
Algorithmica (2015) 71:969–988
DOI 10.1007/s00453-013-9836-6

Linked Dynamic Tries with Applications
to LZ-Compression in Sublinear Time and Space

Jesper Jansson · Kunihiko Sadakane ·
Wing-Kin Sung

Received: 22 June 2009 / Accepted: 11 September 2013 / Published online: 26 September 2013
© Springer Science+Business Media New York 2013

Abstract The dynamic trie is a fundamental data structure with applications in many
areas of computer science. This paper proposes a new technique for maintaining a dy-
namic trie T of size at most 2w nodes under the unit-cost RAM model with a fixed
word size w. It is based on the idea of partitioning T into a set of linked small tries,
each of which can be maintained efficiently. Our method is not only space-efficient,
but also allows the longest common prefix between any query pattern P and the

Parts of the results presented in this paper appeared in preliminary form in Proceedings of the 27th
Annual International Conference on the Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2007), volume 4855 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 424–435, 2007.

J.J. was funded by the Hakubi Project at Kyoto University and the Japan Society for the Promotion of
Science (JSPS).
K.S. was partially supported by the Japan Society for the Promotion of Science (JSPS) through the
“Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST
Program)”.
W.-K.S. was partially supported by the MOE AcRF Tier 2 funding R-252-000-444-112.

J. Jansson (B)
Laboratory of Mathematical Bioinformatics (Akutsu Laboratory), Institute for Chemical Research,
Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
e-mail: jj@kuicr.kyoto-u.ac.jp

K. Sadakane
National Institute of Informatics (NII), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
e-mail: sada@nii.ac.jp

W.-K. Sung
School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417,
Singapore
e-mail: ksung@comp.nus.edu.sg

W.-K. Sung
Genome Institute of Singapore, 60 Biopolis Street, Genome, Singapore 138672, Singapore

mailto:jj@kuicr.kyoto-u.ac.jp
mailto:sada@nii.ac.jp
mailto:ksung@comp.nus.edu.sg

970 Algorithmica (2015) 71:969–988

strings currently stored in T to be computed in o(|P |) time for small alphabets, and
allows any leaf to be inserted into or deleted from T in o(log |T |) time. To demon-
strate the usefulness of our new data structure, we apply it to LZ-compression. Sig-
nificantly, we obtain the first algorithm for generating the LZ78 encoding of a given
string of length n over an alphabet of size σ in sublinear (o(n)) time and sublinear

(o(n logσ) bits) working space for small alphabets (σ = 2
o(logn

log log logn

(log logn)2
)
). Moreover,

the working space for our new algorithm is asymptotically less than or equal to the
space for storing the output compressed text, regardless of the alphabet size.

Keywords Data structures · Dynamic trie · Longest common prefix query ·
LZ-compression

1 Introduction

A trie [10] is a rooted tree in which every edge is labeled by a symbol from an
alphabet A in such a way that, for every node u and every a ∈ A, there is at most
one edge labeled by a from u to a child of u. Each node u in a trie thus represents a
string obtained by concatenating the symbols on the unique path from the root to u;
consequently, a trie can be used to store a set of strings over A. Without loss of
generality, we assume that the alphabet A includes a special end-of-string symbol $,
that every string over A terminates with $, and that $ only appears at the end of a
string. In this way, any set of strings over A corresponds to the leaves of a trie.

A dynamic trie is a trie which supports operations that modify it online. Typically,
these operations allow a set of strings to be maintained dynamically so that strings
may be inserted into or deleted from it. Dynamic tries find applications in informa-
tion retrieval, natural language processing, database systems, compilers, data com-
pression, and computer networks. For example, in computer networks, dynamic tries
are used for IP routing to efficiently maintain the hierarchical organization of routing
information to enable fast lookup of IP addresses [22]. (Since IP addresses are of 32
bits or 128 bits, it is not practical to use direct lookup tables for routing.) In data com-
pression, dynamic tries are used to represent the so-called LZ-trie and the Huffman
coding trie, which are the key data structures of the Ziv-Lempel encoding scheme
(LZ78) [29] (or its variant LZW encoding [26]) and the Huffman encoding scheme,
respectively. In addition, other useful data structures such as the suffix trie/suffix tree,
the Patricia trie [19], and the associative array (hashing table) can be maintained by
dynamic tries.

