
A More Practical Algorithm for the Rooted
Triplet Distance

Jesper Jansson1(B) and Ramesh Rajaby2

1 Laboratory of Mathematical Bioinformatics, Institute for Chemical Research,
Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

jj@kuicr.kyoto-u.ac.jp
2 University of Milano-Bicocca, Milano, Italy

r.rajaby@campus.unimib.it, ramesh.rajaby@gmail.com

Abstract. The rooted triplet distance is a measure of the dissimilarity
of two phylogenetic trees with identical leaf label sets. An algorithm by
Brodal et al. [2] that computes it in O(n logn) time, where n is the num-
ber of leaf labels, has recently been implemented in the software package
tqDist [14]. In this paper, we show that replacing the hierarchical decom-
position tree used in Brodal et al.’s algorithm by a centroid paths-based
data structure yields an O(n log3 n)-time algorithm that, although slower
in theory, is easier to implement and apparently faster in practice. Simu-
lations for values of n up to 1, 000, 000 support our claims experimentally.

Keywords: Bioinformatics · Phylogenetic tree comparison · Rooted
triplet distance · Centroid path decomposition tree

1 Introduction

Over the years, many alternative methods for inferring phylogenetic trees have
been developed; see, e.g., [7]. Due to errors in experimentally obtained data or the
inherent instability of classifications, applying the same tree inference method to
different datasets, applying different tree inference methods to the same dataset,
or changing the assumed model of evolution may result in trees with different
branching patterns. In this case, in order to identify parts of the trees that
look alike or to reconcile all the trees into a single tree, methods for measuring
the similarity between phylogenetic trees are needed. Measuring the similarity
between two phylogenetic trees may also be useful for supporting queries in
phylogenetic databases in the future [1] or for evaluating the performance of a
newly proposed tree inference method by doing simulations and comparing the
inferred trees to the corresponding known correct trees.

Several measures of the (dis-)similarity of two phylogenetic trees with iden-
tical leaf label sets have been suggested in the literature (see [1]). One such
measure is the rooted triplet distance [5], which counts how many of the subtrees

J. Jansson—Funded by The Hakubi Project and KAKENHI grant number 26330014.
R. Rajaby—Funded by the EXTRA Project at the University of Milano-Bicocca.

c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): AlCoB 2015, LNBI 9199, pp. 109–125, 2015.
DOI: 10.1007/978-3-319-21233-3 9

110 J. Jansson and R. Rajaby

induced by cardinality-3 subsets of the leaves that differ between the two trees.
Intuitively, this measure considers two phylogenetic trees that share many small
embedded subtrees to be similar. This paper presents a practical algorithm for
computing the rooted triplet distance, based on the framework introduced in an
algorithm by Brodal et al. [2], along with its implementation.

1.1 Basic Definitions

In this paper, a phylogenetic tree is a rooted, unordered tree whose leaves are
distinctly labeled and whose internal nodes have degree at least 2. From here on,
phylogenetic trees are referred to as “trees” for short. The set of all nodes and
the set of all leaf labels in a tree T are denoted by V (T) and Λ(T), respectively.
For any x ∈ V (T), T (x) is the subtree of T rooted at x, i.e., the subgraph
of T induced by the node x and all of its proper descendants in T . For any
x, y ∈ V (T), lcaT (x, y) is the lowest common ancestor in T of x and y. Also, for
any x, y ∈ V (T), if x is a proper descendant of y then we write x ≺ y.

A rooted triplet is a tree with exactly three leaves. Suppose t is a rooted
triplet with leaf label set Λ(t) = {a, b, c}. There are two possibilities. If t has a
single internal node then t is called a fan triplet and is denoted by a|b|c. Observe
that in this case, t is a non-binary tree and lcat(a, b) = lcat(a, c) = lcat(b, c)
holds. Otherwise, t has two internal nodes and is a binary tree; in this case, t is
called a resolved triplet and is denoted by xy|z, where {x, y, z} = {a, b, c} and
lcat(x, y) ≺ lcat(x, z) = lcat(y, z).

For any tree T and {a, b, c} ⊆ Λ(T), the fan triplet a|b|c is said to be
consistent with T if lcaT (a, b) = lcaT (a, c) = lcaT (b, c). Similarly, the resolved
triplet ab|c is consistent with T if lcaT (a, b) ≺ lcaT (a, c) = lcaT (b, c). Let rt(T) be
the set of all rooted triplets consistent with the tree T . (Thus, |rt(T)| =

(|Λ(T)|
3

)
).

For any two trees T1, T2 with Λ(T1) = Λ(T2), the rooted triplet distance
drt(T1, T2) is defined as |rt(T1)� rt(T2)|, i.e., the number of rooted triplets that
are consistent with one of the two trees but not the other. Note that dividing
drt(T1, T2) by

(
n
3

)
, where n = |Λ(T1)| = |Λ(T2)|, yields a dissimilarity coefficient

between 0 and 1 that may be more informative than drt in some applications.
Below, we consider the problem of computing drt(T1, T2) for two input trees

T1, T2 with identical leaf label sets. To simplify the notation, write L = Λ(T1)
(= Λ(T2)) and n = |L| for the given trees.

