 2–7. These tables are then used in lines 11–12 and 16–19

to determine in O(1) time if a triplet is consistent with N1 or N2. Procedures Sf ()
and Sr() count the number of shared fan and resolved triplets. Both procedures
enumerate over all possible triplets and use the tables Af

i and Ar
i to determine

their consistency with either network. The correctness is ensured by Lemmas 1
and 2. Procedure S () reports the number of shared triplets, which is the sum of
the number of shared fan triplets and shared resolved triplets. The main proce-
dure is D(). It uses Eq. (1) to determine D(N1, N2).

To analyze the running time, after the preprocessing is finished, the proce-
dures Sf () and Sr() require O(λ3) time. For the total preprocessing time, by
definition, building the data structures Nr

i and Nf
i for i ∈ {1, 2} in line 3,

requires O(|V1|2|E1| + |V2|2|E2|) time. Building the auxiliary arrays Ar
i and Af

i

in lines 5–7 is performed by a depth first traversal of Nr
i and Nf

i , thus requir-
ing O(|V1|2|E1| + |V2|2|E2) time as well. Hence, the total time of the algorithm

296 J. Jansson et al.

Algorithm 1. Computing D(N1, N2) using the data structures from Section 2.
1: procedure preprocessing(N1, N2) � Building the data structures
2: for i ∈ {1, 2} do
3: build Nf

i = (V f
i , Ef

i) and Nr
i = (V r

i , Er
i)

4: let Af
i , Ar

i be λ × λ × λ arrays initialized with 0 entries
5: for three different leaves x, y and z do
6: Af

i [x][y][z] = 1 if s can reach (x, y, z) in Nf
i

7: Ar
i [x][y][z] = 1 if s can reach (x, y, z) in Nr

i

8: return (Ar
1, A

f
1 , Ar

2, A
f
2)

9: procedure Sf (Af
1 , Af

2) � Finding the shared fan triplets
10: sharedFan = 0
11: for three different leaves x, y and z do
12: if Af

1 [x][y][z] = Af
2 [x][y][z] = 1 then sharedFan = sharedFan + 1

13: return sharedFan

14: procedure Sr(A
r
1, A

r
2) � Finding the shared resolved triplets

15: sharedResolved = 0
16: for three different leaves x, y and z do
17: if Ar

1[x][y][z] = Ar
2[x][y][z] = 1 then sharedResolved = sharedResolved + 1

18: if Ar
1[x][z][y] = Ar

2[x][z][y] = 1 then sharedResolved = sharedResolved + 1

19: if Ar
1[y][z][x] = Ar

2[y][z][x] = 1 then sharedResolved = sharedResolved + 1

20: return sharedResolved

21: procedure S(Ar
1, Af

1 , Ar
2, Af

2) � Finding the shared triplets
22: return Sf (Af

1 , Af
2) + Sr(A

r
1, A

r
2)

23: procedure D(N1 = (V1, E1), N2 = (V2, E2)) � Computing the triplet distance
24: (Ar

1, A
f
1 , Ar

2, A
f
2) = preprocessing(N1, N2)

25: return S(Ar
1, A

f
1 , Ar

1, A
f
1) + S(Ar

2, A
f
2 , Ar

2, A
f
2) - 2S(Ar

1, A
f
1 , Ar

2, A
f
2)

becomes O(|V1|2|E1|+ |V2|2|E2|+λ3). By the definition of n and m from Sect. 1,
the running time becomes O(n2m+λ3). Hence, we obtain the following theorem:

Theorem 1. There exists an algorithm that computes the triplet distance
between two networks N1 and N2 in O(n2m + λ3) time.

Let N1 and N2 follow the degree constraints of Byrka et al. [2]. We then
have n = Θ(m) and the bound becomes O(n3 + λ3), thus matching the bound
achieved by the first data structure of Byrka et al. [2].