From here on, we assume that A is an ordered alphabet and define σ = |A|. This
paper assumes the unit-cost RAM model with word size w in which standard arith-
metic and bitwise boolean operations on word-sized operands take constant time (see,
e.g., [13]). More precisely, each operation in our algorithms can be performed in con-
stant time by using lookup tables of O(2εw) bits for some fixed 0 < ε < 1. Note that
we use arithmetic operations for only O(logn) bit numbers where n is the length of
the input, and therefore the lookup table size can be reduced from O(2εw) to o(n).
For the memory model, we assume that any memory region of �(w) bits can be al-
located and freed in constant time as in [24]. Also, our algorithms require a query

Algorithmica (2015) 71:969–988 971

pattern P to be packed in O(
|P | log σ

w
) words.1 Under this model, we propose a new,

compact method for representing a dynamic trie T containing at most 2w nodes so
that: (1) any leaf can be inserted into or deleted from T efficiently; and (2) the longest
common prefix between any query pattern P and T , i.e., the longest prefix of P which
is identical to a prefix of a string stored in T , can be obtained efficiently.

1.1 Previous Work

By using standard tree data structures, a dynamic trie T can be implemented in
O(|T | · (log |T | + logσ)) bits of space so that: (1) insertion or deletion of a leaf
takes O(logσ) time; and (2) answering the longest common prefix query takes
O(|P | · logσ) time.

A number of solutions have been presented to improve the space and average time
complexities. Morrison [19] proposed the Patricia trie which compresses paths by
contracting nodes having only one child, thereby reducing the total size of the trie.
Andersson and Nilsson [1] proposed the LC-trie which decreases the height of the
trie by increasing the branching factor (so-called level compression); this idea re-
duces the average running time [7]. The String B-tree [8] reduces the search time to
O(|P | + log |T |) time. However, in the worst case, the above solutions use O(|T |)
words space and still require O(|P |) time to answer a longest common prefix query.
Darragh et al. [6] proposed a method named Bonsai which is based on hashing and
uses O(|T | logσ) space, but requires O(|P |) time (or O(|P | logσ) time, depending
on how child nodes are represented) to answer a longest common prefix query. Em-
ploying the succinct dynamic binary tree [24], a dynamic trie can be simulated in
O(|T | logσ) bits of space, by considering each character in the alphabet as a binary
string of logσ bits, under the unit-cost RAM model so that: (1) insertion or dele-
tion of a leaf takes O(logσ(log log |T |)1+ε) time where ε > 0; and (2) the longest
common prefix query takes O(|P | logσ) time. Arroyuelo [2] gave a data structure
for representing a tree T using |T | · (2 + logσ) + o(|T | logσ) bits supporting the
parent and child operations in O(logσ + log log |T |) time, and insertion and dele-
tion of nodes in O((logσ + log log |T |) · (1 + logσ

log(logσ+log log |T |))) amortized time. In
summary, none of the existing data structures can answer the longest common prefix
query in o(|P |) time.

We also remark that Willard [27, 28] proposed two well-known data structures
for manipulating a trie T of fixed height O(logM) for a positive integer M : the q-
fast trie [28], which takes O(|T | logM) bits space and searches for any pattern P

over the binary alphabet in T using O(
√

logM) time while inserting or deleting
a leaf in O(

√
logM) time, and the y-fast trie [27], which is a static trie that uses

O(|T | logM) bits of space and can report the longest prefix of any pattern P over the
binary alphabet in T using O(log logM) time.

1In this paper, log denotes the base-2 logarithm, ln is the natural logarithm, and logσ is the base-σ loga-
rithm. Furthermore, � and � symbols have been omitted to increase the readability.

972 Algorithmica (2015) 71:969–988

1.2 New Results

We present a new data structure for maintaining a dynamic trie T of size2 at
most 2w . It uses O(|T | logσ) bits while: (1) insertion or deletion of any leaf takes
O((log log |T |)2/ log log log |T |) worst-case time; and (2) computing the longest

common prefix between a query pattern P and T takes O(
|P |

logσ |T |
(log log |T |)2

log log log |T |) worst-
case time [Theorem 1]. In other words, each insertion or deletion of a leaf takes

o(log |T |) time, and furthermore, for σ = 2
o(log |T | log log log |T |

(log log |T |)2)
, our dynamic trie data

structure can perform the longest common prefix query in o(|P |) time. When con-
sidering the expected amortized time complexity instead of the worst-case time com-
plexity for updates, we further improve the dynamic trie data structure so that: (1) in-
sertion or deletion of a leaf takes O(log log |T |) expected amortized time; and (2) the
longest common prefix query takes O(

|P |
logσ |T | + log log |T |) worst-case time [Theo-

rem 2].
Our improvements to existing data structures for dynamic tries stem from the ob-

servation that small tries (that is, tries of size O(logσ |T |)) can be maintained very
efficiently. Accordingly, our new data structure partitions the trie T into many small
tries which are linked together, and maintains the small tries individually. With this
approach, we not only store the trie compactly using O(|T | logσ) bits, but also en-
able fast queries and efficient insertions and deletions.