1.2 Previous Results and Related Work

The rooted triplet distance was proposed by Dobson [5] in 1975. Given two trees
T1, T2 with identical leaf label sets, drt(T1, T2) can be computed in O(n3) time by
a straightforward algorithm. Critchlow et al. [4] gave an O(n2)-time algorithm
for the special case where T1 and T2 are binary, and Bansal et al. [1] showed
how to compute drt(T1, T2) in O(n2) time for two trees of arbitrary degrees.
Recently, Brodal et al. [2] achieved a time complexity of O(n log n) for two trees

A More Practical Algorithm for the Rooted Triplet Distance 111

of arbitrary degrees. An implementation of the latter algorithm, written in C++,
is available in the free software package tqDist [14].

The counterpart of the rooted triplet distance for unrooted trees is the
unrooted quartet distance [6]. The currently fastest algorithm for computing the
unrooted quartet distance [2] runs in O(dn log n) time, where n is the number
of leaf labels and d is the maximum degree of any node in the two input trees.

An extension of the rooted triplet distance to phylogenetic networks has been
studied in [11]. For two galled trees [9] (networks whose cycles are disjoint) with
n leaves each, the rooted triplet distance can be computed in o(n2.687) time [11].

1.3 Our Contributions

We present some non-trivial modifications to Brodal et al.’s algorithm [2] for
computing drt(T1, T2) for two trees of arbitrary degrees that make it easier to
implement and more efficient in practice. The theoretical time complexity of the
resulting algorithm is O(n log3 n), which is slightly worse than that of the original
version, but we show experimentally that a direct C++-implementation of the
new algorithm gives a faster and more memory-efficient method than tqDist [14]
(the publicly available implementation of Brodal et al.’s algorithm) for various
types of large inputs consisting of two trees with up to 1, 000, 000 leaves each.

The paper is organized as follows. Brodal et al.’s algorithm [2] is reviewed in
Sect. 2. Section 3 describes the new algorithm, Sect. 4 discusses some implemen-
tation issues, and Sect. 5 presents the experimental results. Finally, Sect. 6 gives
some concluding remarks.

2 Summary of Brodal et al ’s Algorithm [2]

On a high level, the algorithm of Brodal et al. [2] works as follows. Each rooted
triplet t in rt(T1) is implicitly assigned to the lowest common ancestor in T1 of
the three leaves in Λ(t). For each internal node u in T1, the algorithm counts how
many of its assigned rooted triplets that also appear in rt(T2) by first coloring
the leaves of T2 in such a way that two leaves receive the same color if and only
if they are descendants of the same child of u in T1, and then finding the number
of elements in rt(T2) compatible with this particular coloring by making a query
to a special data structure called a hierarchical decomposition tree (HDT) that
represents T2.

To avoid unnecessary leaf recolorings, a simple, recursive recoloring scheme
is used that visits all nodes of T1 in order and generates the corresponding leaf
colorings in T2. It is reviewed in Sect. 3.2 (a) below. Constructing the HDT,
augmenting it with auxiliary information to support the relevant queries, and
updating this information when the leaves of T2 are recolored are somewhat
complicated; see [2] for details.

As proved in [2], the algorithm’s time complexity is O(n log n).

112 J. Jansson and R. Rajaby

Fig. 1. Topologies induced by good triplets in T2.

3 The New Algorithm

The new algorithm, described below, uses the same framework as Brodal et al.’s
algorithm [2]. To be precise, we also implicitly assign each rooted triplet in rt(T1)
to an internal node in T1 and count, for each node in T1, how many of its rooted
triplets that appear in rt(T2). To handle all of T1’s nodes efficiently, we apply
Brodal et al.’s recoloring scheme with a minor modification. The main difference
between the old algorithm and the new algorithm is how the rooted triplets
in rt(T2) assigned to each node in V (T1) are counted. Whereas Brodal et al.’s
algorithm uses the (in our opinion) cumbersome HDT data structure, we use
the conceptually simpler centroid path decomposition technique [3]. This makes
the new algorithm a little slower in theory but easier to implement and faster in
practice.

3.1 Preliminaries

For convenience, we make T1 and T2 into ordered trees by imposing the following
left-to-right ordering: for every non-leaf node v in a tree, the leftmost child
of v is always a child of v having the most leaf descendants (with ties broken
arbitrarily), and the other children of v are ordered arbitrarily. Also, let a triplet
be any subset of L of cardinality three; each triplet x induces a rooted triplet
in T1 (or T2), namely the rooted triplet belonging to rt(T1) (or rt(T2)) whose
leaf label set equals x.

We first introduce some notation related to the leaf colorings induced by the
internal nodes of T1. Let d be the number of children of the highest degree node
in T1. Define a set of d+1 colors {C0, C1, .., Cd}. We usually refer to C1 as RED
and C0 as WHITE, and sometimes call a WHITE leaf non-colored and a leaf
that is neither RED nor WHITE NON-RED. Colors will be assigned to the leaf
label set L, and we say that we are coloring a leaf when we are coloring its label.