3 A Second Approach

In this section we extend the algorithm from Sect. 2 in order to exploit the infor-
mation about the level of the two input networks. More specifically, we describe

Computing the Rooted Triplet Distance Between Phylogenetic Networks 297

an algorithm that for two given networks N1 and N2 can compute D(N1, N2)
in O(m + k3d3λ + λ3) time.

Overview. In the first approach, for a given network Ni we built the fan and
resolved graph presented in Lemmas 1 and 2. In this second approach, for every
biconnected component of U(Ni) we define a network of approximately the same
size as the biconnected component, which we call contracted block network. For
this contracted block network we then build the corresponding fan and resolved
graph. By carefully contracting every biconnected component of U(Ni) into one
node we obtain a tree, which we call block tree. We finally show how to com-
bine the block tree and all the fan and resolved graphs of the contracted block
networks of Ni to count triplets efficiently.

3.1 Preprocessing

Let Ni be a given network. From here on, we call a biconnected component
of U(Ni) a block. For simplicity, when we refer to a block of Ni, we imply a block
of U(Ni). We say that for a block B of Ni, node r(B) is the root of B, if r(B)
has the largest height in Ni among all nodes in B. Note that because Ni has one
root that can reach every node of Ni and B corresponds to a maximal subgraph
of U(Ni) that is biconnected, B can only contain one root. If B contains only
one edge u → v such that v ∈ L(Ni), then B is called a leaf block, otherwise B
is called a non-leaf block. Lemma 3 presents a property of all blocks of Ni.

Lemma 3. All blocks of a given network Ni are edge-disjoint.

Block Tree. From a high level perspective, we want to remove the cycles
in U(Ni) that are formed by the non-leaf blocks to obtain a directed tree on the
leaf label set L(Ni). Let Ti = (V ′, E′) be a directed tree, from now on referred to
as block tree, with the node set V ′ and edge set E′ defined by the following steps:

– For every block Bj in Ni create a node bj in Ti.
– Let B1, B2 be two blocks in Ni with r(B1) �= r(B2). If r(B2) is also a node

in B1 then create the edge b1 → b2 in Ti.
– Create a root node ρ in Ti. For every block Bj that has r(Ni) as a root, create

the edge ρ → bj in Ti.
– If Bj is a leaf block, rename bj in Ti by the label of the leaf in Bj .

The set of all blocks of Ni and the node set V ′ − r(Ti), i.e., the set of all
nodes of Ti except the root, are bijective. An edge b1 → b2 in Ti means that the
corresponding blocks B1 and B2 in Ni do not have the same root and the root
node r(B2) is a shared node between B1 and B2. Note that by the definition of a
block, an edge connecting two nodes can define a block of its own. The following
lemma presents some properties of Ti:

Lemma 4. Let Ti = (V ′, E′) be the block tree of a given network Ni. The block
tree Ti is a directed tree that has λ leaves, |V ′| = O(λ) and |E′| = O(λ).

298 J. Jansson et al.

Since the set of all blocks of Ni and the set V ′ − r(Ti) are bijective, we obtain:

Corollary 3. A network Ni contains O(λ) blocks.

The following lemma presents an algorithm for constructing the block tree Ti:

Lemma 5. Let Ti = (V ′, E′) be the block tree of a given network Ni. There
exists an algorithm that builds Ti in O(|Ei|) time.

Contracted Block Network. For a given network Ni, a block B in Ni and
a node u in B, define Lu

B to be the set of leaves that can be reached from u
without using edges in B. Let CB = (V ′, E′) be a network, with the node set V ′

and edge set E′ defined by the following steps:

– Let CB = Ni. All operations from now on are applied on CB .
– Remove every edge and node not in B.
– For every edge u1 → u2 in B, if in(u1) = out(u1) = in(u2) = out(u2) = 1

contract the edge as follows: let u2 → u3 be the other edge in B, then create
the edge u1 → u3, remove u2 from B and set Lu1

B = Lu1
B ∪ Lu2

B .
– For every node u1 in CB such that Lu1

B �= ∅, we add a child leaf with label s1
representing all leaves in Lu1

B . We also add another child leaf s′
1 as a copy leaf

that will help later on to count triplets.
– Include an artificial leaf r′ which is attached to the root r(CB).