1.3 Applications to LZ-Compression

To demonstrate the new dynamic trie data structure, we apply it to generate the Ziv-
Lempel encoding [29] of a string. The Ziv-Lempel encoding scheme (LZ78) and its
variant LZW encoding [26] are popular text compression schemes. Current solutions
for generating the LZ78 encoding of a text of length n over an alphabet of size σ

construct a trie called the LZ-trie from which the LZ78 encoding is directly obtained;
see Sect. 2.3 below for details. LZ78 also finds applications in compressed index-
ing; Navarro [21] presented a compressed full-text self-index based on the LZ-trie
called LZ-index whose space usage is proportional to that of the compressed text and
which allows efficient exact pattern matching. There also exist indexing data struc-
tures based on the LZ-trie [9, 15].

People have recently realized the importance of workspace-efficient data compres-
sion algorithms [3, 14, 17]. Given a long text, there may be enough memory to store
the compressed text (for example, its LZ78 encoding), but in some cases it is diffi-
cult to actually construct the compressed text because the working space requirement
becomes too large. For example, we may be able to store the LZ78 encoding of the
human genome in a 1GB RAM computer, but we may fail to construct the encoding
due to limitations in the size of the memory [3]. Hence, workspace-efficient encoding
algorithms are necessary.

2We use the term size of a trie to refer to the number of nodes in the trie, not the number of bits used to
represent the trie.

Algorithmica (2015) 71:969–988 973

However, none of the solutions in the literature for constructing the LZ78 encoding
run in o(n) time and o(n logσ) bits of working space. A straightforward implemen-
tation of LZ78 based on Ziv and Lempel’s original definition takes O(n logσ) worst-
case time to process a string of length n using trie data structures (if hashing is used to
store the children of a node, this may be reduced to O(n) expected time). Moreover,
such an algorithm uses O(n) words of working space and this may be much larger
than the space usage of the LZ78 encoding, which is (1 + o(1))nHk bits, where Hk

denotes the k-th order empirical entropy [16] of the text. Utilizing the solution of
Arroyuelo and Navarro [3], the LZ78 encoding of a text can be constructed using
O(n(logσ + log logn)) time and (1 + ε)nHk +O(

n(k logσ+log logσ n)

logσ n
) bits of working

space for any non-negative integer k and ε > 0. For k = o(logσ n), the working space
of the method of Arroyuelo and Navarro [3] is (1 + ε)nHk + o(n) logσ bits, but if
Hk = �(logσ) then the working space is �(n logσ) bits.

By employing our new dynamic trie data structure to maintain the LZ-trie and
using a two-phase technique, we obtain the first sublinear (o(n)) time and sublin-
ear (o(n logσ) bits) working space algorithm for generating the LZ78 encoding of
a string over a small alphabet. More precisely, our proposed algorithm runs in o(n)

time and o(n logσ) bits of working space whenever σ = 2
o(logn

log log logn

(log logn)2
)
. To be even

more precise, it uses O(
n(logσ+log logσ n)

logσ n
) bits of working space and runs in either

O(n
logσ n

(log logn)2

log log logn
) worst-case time [Theorem 3] or O(

n log logn
logσ n

) expected time [The-
orem 4] for any σ ≤ n. Also, for any σ ≤ n, the working space of our new algorithm
is asymptotically less than or equal to that of the output compressed text, as discussed
at the end of Sect. 5.2.

1.4 Organization of Paper

The rest of the paper is organized as follows. Section 2 describes a few data struc-
tures needed by our new dynamic trie data structure and defines the LZ78 encoding
scheme. Sections 3 and 4 detail our new linked dynamic trie data structure with good
worst-case update time and good expected amortized update time, respectively. Fi-
nally, Sect. 5 presents our LZ78 encoding algorithm and Sect. 6 contains some con-
cluding remarks.

2 Preliminaries

Some data structures for dynamically maintaining a set of strings and an edge-labeled
tree efficiently, which form the building blocks of our new dynamic trie data structure,
are described in Sects. 2.1 and 2.2, respectively. Section 2.3 reviews the definitions
of the LZ78 encoding scheme and the LZ-trie.

2.1 Data Structures for Maintaining a Set of Strings of Length at most logσ N

This subsection recalls two variants of the dynamic predecessor data structure [4,
18] that can be used to maintain a set of strings, each of length at most logσ N where

974 Algorithmica (2015) 71:969–988

N is a fixed non-negative integer, over an alphabet of size σ while supporting three
operations:

– Insertion of a string of length at most logσ N .
– Deletion of a string of length at most logσ N .
– Predecessor (or successor) of a string P , i.e., reporting the string currently in the

set which is lexicographically just smaller (or bigger) than P .