Let {v1, v2, . . . } be the children of an internal node v ∈ V (T1). Then T1 and
T2 are colored according to v if and only if, for every l ∈ L, it holds that:

– l is colored by Ci if and only if T1(l) is a descendant of vi; and
– l is WHITE if and only if T1(l) is not a descendant of v.

Suppose that T1 and T2 are colored according to some internal node v ∈ T1. Let
t be a triplet. We call t a good triplet if it induces one of the two (unordered)

A More Practical Algorithm for the Rooted Triplet Distance 113

topologies shown in Fig. 1 in T2, where Ca and Cb are colors in {C1, C2, .., Cd}
and a < b. Similarly, we call t a good fan if its three leaves all have different
colors from the set {C1, C2, .., Cd}. (This corresponds to the concept of a triplet
being “compatible with a coloring” in [2].)

For a given color Cc, Cc(S) is the number of leaves in S colored by Cc,
where S can be either a single subtree or a set of subtrees (which is generally
clear from the context). C1(S) will usually be referred to as Red(S). Also define
Ca(S) =

∑d
i=2,i �=a Ci(S) as the number of NON-RED leaves in S which are

not colored by Ca, and CRa(S) =
∑d

i=1,i �=a Ci(S) as the number of non-WHITE

leaves in S which are not colored by Ca. Finally, define Red(2)(S) =
k∑

i=1

(
Red(Si)

2

)
,

where {S1..Sk} are the subtrees rooted at the root of S. We will sometimes use
a node as an argument, meaning the subtree rooted at it.

Next, we recall the concept of a centroid path [3]. A centroid path starting
at some node v in a tree T is a heaviest path from v to a leaf of T , i.e., a
path starting at v and always choosing a child with the largest number of leaf
descendants until a leaf is reached. Let the centroid path of T , cp(T), be a centroid
path starting at the root of T . In our case, the centroid path of T starts from
the root and always selects the left subtree until it reaches a leaf.

The centroid path decomposition tree of T , denoted by CPDT (T), is an
ordered tree of unbounded degree defined as follows. One node u represents
cp(T); u is the root of CPDT (T). We traverse cp(T) from its lowest node to
its highest; for each node rj in T that we encounter, we add a single node vj

to the ordered set of children of u (making vj the rightmost child so far), and
then define the children of vj as {CPDT (T j

2), ..., CPDT (T j
k)}, where k is the

degree of rj and T j
i is the i-th subtree of rj (remember that the root of T j

1 lies
on the centroid path). We call u a CP-node (centroid path node), since it repre-
sents a whole centroid path in T , and vj a SN-node (single-node node), since it
represents a single node in T . If rj is binary then vj will have a single child.

Note that CPDT (T) has height O(log n), where n = |Λ(T)|. Moreover, we
immediately have:

Lemma 1. An SN-node is always the child of a CP-node, and the only CP-node
which is not the child of an SN-node is the root.

3.2 Description of the New Algorithm

First, the algorithm constructs CPDT (T2). Then, for each internal node v
of T1 in depth-first order, the algorithm: (a) colors the trees according to v,
and (b) counts the resulting number of good triplets and good fans by using
CPDT (T2). Finally, it returns the value

(
n
3

)
minus the total number of good

triplets and good fans found.

114 J. Jansson and R. Rajaby

(a) Colorings: To obtain all the colorings of the trees efficiently, the algorithm
uses a slightly modified variant of Brodal et al.’s recursive recoloring scheme
from [2]. The latter does a depth-first traversal of T1 while maintaining two
invariants:

(i) when entering a node v, all leaves in T1(v) are RED and all other leaves are
WHITE;

(ii) when exiting a node v, all leaves in T1(v) are WHITE.

Initially, all leaves are colored RED. This way, invariant i) holds when the
transversal starts at the root of T1.

During the transversal, whenever an internal node v ∈ V (T1) is reached, the
leaves in the i-th subtree of v are colored by the color Ci for i ∈ [2..k], where k is
the degree of v. At this point, the trees are colored according to v. After this, the
k −1 subtrees that were just colored are recolored by the color WHITE, and the
scheme recurses on the leftmost subtree of v, which is still RED. Observe that
the first invariant holds when entering the root of this subtree. After returning
from the recursive call, the leftmost subtree of v is WHITE by invariant (ii), and
the other subtrees of v are treated one by one; for each such subtree, the scheme
colors its leaves RED and then recurses on it. Again, invariant (i) holds at each
recursive call since the subtree is colored RED and everything else is WHITE.
After handling all k subtrees of v, all leaf descendants of v will be WHITE, so
invariant (ii) holds when exiting from v.

The base case of the recursion is when the reached node v ∈ V (T1) is a leaf.
In this case, the scheme colors v WHITE and exits, so that invariant (ii) holds.

Our algorithm makes the following modification to Brodal et al.’s recursive
recoloring scheme above: We color the leaves by colors {C2..Ck}, not by their
order in T1, but according to their left-to-right order in CPDT (T2). (Recall that
by definition, the CPDT is an ordered tree).