Every node in CB corresponds to a node in B and every edge between two
internal nodes in CB corresponds to a compressed path in B. We call CB the con-
tracted block network of Ni, corresponding to block B. The following lemma
presents a property of CB :

Lemma 6. Let Ni be a network, B a block in Ni and CB = (V ′, E′) the con-
tracted block network of Ni that corresponds to block B. We then have that
|L(CB)| = O(kidi + 1), |V ′| = O(kidi + 1) and |E′| = O(kidi + 1).

Constructing All Contracted Block Networks Efficiently. For a given
network Ni and a block B in Ni, a leaf x in Ni is said to associate with B if
there exists a node u in B such that u �= r(B) and x ∈ Lu

B . For any leaf x
associated with some block B of Ni, let qB(x) be the node in B that has a
path to x without using edges in B, i.e., x ∈ L

qB(x)
B , pB(x) the leaf in CB

representing x and p′
B(x) the copy leaf of pB(x).

Lemma 3 implies an algorithm for constructing every block network CB of Ni

in O(|Ei|) time. As shown in the lemma below, by properly relabeling the leaves
of Ni and with an additive O(λ2) time, it is possible to build every block net-
work CB so that we can afterwards compute for every leaf l ∈ L(Ni) the func-
tions qB(l) and pB(l) in O(1) time.

Lemma 7. For a network Ni, there exists an O(|Ei| + λ2)-time algorithm that
builds all the contracted block networks CB of Ni, such that for all blocks of Ni

and leaf l ∈ L(Ni) the functions qB(l) and pB(l) are computed in O(1) time.

Computing the Rooted Triplet Distance Between Phylogenetic Networks 299

For the block network CB , we denote Cf
B the fan graph of CB and Cr

B the
resolved graph of CB . Moreover, we denote Af

B the fan table of CB and Ar
B the

resolved table of CB (see Sect. 2.1 for the definition of a fan graph & table and
resolved graph & table). The following lemma shows the time required to build
Cf

B , Cr
B , Af

B and Ar
B for every block B of a given network Ni:

Lemma 8. For a network Ni, building Cf
B, Cr

B, Af
B and Ar

B for every block B
of Ni requires O(λ(k3

i d3i + 1)) time.

3.2 Triplet Distance Computation

Let B be a block of a network Ni. We say that x|y|z is a fan triplet consistent
with B, if there exists a node u in B that has three disjoint paths in Ni to x, y
and z, except for u, one going from u to x, one from u to y and one from u
to z. We also say that x|y|z is rooted at u in B. Since u is also in Ni, this means
that x|y|z is rooted at u in Ni as well. Similarly, we say that xy|z is a resolved
triplet consistent with B, if there exist two nodes u and v in B such that u �= v,
and there are four disjoint paths in Ni, except for u and v, one going from u
to v, one from v to x, one from v to y and one from u to z. Moreover, we say
that xy|z is rooted at u and v in B or Ni (similarly to the fan triplet). Note that
if x|y|z is a fan triplet consistent with B, then it will also be consistent with Ni.
Similarly, if xy|z is a resolved triplet consistent with B, it will also be consistent
with Ni.

Given the data structures from the preprocessing step, Lemmas 9 and 10
together show how to determine the consistency of a fan and resolved triplet
with Ni in O(1) time. From a high level perspective to achieve this, for three
different leaves x, y and z, we consider all the possible cases for the location of the
lowest common ancestor of every pair (x, y), (x, z) and (y, z) in Ti. Since every
node in Ti except r(Ti) corresponds to a block in Ni, we can then use the available
data structures to determine efficiently if Ni has the necessary disjoint paths
that would imply the consistency of the fan triplet x|y|z or resolved triplet xy|z
with Ni. We start by showing in Lemma 9 how to determine the consistency of
a triplet with a block B of Ni. Afterwards, we show in Lemma 10 how to use
Lemma 9 to determine the consistency of a triplet with Ni.