We represent any string of length at most logσ N by an integer in {0,1, . . . ,N −1}. If
a string is shorter than logσ N , we append $-symbols to the end of the string to make
its length equal to logσ N .

First, for obtaining a good worst-case running time, we use the dynamic prede-
cessor data structure of Beame and Fich [4], whose properties are summarized in the
next lemma:

Lemma 1 The dynamic predecessor data structure of Beame and Fich [4] can main-
tain a set of � O(logN)-bit integers using O(� logN) bits of space under insertions
and deletions while also supporting predecessor (or successor) queries in such a way
that each operation takes O((log logN)2/(log log logN)) time.

We immediately obtain:

Lemma 2 Consider � strings of length at most logσ N over an alphabet of size σ . We
can store the strings in O(� logN) bits so that each of the insert/delete/predecessor
operations can be performed in O((log logN)2/ log log logN) time.

Proof Treat the strings as integers in the range {0,1, . . . ,N − 1} and apply Lem-
ma 1. �

As for the expected amortized running time, using a data structure of Mehlhorn
and Näher [18] leads to an improvement in the time complexity:

Lemma 3 The dynamic predecessor data structure of Mehlhorn and Näher [18] can
maintain a set of � O(logN)-bit integers using O(� logN) bits of space in such a
way that a predecessor query takes O(log logN) time and the insertion or deletion
of an integer takes O(log logN) expected amortized time.

Lemma 4 Consider � strings of length at most logσ N over an alphabet of size σ . We
can store the strings in O(� logN) bits so that insertion or deletion of a string takes
O(log logN) expected amortized time and a predecessor query can be answered in
O(log logN) time.

Proof Treat the strings as integers in the range {0,1, . . . ,N − 1} and apply Lem-
ma 3. �

Algorithmica (2015) 71:969–988 975

2.2 Data Structures for Maintaining an Edge-Labeled Tree

Here, we show how to dynamically maintain an edge-labeled tree T . We assume
that the size of the tree is at most N for some fixed non-negative integer N , that the
nodes are numbered by integers in [0,N − 1], and that all edge labels are integers
in [0,N − 1]. In addition, we assume that for each node u in T , all child edges of u

have distinct labels. We consider the following operations:

– Insert(u, κ, v): Insert a leaf v as a child of u and label the edge (u, v) by κ .
– Delete(v): Delete the leaf v and the edge between v and its parent (if any).
– Child(u, κ): Return the child v of u such that the edge (u, v) is labeled by κ .

Note that a node u is a leaf if Child(u, κ) does not exist for any κ ∈ A.

Lemma 5 An edge-labeled tree T can be maintained dynamically in O(|T | logN)

bits of space in such a way that each Child, Insert, and Delete operation can be
supported in O((log logN)2/(log log logN)) time.

Proof Use two dynamic predecessor data structures D1 and D2 from Lemma 1 to
represent T as follows. For each edge (u, v) labeled by κ , store the integer N2 ·u+N ·
κ +v in D1 and the integer N2 ·v+N ·u+κ in D2. D1 and D2 take O(|T | logN) bits
of space. Since 0 ≤ u,v, κ ≤ N , there is a one-to-one mapping between (u, v, κ) and
the integer x = N2 · u + N · κ + v in D1. To be precise, v = x mod N , u = �x/N2�,
and κ = �(x − u · N2)/N�. Similarly for D2.

To insert a leaf node v, which is a child of u with edge label κ , insert N2 · u + N ·
κ + v into D1 and insert N2 · v + N · u + κ into D2.

To delete a leaf node v, first retrieve the integer x which is just larger than N2 ·
v − 1 (or the successor of N2 · v − 1) in D2. Note that x = N2 · v +N ·u+ κ , where
u is the parent of v and κ is the label of (u, v); therefore, the leaf node v be removed
by deleting N2 · u + N · κ + v from D1 and N2 · v + N · u + κ from D2.

To compute Child(u, κ), first retrieve the integer x which is just larger than N2 ·
u + N · κ − 1 (or the successor of N2 · u + N · κ − 1) in D1. Then, if x < N2 · u +
N · (κ + 1), Child(u, κ) exists and it equals the remainder when x is divided by N ,
otherwise it does not exist.

The running time for each of the three operations is O((log logN)2/(log log logN))

according to Lemma 1. �

Alternatively, we can make use of a data structure known as the dynamic dictio-
nary [5, 24], whose properties are summarized below.