(b) Counting Good Triplets and Good Fans: By definition, good triplets
and good fans are created only when leaves are colored by NON-RED colors.
Therefore, we let the algorithm compute the number of newly created good
triplets and good fans whenever the recursive coloring scheme colors a leaf l
by a NON-RED color. To do this, the algorithm traverses the leaf-to-root path
starting at CPDT (l), and for each node v on the path, it counts the number of
good triplets and good fans that include l and whose lca in the CPDT equals v
by applying Lemmas 2 and 3 below.

From here on, we denote by Cb a color different from Ca in the set {C1, .., Ck},
but in the formulas, RED and NON-RED will usually be given separate cases.
(This is the reason why sums over colors in formulas sometimes start from 2.)

Lemma 2. Given an internal CP-node u of the CPDT and some child ui of u,
let Si be the subtree rooted at ui. Also, let u′

j be the j-th child of ui and S′
j the

subtree rooted at it. If there are no NON-RED leaves in S>i nor in S′
>j, the

A More Practical Algorithm for the Rooted Triplet Distance 115

number of good triplets introduced by coloring a leaf by a color Ca in S′
j, a ≥ 2,

such that their lca is u, is:
(

Red(S<i)
2

)
+

d∑

b=2,b �=a

(
Cb(S<i)

2

)
+

∑

h>i

Red(2)(Sh) + Ca(S≤i) · Red(S>i)+

Ca(S′
j) · Red(S<i) + Ca(S′

j) · Ca(S<i)

while the number of good fans, whose lca is u, is:

CRa(S<i) · CRa(S′
<j) −

d∑

b=1,b �=a

Cb(S<i) · Cb(S′
<j) + Ca(S<i) · RED(S′

>j)

Lemma 3. Given an SN-node v of the CPDT and some child vi of v, let Si be
the subtree rooted at vi. If there are no NON-RED leaves in S>i, the number of
good triplets introduced by coloring a leaf by a color Ca in Si, a ≥ 2, such that
their lca is v, is:

i−1∑

j=1

(
Red(Sj)

2

)
+

∑

j>i

(
Red(Sj)

2

)
+

d∑

b=2,b �=a

i−1∑

j=1

(
Cb(Sj)

2

)
+

Ca(Si) · (Red(S<i) + Red(S>i)) + Ca(Si) · Ca(S<i)

while the number of good fans, whose lca is v, is:
(

CRa(S<i)
2

)
−

d∑

b=1,b �=a

(
Cb(S<i)

2

)
−

i−1∑

h=1

(
CRa(Sh)

2

)
+

i−1∑

h=1

d∑

b=1,b �=a

(
Cb(Sh)

2

)
+

Ca(S<i) · RED(S>i)

3.3 Time Complexity Analysis

The values in Lemmas 2 and 3 for any specified node in the CPDT can be
obtained by a direct method in O(n) time. This will be too slow for our purposes,
so we first reduce it to O(log n) time (Lemmas 5 and 6). The solution uses the
range sum query data structure (RSQ), a data structure for representing an array
of non-negative integers A[1..n] so that it is possible to:

1. given an index i ∈ [1..n], change the value of A[i];
2. given two positions s, t ∈ [1..n], where s ≤ t, return the value

∑t
i=s A[i].

Given an RSQ R, we refer to the array of numbers over which R supports queries
as R.A.

We shall rely on the following result from the literature:

Lemma 4. An RSQ supporting operations 1 and 2 in O(log n) time can be
implemented in O(n) space and O(n) preprocessing time using a Fenwick tree [8].

Now, for each node v in the CPDT, define and store the following set of
counters, where {v1, v2, .., vk} denotes the set of children of v:

116 J. Jansson and R. Rajaby

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cc(v), ∀c ∈ 2..d, as defined in Sect. 3.1

C(v) =
d∑

c=2
Cc(v)

C2
c (v) =

(
Cc(v)

2

)
, ∀c ∈ 2..d

C2(v) =
d∑

c=2
C2

c (v)

C
(2)
c (v) =

k∑

i=1

(
Cc(vi)

2

)
, ∀c ∈ 2..d

C(2)(v) =
d∑

c=2
C

(2)
c (v)

SS(v) =
k∑

i=1

(d∑

b=2
Cb(vi)

2

)
+

d∑

b=2

Cb(vi) · Red(vi)

SSc(v) =
k∑

i=1

Cc(vi) · (Cc(vi) + Red(vi)) +
(
Cc(vi)

2

)
, ∀c ∈ 2..d

Also store three RSQs, named R1(v), R2(v), and R3(v), such that
R1(v).A[i] = Red(vi), R2(v).A[i] =

(
Red(vi)

2

)
, and R3(v).A[i] = Red(2)(vi).

Lemma 5. The values in Lemma 2 can be found in O(log n) time.

Proof. (Refer to the notation introduced back in Lemma2). By the definition of
the coloring scheme, no NON-RED leaf is in S>i. Therefore, Cc(u) = Cc(S≤i).
Since Cc(ui) = Cc(Si), it is straightforward to compute Cc(S<i). A similar argu-
ment works for every counter: starting from its values for u and ui, we can
compute its value for S<i easily.