Lemma 9. Let Ni be a given network, Ti its block tree and x, y and z three
different leaves. Let w be the lowest common ancestor of x, y and z in Ti, w �=
r(Ti) and B the block in Ni corresponding to w. If CB, Cf

B,Cr
B, Af

B and Ar
B

are given, there exists an algorithm that can determine in O(1) time if the fan
triplet x|y|z or resolved triplet xy|z is consistent with B.

Lemma 10. Let Ni be a given network and x, y and z three different leaves
in Ni. Given Ti, Cf

B, Cr
B, Af

B and Ar
B for every block B in Ni, there exists an

algorithm that can determine in O(1) time if the fan triplet x|y|z or the resolved
triplet xy|z is consistent with Ni.

300 J. Jansson et al.

The final algorithm is similar to Algorithm 1, the main difference is in the
preprocessing step. In this step, for every i ∈ {1, 2} we start by building the block
tree Ti. Then, we build a λ × λ table for Ti in order to be able later to answer
lowest common ancestor queries between pairs of leaves in Ti in O(1) time.
Afterwards, we build all the contracted block networks of Ni. Finally, for every
block B in Ni and the corresponding contracted block network CB , we build
the fan graph Cf

B and the resolved graph Cr
B , as well as the corresponding Af

B

and Ar
B tables.

From Lemma 5, building Ti for every i ∈ {1, 2} requires O(|E1| + |E2|)
time. Building the two tables for answering lowest common ancestor queries
requires O(λ3) time. From Lemma 6, building all the contracted block networks
requires O(|E1|+ |E2|+λ2) time. From Lemma 8, the time required to build Cf

B ,
Cr

B , Af
B and Ar

B for every block B of N1 and N2 is O(λ(k3
1d

3
1+k3

2d
3
2+2)). Hence,

the total preprocessing time becomes O(|E1| + |E2| + λ(k3
1d

3
1 + k3

2d
3
2) + λ3).

Using the results from Lemma 10, after the preprocessing step we can deter-
mine the consistency of a triplet with N1 or N2 in O(1) time. Since the number
of triplets that need to be checked is exactly 4

(
λ
3

)
, the total running time of the

algorithm remains O(|E1|+|E2|+λ(k3
1d

3
1+k3

2d
3
2)+λ3). By the definition of n, m,

k and d from Sect. 1, the running time becomes O(m + k3d3λ + λ3). Hence, we
obtain the following theorem:

Theorem 2. There exists an algorithm that computes the triplet distance
between two networks N1 and N2 in O(m + k3d3λ + λ3) time.

Let Ni be a network that follows the degree constraints of Byrka et al. [2].
If for a block Bs = (Vs, Es) of Ni we define ks to be the number of reticulation
nodes in Bs, where ks ≤ ki, using the same arguments as those used in the proof
of Lemma 6, we get for CBs

= (V ′, E′) that |V ′| = |E′| = O(ks +1). The time to
build Cf

B , Cr
B , Af

B and Ar
B for every block B of Ni then becomes

∑
s O(k3

s + 1).
Note that Lemma 8 would give a O(λk3

i + 1) time instead, because it uses λ
to upper bound (from Corollary 3) the number of blocks we can have in Ni.
Since

∑
s ks = O(|Vi|), the preprocessing time required by our algorithm for Ni

would be O(|Vi|+k2|Vi|). Then, the time to compute D(N1, N2) becomes O(n+
k2n + λ3), thus matching the time bound required by using the second data
structure of Byrka et al. [2].