Lemma 6 The dynamic dictionary data structure of Blandford and Blelloch [5] or
Raman and Rao [24] can maintain a set of � key-data integer pairs (x, y), where both
x and y are O(logN)-bit integers, using O(� logN) bits under insertions and dele-
tions while supporting membership queries so that retrieving data of a corresponding
key takes O(1) time and each insert/deletion operation takes O(1) expected amor-
tized time.

976 Algorithmica (2015) 71:969–988

Equipped with Lemma 6, we obtain:

Lemma 7 An edge-labeled tree T can be maintained dynamically in O(|T | logN)

bits of space so that the Child operation takes O(1) time and each of the operations
Insert and Delete can be supported in O(1) expected amortized time.

Proof Maintain T with a dynamic dictionary D from Lemma 6. For each edge (u, v)

labeled by κ , store two key-data pairs (N · u + κ, v) and (v, N · u + κ) in D.
To insert a leaf node v which is a child of u with edge label κ , insert the two

key-data pairs (v, N · u + κ) and (N · u + κ, v) into D. To delete a leaf node v,
first retrieve the data x associated with the key v. Here, x = N · u + κ , where u is
the parent of v and κ is the label of (u, v). Hence, by deleting the two key-data pairs
(v, x) and (x, v) from D, the leaf node v is removed. Both of the insert and delete
operations take O(1) expected amortized time.

The Child(u, κ) operation is implemented by returning the data associated with
the key N · u + κ from D, which takes O(1) worst-case time. If no such key exists in
D then Child(u, κ) does not exist. �

2.3 LZ78 Encoding and the LZ-Trie

The Ziv-Lempel encoding scheme [29], or LZ78, is a data compression scheme for
strings. For a given string S = S[1 . . . n], it partitions S into substrings called phrases
and a constructs a so-called LZ-trie procedurally using the following method: First,
initialize a trie T consisting of a single node (the root) corresponding to the empty
string, the current position p in S as p = 1, and the number of phrases c = 0. Next,
parse S from left to right until p > n as follows. Find the longest string, t ∈ T , that
appears as a prefix of S[p . . . n]. Set c = c + 1. Define the phrase sc = S[p . . . (p +
|t |)] = t · S[p + |t |] and insert sc into T . Then, let p = p + |t | + 1 and repeat the
parsing for the next phrase.

The trie T generated during the above process is called the LZ-trie, while the list of
phrases s1, s2, . . . , sc is called the phrase list. Note that T has c+1 nodes. The output
of the LZ78 encoding scheme of the given string S is called the LZ78 encoding of S

and consists of a list of c pairs of the form (idi , chari), where the ith pair represents
phrase si and where idi is the id of the parent of the node which encodes si in the LZ-
trie and chari is the last symbol of si . Clearly, the number of bits needed to represent
the LZ78 encoding of S, i.e., the space usage of the compressed data, is c(log c +
logσ). (The LZ-trie itself is not part of the output.) Ziv and Lempel [29] proved that
the LZ78 encoding scheme achieves an asymptotically optimal compression ratio.

By [29], it holds that
√

n ≤ c ≤ n/ logσ n. Also, the LZ-trie can be stored in
c log c + �(c logσ) bits. For any integer k = o(logσ n), this is nHk +
O(n logσ log logσ n/ logσ n) = nHk + o(n logσ) bits [16].

3 Dynamically Maintaining a Trie with Good Worst-Case Update Time

In this section, we show how to maintain a trie T while efficiently supporting the
following operations:

Algorithmica (2015) 71:969–988 977

– Insert_leaf (T ,u, a): Inserts a leaf v as a child of u such that the label of (u, v) is
a, where a ∈ A.

– Delete_leaf (T ,u): Deletes the leaf u and the edge between u and its parent (if
any).

– Lcp(T,P): Reports the length � such that P [1 . . . �] is the longest prefix of a string
which exists in T .

Let w be the (fixed) word size of the assumed RAM model, and define N = 2w .
Below, we first show how to maintain a trie of size O(logσ N). Then, we focus on
how to maintain a trie of height at most O(logσ N). Finally, we show how to maintain
a general trie with at most N nodes by partitioning it into a set of linked tries, each
of height at most O(logσ N).

3.1 Maintaining a Trie of Size O(logσ N)

We now explain how to dynamically maintain a trie T of size O(logσ N), in which
every leaf represents a string. In addition to the operations Lcp, Insert_leaf , and
Delete_leaf , the dynamic trie also supports computing the preorder of any node in
a trie, the splitting of a trie, and the merging of two tries. For the preorder operation,
we report the preorder number of any node in a trie. For the split operation, a trie T is
split into two subtries T1 and T2 such that T1 stores the s lexicographically smallest
strings for some integer s while T2 stores the rest of the strings in T . For the merge
operation, two tries T1 and T2 are merged into one trie where the leaves in T1 are
smaller than those in T2.