Next, when coloring leaves in S′
j , all leaves in S<i have already been colored.

Thus, the values Cc(S<i), ∀c ∈ 2..d, are fixed. We keep track of the current
value of Cc(S<i) ·Cc(S′

<j), ∀c ∈ 2..d, in S′
j as we color leaves in it, plus the value

d∑

b=2

Cb(S<i) ·Cb(S′
<j). Then:

d∑

b=1,b �=a

Cb(S<i) ·Cb(S′
<j) =

d∑

b=2

Cb(S<i) ·Cb(S′
<j)−

Ca(S<i) · Ca(S′
<j) + Red(S<i) · Red(S′

<j).
The other quantities can be deduced using the counters and the RSQs defined

above. When making range queries on them, we apply Lemma4, which gives a
time complexity of O(log n). 	

Lemma 6. The values in Lemma 3 can be found in O(log n) time.

Proof. The only non-trivial quantity here is
i−1∑

h=1

(
d∑

b=1,b �=a

Cb(Sh)

2

)
= SS(S<i) +

i−1∑

h=1

(
Red(Sh)

2

)−SSa(S<i), which we explain now. We need to compute the number

of pairs of colored leaves such that both leaves are in the same subtree Sh, h < i,
and none of the leaves is colored by Ca. SS(S<i) is the number of pairs of
colored leaves such that both leaves are in the same subtree Sh, h < i, but

the two leaves are not both colored RED. Adding
i−1∑

h=1

(
Red(Sh)

2

)
, we remove the

A More Practical Algorithm for the Rooted Triplet Distance 117

latter restriction, thus getting the number of pairs of colored leaves such that
both leaves are in the same subtree Sh, h < i. Finally, we remove SSa(S<i),
which is the number of pairs of colored leaves in the same subtree such that at
least one leaf is colored by Ca.

As in the proof of Lemma 5, the other quantities can be obtained in O(log n)
time using Lemma 4 and the counters and RSQs above. 	

During the execution of the algorithm, the number of good triplets and good fans
created when coloring a leaf NON-RED can be obtained by applying Lemmas 2
and 3 to the leaf and all its ancestors in the CPDT; Lemmas 5 and 6 provide
these values for any specified node of the CPDT in O(log n) time.

To ensure that Lemmas 5 and 6 can still be applied after leaves are recolored,
the counters and RSQs for certain nodes need to be updated. More precisely, we
extend the algorithm so that:

– Whenever a leaf is colored RED or WHITE, we traverse its leaf-to-root path
in the CPDT and update every RSQ on it, taking O(log n) time per node by
Lemma 4.

– Whenever a leaf is colored NON-RED, we traverse its leaf-to-root path in the
CPDT and, after applying Lemmas 5 and 6 to each node on the path, we
update its counters in O(1) time.

In summary, each node in the CPDT that is visited after a leaf recoloring can
be taken care of in O(log n) time. This gives:

Theorem 1. The time complexity of the new algorithm is O(n log3 n).

Proof. Constructing CPDT (T2) in the first step takes O(n) time. The construc-
tion follows directly from the definition of CPDT .

By Brodal et al.’s analysis in [2], a total of O(n log n) leaf colorings occur.
Whenever a leaf is colored, we visit all nodes on its leaf-to-root path in the
CPDT; its length is O(log n), leading to a total of O(n log2 n) node visits in
the CPDT. (Observe that although some nodes such as the root may be visited
Ω(n log n) times, the total number of node visits is bounded by O(n log2 n).)

By the comments after Lemma 6, O(log n) time is used for each node visit in
the CPDT. Hence, the total running time of the algorithm is O(n log3 n). 	

4 Implementation

We have implemented the new algorithm for the rooted triplet distance in
two versions: a special binary trees-only optimized version, and one for general
trees. The importance of the special case where both trees are binary justifies
a dedicated implementation. Only plain standard C++ was used, expect for an
(optional) single feature from C++11, mentioned below. The source code can
be downloaded from:
http://sunflower.kuicr.kyoto-u.ac.jp/∼jj/Software/CPDT-dist.html

A few points and optimizations that improve the implementation’s running
time in practice are discussed next.

http://sunflower.kuicr.kyoto-u.ac.jp/~jj/Software/CPDT-dist.html

118 J. Jansson and R. Rajaby

4.1 Representation of the Counters

The first issue is how to efficiently represent the counters defined in Sect. 3.3.
Let d be the number of children of the highest degree node in T1: as noted in
[10], if we naively represent the counters using d-long vectors for each node in
the CPDT, we may end up with quadratic memory (and thus quadratic time)
when d is close to n, e.g., if all the leaves are directly attached to the root of
T1. However, we do not actually need d counters in each node. At any time, the
number of colors used in any subtree of the CPDT cannot be larger than the
number of its leaves; therefore, O(n log n) counters are needed in total.

We implemented the counters as follows. In any given node v in the CPDT,
for each set of counters, we allocate an array of length min{d, leaves(v)}, where
leaves(v) = |L(CPDT (v))| is the number of leaves in the subtree of the CPDT
rooted at v. Note that when the length of the arrays is <d, counters for color
k ∈ 1..d may not be stored in position k in the arrays, so we use a map int-to-int
to maintain an association between the (used) colors in 1..d and their actual
position in the arrays.