4 Implementation and Experiments

This section provides an implementation of the algorithms described in Sects. 2
and 3, referred to as NTDfirst and NTDsecond respectively, as well as experi-
ments illustrating their practical performance.

Computing the Rooted Triplet Distance Between Phylogenetic Networks 301

The Setup. We implemented the two algorithms in C++ and the source code is
publicly available at https://github.com/kmampent/ntd. The experiments were
performed on a machine with 16 GB RAM and Intel(R) Core(TM) i5-3470 CPU
@ 3.20 GHz. The operating system was Ubuntu 16.04.2 LTS. The compiler used
was g++ 5.4 with cmake 3.11.0.

The Input. We consider both simulated and real datasets. For the simulated
datasets, we create tree-based networks [9] as follows:

1. Build a random rooted binary tree T on λ leaves in the uniform model [16]
and let N = T . For a node w in N , let d(w) be the total number of edges on
the path from r(N) to N .

2. Given a parameter e ≥ 0, add e random edges in N as follows. An edge u → v
is created in N if d(u) < d(v). If the total number of edges that can be added
happens to be y, where y < e, then we only add those y edges.

For the real datasets, we consider networks that have been published in the
literature and are not necessarily tree-based. More precisely, we consider the 6
trees and the corresponding networks in [15, Table S4]. The trees are given in the
standard Newick format, and the networks in the extended Newick format [3].

Experiments. For the simulated datasets, in Fig. 2 we illustrate the effect of
e on the CPU time in seconds of the two algorithms. Every data point in the
graph is the average of 20 different runs. The effect is larger on NTDsecond, as
larger values for e imply fewer blocks in the given networks. We note that space
is the reason behind the difference restrictions on λ, i.e., for λ = 230 the memory
usage of NTDfirst approaches the limits of the available 16 GB RAM.

For the real datasets and for every s ∈ {A,B,C,D,E, F}, we denote Ts the
tree and Ns the corresponding network, where s is a scenario in [15, Table S4],
with F corresponding to scenario “E, CHAM and MELVIO resolved”. For the
network NF , we use its non-tree based version from [14]. From Eq. (1) we have
the following: D(Ts, Ns) = S(Ts, Ts) + S(Ns, Ns) − 2S(Ts, Ns). When comput-
ing D(Ts, Ns) and to have L(Ts) = L(Ns), if a leaf x in Ns appears as several
leaves x.1, . . . , x.i in Ts, we replace x in Ns with the leaves x.1, . . . , x.i that we
attach under the parent of x. For the size of the leaf label sets, in the trees
TA, TB , TC , TD, TE we have 16, 20, 21, 21, 22 and 50 leaves, in every network Ns

where s ∈ {A,B,C,D,E} we have 8 leaves and in NF we have 16 leaves. In
Table 2 we include the experimental results. Interestingly, while the two net-
works NB and ND look structurally different, D(NB , ND) = 0. This suggests
that it may be useful to extend the definition of the triplet distance to take into
account the number of times that each triplet occurs in a network.

https://github.com/kmampent/ntd

302 J. Jansson et al.

NTDfirst

0

10

20

cp
u

tim
e

(s
ec

on
ds

)
e 10 20 30 40 50

NTDsecond

0

10

20

30

40

50

10 50 90 130 170 210 0 100 200 300 400 500

cp
u

tim
e

(s
ec

on
ds

)

e 10 20 30 40 50

Fig. 2. Experiments on the simulated datasets: running time for different values of e.

Table 2. Experiments on the real datasets. NA, . . . , NE have identical leaf label sets.

s S(Ts, Ts) S(Ns, Ns) S(Ts, Ns) D(Ts, Ns)

A 560 716 443 390
B 1140 1870 840 1330
C 1330 2185 965 1585
D 1330 2205 964 1607
E 1540 1996 983 1570
F 19600 43710 16553 30204

NA NB NC ND NE

NA 0 20 19 20 10
NB 20 0 1 0 10
NC 19 1 0 1 9
ND 20 0 1 0 10
NE 10 10 9 10 0

Acknowledgments. Konstantinos Mampentzidis acknowledges the support by the
Danish National Research Foundation, grant DNRF84, via the Center for Massive
Data Algorithmics (MADALGO).