Lemma 8 We can precompute six tables of size O(N5ε) bits, for any fixed constant
0 < ε < 0.2. Based on these tables, we can maintain a trie T of size at most ε logσ N

by using at most 3ε logN bits so that each of the operations Lcp, Insert_leaf , and
Delete_leaf takes O(1) time, and also the preorder of any node can be computed in
O(1) time. In addition, we can also split a trie of size at most ε logσ N or merge two
tries of size at most ε

2 logσ N in O(1) time.

Proof The data structure has two parts. First, the topology of T is stored in 2|T | ≤
2ε logσ N bits using parenthesis encoding [12, 20]. Second, the edge labels of all
edges are stored in preorder using |T | logσ ≤ ε logN bits. Therefore, the total space
is at most 3ε logN bits.

In addition, the data structure requires six precomputed tables. The first table
Lcp_STrie stores the value of Lcp(R,Q) for any trie R of size at most ε logσ N

and any string Q of length at most ε logσ N . The second table stores the value
of preorder_STrie(R,Q), which is the preorder of any string Q of length at most
ε logσ N in any trie R of size at most ε logσ N . Since there are O(23·ε logN ·
σ ε logσ N) = O(N4ε) different combinations of R and Q, both tables can be stored
in O(N4ε · log logσ N) = O(N5ε) bits of space.

The third table stores the value of Ins_STrie(R,x, c), which is the trie formed by
inserting character c to the leaf x of the trie R of size at most ε logσ N − 1. The table
Ins_STrie has O(23ε logN ·σ (ε logσ N)−1 ·σ) = O(N4ε) entries and each entry requires
O(ε logN) bits, so the third table uses O(N5ε) bits of space. The fourth table stores

978 Algorithmica (2015) 71:969–988

the value of Del_STrie(R,x), which is the trie formed by deleting the leaf x from
the trie R of size at most ε logσ N . The table Del_STrie has O(23·ε logN · ε logσ N)

entries and each entry requires O(ε logN) bits, so the fourth table uses O(N4ε) bits
of space.

The fifth table stores the value of Split_STrie(R, s), which is a pair of tries
(R1,R2) where R1 is of size s and R2 is of size |R| − s such that R1 and R2
split R of size at most ε logσ N . Since there are O(23·ε logN · ε logσ N) entries and
each entry takes O(ε logσ N) bits, this table can be stored in O(N4ε) bits of space.
The sixth table stores the value of Merge_STrie(R1,R2) which is the trie formed
by merging R1 and R2, where the total size of R1 and R2 is ε

2 logσ N . There are
O(23ε logN · ε logσ N) different combinations of (R1,R2). For each combination, the
merged trie can be stored in O(ε logσ N) bits. Hence, this table can be stored in
O(N4ε) bits of space.

Then, the six operations can be supported in O(1) time by using the precomputed
tables:

– To insert/delete a node x, we update the topology and the edge label in O(1) time
utilizing the tables Ins_STrie and Del_STrie.

– Lcp(T ,P) can be computed in O(1) time by utilizing the table Lcp_STrie.
– Preorder of any string in T can also be computed in O(1) time utilizing the table

preorder_STrie.
– We can split/merge tries in O(1) time by using the tables Split_STrie and

Merge_STrie.
�

Lemma 9 For any 0 ≤ ε ≤ 0.2 and a fixed N , the six tables needed by Lemma 8 can
be precomputed using O(N4ε logσ N) time.

Proof Observe that every table has O(N4ε) entries. Furthermore, each entry can be
computed in O(ε logσ N) time. Hence, the lemma follows. �

3.2 Maintaining a Trie of Height O(logσ N)

This subsection describes how to dynamically maintain a trie of height O(logσ N),
given the precomputed tables from Lemma 8.

Lemma 10 Given the six precomputed tables in Lemma 8 of O(N5ε) bits for any con-
stant 0 < ε < 0.2, we can dynamically maintain a trie T of height at most ε

2 logσ N

using O(ε−1|T | logσ) bits of space such that all operations Lcp, Insert_leaf , and
Delete_leaf take O((log logN)2/ log log logN) time.

Proof Let ui be the node in T whose preorder is i. Let S = {s1, s2, . . . , s|T |} be the
set of strings where si is the string representing the path label of ui .

Observe that the si ’s are sorted in alphabetical order. A block is defined to be a
series of strings si, si+1, . . . , sj , where i ≤ j ≤ |T |. Note that all strings in a block can
be represented as a subtrie of T . The nodes ui, ui+1, . . . , uj may not be connected.