We used a hashmap to implement the maps, which allows constant-time
insertion and retrieval. We tested two different implementation of the hashmap:
the C++11 unordered map [16] included in the standard library of our test
system, requiring C++11 support, and the dense hash map class in the (former)
Google project sparsehash [15]. We can choose which one to use at compile-time.
Some experimental results for both libraries are reported in Sect. 5.

4.2 Two-Step Coloring

In the theoretical version of the algorithm, for simplicity, when coloring leaves
by NON-RED colors in left-to-right order in the CPDT, we take each leaf in
order and count the good triplets rooted at each of its ancestors up to the root;
it is evident that some nodes are considered many times.

In the implementation, we do it slightly differently: First, we mark all of the
nodes in the CPDT we need to consider, i.e., all nodes that are ancestors of
at least one leaf being colored: for each leaf, we start at it and go up until we
either end at the root or at an already marked node, marking all the nodes we
traverse. Second, we visit the marked subtree in post-order; when we actually
consider a given node, we already know how many leaves we are coloring for
each color; modifying the formulas in Lemmas 2 and 3 to count all of the good
triplets introduced by such leaves, for each color, in one go is trivial.

4.3 The Coloring Scheme

A few optimizations were made to the coloring scheme.
First, consider what happens when the coloring scheme begins. We start by

coloring all the leaves RED, only to immediately recolor leaves not in the biggest
subtree of the root, first WHITE and then by NON-RED colors. This happens
many times, i.e., every time we color a subtree RED and immediately recurse

A More Practical Algorithm for the Rooted Triplet Distance 119

on it. We save some unnecessary operations by only coloring RED leaves in
the biggest subtree. Since coloring a leaf RED and WHITE requires updating a
number of RSQs and is a fairly expensive operation, this saves us some time.

Next, cherry nodes (i.e., internal nodes with exactly two leaves attached) do
not need to be colored, since they can not yield any good triplet. If we do not
consider them, we can save a lot of RED and WHITE colorings. Cherry nodes
are fairly frequent, especially in binary/low branching trees.

Finally, when we color a single leaf (or even a sufficiently low number of
leaves), the two-step coloring can actually be a burden. Thus, we made a few
special routines that directly update the leaf-to-root path of a given leaf, without
the need of marking it first.

5 Experiments

We compared the running time and memory usage in practice of the new algo-
rithm to that of tqDist [14] by a series of experiments, as described in this
section.

5.1 Experimental Setup

The experiments were performed on a computer running Ubuntu 12.04, with an
Intel Xeon W3530 (quad-core, 2.8 GHz) and 16 GB of RAM. The system C++
compiler was g++, version 4.6.3.

We used the C++-implementations of our algorithm presented in Sect. 4:
one for general trees and a special binary trees-only optimized version. As men-
tioned in Sect. 4, the algorithm can be compiled using two different hashmaps:
C++11 unordered map [16] (we named this CPDT) and sparsehash [15] (named
CPDTg). We will improperly refer to CPDT and CPDTg as “implementations”
of our algorithm, but they are actually a single implementation linked against
two different hashmap libraries. tqDist [14] was built from its source code using
cmake, as instructed by the authors. We had to disable the HDT dynamic con-
traction [10] of tqDist as it was making the tool run tens of times slower; built
with the default parameters, it would usually take more than an hour for two
random 1 million leaves trees.

Running times were measured using the time command, which gives the sum
of system and user times and includes the time spent parsing the trees from a file;
the average over 50 runs was taken. Memory usage was measured with Valgrind
[13] and its heap profiling tool Massif. Due to the slowdown caused by Valgrind,
we took the average over 20 runs.

5.2 Input Trees

Our implementations and tqDist were applied to pairs of trees with values of n
up to 1, 000, 000. Arbitrary-degree input trees were generated as follows:

120 J. Jansson and R. Rajaby

First, generate a binary tree with n leaves in the uniform model [12].
Then, for each non-root, internal node v in the tree, contract it (i.e.,
make the children of v become children of v’s parent, and remove v)
with some fixed probability p.

Below, we let pi for i ∈ {1, 2} be the chosen value of p when generating Ti.
We used three values of p1 and p2: 0.2, 0.5, and 0.8, calling the generated trees
lowly-branching, moderately-branching, and highly-branching, respectively. This
gave 9 sets of benchmarks. In addition, we created a set where both trees are
binary (equivalent to the case p1 = p2 = 0) and two extra sets where p1 is
0.95 (resp. 0.2) and p2 is 0.2 (resp. 0.95) in order to test the behavior of the
algorithms when dealing with extremely-branching trees, i.e., flat trees with very
high degree. Also, all sets of benchmarks were executed on pairs of unrelated as
well as related trees, where unrelated trees were generated independently of each
other and related trees were generated from the same binary tree.

5.3 Results

Table 1 reports the average running times of the three implementations tested on
pairs of trees with 1 million leaves, along with the relative speed-ups over tqDist.
Figure 2 plots the average running times as a function of n for binary trees as
well as for non-binary trees obtained using some representative (p1, p2)-values.