References

1. Brodal, G.S., Mampentzidis, K.: Cache oblivious algorithms for computing the
triplet distance between trees. In: Proceedings of ESA 2017, pp. 21:1–21:14 (2017)

2. Byrka, J., Gawrychowski, P., Huber, K.T., Kelk, S.: Worst-case optimal approxima-
tion algorithms for maximizing triplet consistency within phylogenetic networks.
J. Discrete Algorithms 8(1), 65–75 (2010)

3. Cardona, G., Rosselló, F., Valiente, G.: Extended Newick: it is time for a standard
representation of phylogenetic networks. BMC Bioinform. 9(1), 532 (2008)

4. Choy, C., Jansson, J., Sadakane, K., Sung, W.K.: Computing the maximum agree-
ment of phylogenetic networks. Theor. Comput. Sci. 335(1), 93–107 (2005)

5. Dobson, A.J.: Comparing the shapes of trees. In: Street, A.P., Wallis, W.D. (eds.)
Combinatorial Mathematics III. Lecture Notes in Mathematics, vol. 452, pp. 95–
100. Springer, Berlin (1975). https://doi.org/10.1007/BFb0069548

6. Estabrook, G., McMorris, F., Meacham, C.: Comparison of undirected phylogenetic
trees based on subtrees of four evolutionary units. Syst. Zool. 34(2), 193–200 (1985)

7. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sunderland (2004)

https://doi.org/10.1007/BFb0069548

Computing the Rooted Triplet Distance Between Phylogenetic Networks 303

8. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theor. Comput. Sci. 10(2), 111–121 (1980)

9. Francis, A.R., Steel, M.: Which phylogenetic networks are merely trees with addi-
tional arcs? Syst. Biol. 64(5), 768–777 (2015)

10. Gambette, P., Huber, K.T.: On encodings of phylogenetic networks of bounded
level. J. Math. Biol. 65(1), 157–180 (2012)

11. Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phyloge-
netic networks with constrained recombination. J. Bioinform. Comput. Biol. 2(1),
173–213 (2004)

12. Jansson, J., Lingas, A.: Computing the rooted triplet distance between galled trees
by counting triangles. J. Discrete Algorithms 25, 66–78 (2014)

13. Jansson, J., Rajaby, R., Sung, W.K.: An efficient algorithm for the rooted triplet
distance between galled trees. In: Proceedings of AlCoB 2017, pp. 115–126 (2017)

14. Jetten, L., van Iersel, L.: Nonbinary tree-based phylogenetic networks. IEEE/ACM
Trans. Comput. Biol. Bioinform. 1(1), 205–217 (2018)

15. Marcussen, T., Heier, L., Brysting, A.K., Oxelman, B., Jakobsen, K.S.: From gene
trees to a dated allopolyploid network: insights from the angiosperm genus viola
(violaceae). Syst. Biol. 64(1), 84–101 (2015)

16. McKenzie, A., Steel, M.: Distributions of cherries for two models of trees. Math.
Biosci. 164(1), 81–92 (2000)

17. Robinson, D., Foulds, L.: Comparison of phylogenetic trees. Math. Biosci. 53(1),
131–147 (1981)

18. Shiloach, Y., Perl, Y.: Finding two disjoint paths between two pairs of vertices in
a graph. J. ACM 25(1), 1–9 (1978)

	Computing the Rooted Triplet Distance Between Phylogenetic Networks
	1 Introduction
	2 A First Approach
	2.1 Preprocessing
	2.2 Triplet Distance Computation

	3 A Second Approach
	3.1 Preprocessing
	3.2 Triplet Distance Computation

	4 Implementation and Experiments
	References