Algorithmica (2015) 71:969–988 979

In this case we include the nodes on the path from the root to ui to make the nodes
connected. Therefore, the size of the subtrie is at most j − i + 1 + ε

2 logσ N .
The set S can be partitioned into a set B = {B1,B2, . . . ,B|B|} of non-overlapping

blocks such that B1 ∪B2 ∪ · · ·∪B|B| = S. We also maintain the invariant that: (1) ev-
ery block contains at most ε

2 logσ N strings; and (2) at most one block has less than
ε
4 logσ N strings. From here on, for each Bi ∈ B, let sb(i) be the lexicographically
smallest string in Bi .

Now, the trie T is represented by a two-level data structure:

• Top-level: Using the data structure in Lemma 2, store {sb(1), . . . , sb(|B|)}.
• Block-level: For each block Bi ∈ B, represent the strings in Bi as a trie Ti of

size at most ε logσ N and store the trie using Lemma 8. Also, store a bit vector
Vi[1 . . . ε logσ N] such that Vi[j] = 1 if the node of preorder j in Ti represents a
string in Bi .

We first show that the space required is O(ε−1|T | logσ) bits. Observe that
|B| = O(

|T |
ε logσ N

) blocks. The space needed to store the top-level structure is

O(|B| logN) = O(ε−1|T | logσ) bits. Each block requires O(ε logN) bits of
space by Lemma 8. The space for the block-level structure is O(|B|ε logN) =
O(|T | logσ).

The time complexity of the three operations is as follows:

– Lcp(T ,P): Let P ′ be the first ε
2 logσ N characters of P . To compute the

longest common prefix of P and T , we first locate the sb(j) which is alpha-
betically just smaller than or equal to P ′. By Lemma 2, sb(j) can be found in
O((log logN)2/ log log logN) time. Let lcp1 and lcp2 be the lengths of the longest
common prefixes of P ′ in the trie for Bj and Bj+1 respectively. By Lemma 8, lcp1
and lcp2 can be computed in O(1) time. Then, Lcp(T ,P) = max{lcp1, lcp2}.

– Insert_leaf (T ,u, a): Suppose u represents a string s ∈ S. This operation is equiv-
alent to inserting a new string s · a after s. Let Bj be the block containing s. We
insert s · a into Bj using O(1) time by Lemma 8, and update Vj accordingly. If Bj

contains less than ε
2 logσ N strings, then the insert operation is done. Otherwise,

we need to split Bj into two blocks each containing at least ε
4 logσ N strings. The

bit vector Vj is used to recover the set of strings in Bj . The split takes O(1) time
by Lemma 8 because Bj corresponds to a trie of size ε

2 logσ N . Lastly, we up-
date the top-level structure to indicate the existence of the new block, which takes
O((log logN)2/ log log logN) time.

– Delete_leaf (T ,u): The analysis is similar to the Insert_leaf operation. If Bj con-
tains at least ε

4 logσ N strings after deletion, we are done. Otherwise, if a neighbor
Bj−1 or Bj+1 contains more than ε

4 logσ N strings, we move a string from the
neighbor to Bj . If both Bj−1 and Bj+1 contain exactly ε

4 logσ N strings, we merge
Bj with one of them. We also update the top-level structure.

�

3.3 Maintaining a Trie with no Height Restrictions

This subsection gives a data structure for dynamically maintaining a general trie T .
Assuming that |T | ≤ N and that the six precomputed tables in Lemma 8 are available,

980 Algorithmica (2015) 71:969–988

Fig. 1 Assuming δ = 2, T is represented by storing T ′ and τx , τy , τz

we describe a dynamic data structure for a trie T such that insertion/deletion of a leaf
takes O((log logN)2/ log log logN) time and the longest common prefix of P can be

computed in O(
|P |

logσ N
(log logN)2

log log logN
) time.

The data structure represents T by partitioning it into smaller tries of height at
most h = ε

2 logσ N which are linked together. To formally describe the representation,
we need some definitions.

Set δ = �h/3�. Any node u ∈ T is called a linking node if: (1) the distance from
the root to u is a multiple of δ; and (2) the subtrie rooted at u has more than δ nodes.

Let LN be the set of linking nodes of T . For every non-root node v ∈ T , we denote
by p(v) the linking node in LN which is the lowest proper ancestor of v in T . For
any u ∈ LN , let τu be the subtrie of T rooted at u including all descendents v of u

such that p(v) = u and v /∈ LN . Next, let T ′ be a tree whose vertex set is LN and
whose edge set is {(p(u),u) | u ∈ LN and u is not the root}. The label of each edge
(p(u),u) in T ′ is the string of length δ represented by the path from p(u) to u in T .
We remark that T ′ corresponds to a “macroset” and each τu to a “microset” in [11].