The binary case benefits greatly from having a special implementation, being
faster than the more general implementation for arbitrary-degree trees, and

Table 1. Average running times, in seconds, on two 1M leaves trees, and relative
speed-ups over tqDist.

Unrelated trees Related trees

p1 p2 tqDist CPDT CPDTg tqDist CPDT CPDTg

0.0 0.0 46.38 1.00x 8.12 5.71x - - - - - - - -

0.2 0.2 47.90 1.00x 16.23 2.95x 14.90 3.21x 13.31 1.00x 5.45 2.44x 5.06 2.63x

0.2 0.5 46.71 1.00x 17.89 2.61x 16.33 2.86x 12.04 1.00x 5.57 2.16x 5.08 2.37x

0.2 0.8 40.26 1.00x 15.67 2.57x 14.19 2.84x 10.29 1.00x 4.76 2.16x 4.28 2.40x

0.2 0.95 30.87 1.00x 11.26 2.74x 10.21 3.02x 9.09 1.00x 4.00 2.27x 3.59 2.53x

0.5 0.2 46.25 1.00x 15.78 2.93x 14.58 3.17x 12.75 1.00x 5.28 2.41x 5.11 2.50x

0.5 0.5 45.09 1.00x 17.42 2.59x 16.00 2.82x 11.48 1.00x 5.40 2.13x 5.17 2.22x

0.5 0.8 38.80 1.00x 15.18 2.56x 13.87 2.80x 9.79 1.00x 4.57 2.14x 4.35 2.25x

0.8 0.2 43.18 1.00x 14.67 2.94x 13.62 3.17x 11.91 1.00x 4.95 2.41x 4.70 2.53x

0.8 0.5 42.21 1.00x 16.36 2.58x 15.12 2.79x 10.61 1.00x 5.02 2.11x 4.70 2.26x

0.8 0.8 35.88 1.00x 14.08 2.55x 12.95 2.77x 8.96 1.00x 4.20 2.13x 3.86 2.32x

0.95 0.2 37.14 1.00x 12.72 2.92x 11.75 3.16x 11.15 1.00x 4.79 2.33x 4.19 2.66x

A More Practical Algorithm for the Rooted Triplet Distance 121

Fig. 2. Plots of the average running time in seconds (y-axis) against n (x-axis), for
binary trees and for some representative values of (p1, p2). Solid lines represent values
on unrelated trees, while dashed lines represent values on related trees; the notion of
related trees is not applicable to binary trees.

122 J. Jansson and R. Rajaby

Fig. 3. Plots of the memory usage in gigabytes (y-axis) against n (x-axis), for binary
trees and for some representative values of (p1, p2).

A More Practical Algorithm for the Rooted Triplet Distance 123

Table 2. Average memory usage, in GBs, on two 1M leaves trees, and the relative
memory usage decrease over tqDist.

p1 p2 tqDist CPDT CPDTg

0.0 0.0 3.09 1.00x 0.67 4.61x - -

0.2 0.2 2.87 1.00x 1.03 2.79x 1.14 2.52x

0.2 0.5 2.53 1.00x 0.99 2.56x 1.08 2.34x

0.2 0.8 2.05 1.00x 0.81 2.53x 0.87 2.36x

0.2 0.95 1.72 1.00x 0.68 2.53x 0.69 2.49x

0.5 0.2 2.77 1.00x 1.04 2.66x 1.15 2.41x

0.5 0.5 2.46 1.00x 1.01 2.44x 1.11 2.22x

0.5 0.8 2.00 1.00x 0.81 2.47x 0.87 2.30x

0.8 0.2 2.73 1.00x 1.13 2.42x 1.24 2.20x

0.8 0.5 2.37 1.00x 1.14 2.08x 1.24 1.91x

0.8 0.8 1.94 1.00x 0.88 2.20x 0.93 2.09x

0.95 0.2 2.72 1.00x 1.57 1.73x 1.68 1.62x

showing nearly six-fold improvement over tqDist. Note that as it does not rely
on hashmaps, we have a single implementation of the CPDT.

For unrelated arbitrary-degree trees, CPDTg is clearly the fastest imple-
mentation, consistently being around three times faster than tqDist and show-
ing noticeable improvements over CPDT. While tqDist performs better as we
increase the values of p1 and p2, CPDT and CPDTg only show this trend with
p1, performing worse when p2 is 0.5 and getting better as it moves away from it.
All of the implementations perform very well when T1 is extremely-branching,
proving them to be able to easily handle a huge number of colors.

For related trees, all three implementations become much faster. CPDTg
still has an obvious advantage, although speed-ups here are around 2.5x. This
can be at least partially explained by overheads, such as tree parsing from files,
becoming more significant as the running time of the actual algorithms decrease.

The average memory usage of the three implementations for pairs of unrelated
trees with 1 million leaves are reported in Table 2 and Fig. 3. CPDT is the least
memory-hungry, showing an improvement over tqDist of 4.61x on binary trees
and up to 2.79x on arbitrary-degree ones; CPDTg is a close second. They all
benefit from increasing p2 (meaning less internal nodes in T2) and suffer from
increasing p1 (meaning more colors), although tqDist proves to be less sensitive
to it, as the advantage of CPDT is brought down to a still very respectable 1.73x
in the extreme case where T1 is extremely-branching.

6 Concluding Remarks

Some questions for future research are: Can the theoretical or practical run-
ning times of the CPDT-based algorithm be reduced? In particular, the CPDT

124 J. Jansson and R. Rajaby

respects the definition of locally balanced in [2], so can the analysis be refined to
prove that the time complexity of the new algorithm is in fact O(n log2 n) using
the technique in Sect. 5 of [2]? To make the algorithm faster in practice, one
might try to parallelize it; unfortunately, this may be difficult due to possible
imbalance in the trees and the intrinsic data-dependencies of the algorithm.

Computing the quartet distance for unrooted trees seems more difficult than
computing the rooted triplet distance for rooted trees. It would be interesting
to see if the CPDT can be adapted to get an efficient algorithm for this variant.

We remark that an unsolved open problem is whether or not the rooted
triplet distance can be computed in O(n) time. A linear-time algorithm would
require a set of totally different techniques than the ones used here since Brodal
et al.’s recursive recoloring scheme already introduces Ω(n log n) work.

References

1. Bansal, M.S., Dong, J., Fernández-Baca, D.: Comparing and aggregating partially
resolved trees. Theor. Comput. Sci. 412(48), 6634–6652 (2011)

2. Brodal, G.S., Fagerberg, R., Mailund, T., Pedersen, C.N.S., Sand, A.: Efficient
algorithms for computing the triplet and quartet distance between trees of arbitrary
degree. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2013), pp. 1814–1832. SIAM (2013)

3. Cole, R., Farach-Colton, M., Hariharan, R., Przytycka, T., Thorup, M.: An
O(n log n) algorithm for the maximum agreement subtree problem for binary trees.
SIAM J. Comput. 30(5), 1385–1404 (2000)

4. Critchlow, D.E., Pearl, D.K., Qian, C.: The triples distance for rooted bifurcating
phylogenetic trees. Syst. Biol. 45(3), 323–334 (1996)

5. Dobson, A.J.: Comparing the shapes of trees. In: Street, A.P., Wallis, W.D. (eds.)
Combinatorial Mathematics III. LNM, vol. 452, pp. 95–100. Springer-Verlag, Hei-
delberg (1975)

6. Estabrook, G.F., McMorris, F.R., Meacham, C.A.: Comparison of undirected phy-
logenetic trees based on subtrees of four evolutionary units. Syst. Zool. 34(2),
193–200 (1985)

7. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates Inc, Sunderland (2004)
8. Fenwick, P.M.: A new data structure for cumulative frequency tables. Softw.: Pract.

Experience 24(3), 327–336 (1994)
9. Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phyloge-

netic networks with constrained recombination. J. Bioinform. Comput. Biol. 2(1),
173–213 (2004)

10. Holt, M.K., Johansen, J., Brodal, G.S.: On the scalability of computing triplet and
quartet distances. In: Proceedings of the 16th Workshop on Algorithm Engineering
and Experiments (ALENEX 2014), pp. 9–19. SIAM (2014)

11. Jansson, J., Lingas, A.: Computing the rooted triplet distance between galled trees
by counting triangles. J. Discrete Algorithms 25, 66–78 (2014)

12. McKenzie, A., Steel, M.: Distributions of cherries for two models of trees. Math.
Biosci. 164(1), 81–92 (2000)

13. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: Proceedings of the ACM SIGPLAN 2007 Conference on Pro-
gramming Language Design and Implementation (PLDI 2007), pp. 89–100. ACM
(2007)

A More Practical Algorithm for the Rooted Triplet Distance 125

14. Sand, A., Holt, M.K., Johansen, J., Brodal, G.S., Mailund, T., Pedersen, C.N.S.:
tqDist: a library for computing the quartet and triplet distances between binary
or general trees. Bioinformatics 30(14), 2079–2080 (2014)

15. sparsehash project webpage. https://code.google.com/p/sparsehash/
16. Documentation for unordered map. http://www.cplusplus.com/reference/

unordered map/unordered map/

https://code.google.com/p/sparsehash/
http://www.cplusplus.com/reference/unordered_map/unordered_map/
http://www.cplusplus.com/reference/unordered_map/unordered_map/

	A More Practical Algorithm for the Rooted Triplet Distance
	1 Introduction
	1.1 Basic Definitions
	1.2 Previous Results and Related Work
	1.3 Our Contributions

	2 Summary of Brodal et al's Algorithm [2]
	3 The New Algorithm
	3.1 Preliminaries
	3.2 Description of the New Algorithm
	3.3 Time Complexity Analysis

	4 Implementation
	4.1 Representation of the Counters
	4.2 Two-Step Coloring
	4.3 The Coloring Scheme

	5 Experiments
	5.1 Experimental Setup
	5.2 Input Trees
	5.3 Results

	6 Concluding Remarks
	References