Based on the above discussion, T can be represented by storing T ′ along with τu

for all u ∈ LN . (See Fig. 1 for an example.) The next lemma bounds the space usage
of LN .

Lemma 11 |LN | ≤ |T |/δ. Moreover, for every u ∈ LN , τu is of height smaller
than 2δ.

Proof Each u ∈ LN has at least δ unique nodes associated to it. Hence |T | =∑
u∈LN |τu| ≥ |LN |δ. Thus, |LN | ≤ |T |/δ. By construction, τu is of height smaller

than 2δ. �

The lemma below states how to maintain a trie of size at most N .

Lemma 12 For any 0 < ε < 0.2 and N ≤ 2w , we can dynamically maintain a trie
T of size at most N using O(ε−1|T | logσ + N5ε) bits so that Lcp(T ,P) takes

Algorithmica (2015) 71:969–988 981

O(
|P |

ε logσ N
(log logN)2

log log logN
) time while insertion/deletion of a leaf takes O((log logN)2/

log log logN) time.

Proof Store the precomputed tables from Lemma 8 in O(N5ε) bits of space and
use Lemma 5 to represent T ′ in O(|T ′| logN) = O(|LN | logN) = O(

|T |
δ

logN) =
O(

|T |
ε logσ N

logN) = O(ε−1|T | logσ) bits. For every u ∈ LN , the height of τu is
bounded according to Lemma 11, so we can represent τu as in Lemma 10 us-
ing O(|τu| logσ) bits. Since

∑
u∈LN |τu| = |T |, all τu’s can be represented in

O(|T | logσ) bits. We also store the pointer to τu for each u ∈ LN in O(logN) bits.
The total space is also O(|T ′| logN) bits.

For Lcp(T ,P), the longest prefix of P which exists in T can be found in two steps.

First, we find the longest prefix of P in T ′. It is done in O(
|P |

ε logσ N
(log logN)2

log log logN
) time

using the child operation of the data structure in Lemma 5. Suppose u is the node in
T ′ corresponding to the longest prefix P [1 . . . x] of P ending in a node. Second, we
find the longest prefix of P [x + 1 . . . |P |] in τu. By Lemma 10, it takes an additional

O(
(log logN)2

log log logN
) time.

For Insert_leaf (T,u,a), suppose u is in the subtrie τv where v ∈ LN . By

Lemma 10, it takes O(
(log logN)2

log log logN
) time to insert a as a child edge of u. Moreover, if

the insertion creates a new linking node v′ in τv , we need to do the following addi-
tional steps: (1) insert a new leaf in T ′ corresponding to v′ (this step can be performed

in O(
(log logN)2

log log logN
) time by Lemma 5); and (2) split τv into τv′ and τv − τv′ (this step

can be done in O(1) time using the tables Split_STrie and Merge_STrie in Lemma 8).

Delete_leaf (T ,u) can be computed in O(
(log logN)2

log log logN
) time, similarly to the inser-

tion operation. �

The previous lemma stores a trie T using O(ε−1|T | logσ + N5ε) bits of space.
The proof of the next theorem explains how to eliminate the N5ε -term from the space
complexity.

Theorem 1 For any fixed constant 0 < ε < 0.2, we can dynamically maintain
a trie T using O(ε−1|T | logσ) bits of space such that the query Lcp(T ,P)

takes O(
|P |

ε logσ |T |
(log log |T |)2

log log log |T |) time while insertion or deletion of a leaf takes

O((log log |T |)2/ log log log |T |) time.

Proof We use Overmars’ global rebuilding technique [23]. Our data structure keeps
two versions of the trie and maintains four invariants:

(1) Suppose 2�−2 < |T | ≤ 2�−1, the two versions of the trie are implemented based
on Lemma 12 using N = 2� and N = 2�+1, respectively.

(2) At least one of the tries is complete, that is, equals T .
(3) For the incomplete trie, it is an induced subtrie of T which contains all nodes

with preorder value smaller than some value.
(4) We incrementally maintain the six precomputed tables of at most 25(�+1)ε entries

using Lemma 9.

982 Algorithmica (2015) 71:969–988

Lcp(T ,P) can be computed in O(
|P |

logσ N
(log logN)2

log log logN
) = O(

|P |
logσ |T |

(log log |T |)2

log log log |T |) time
by querying the complete trie using Lemma 12.

For the operation Insert_leaf (T,u,a), a new leaf a is inserted as a child of u in
the complete trie using Lemma 12. For the incomplete trie, if u exists, we insert a as
a new leaf of the incomplete trie to maintain invariant (3).

For the operation Delete_leaf (T ,u), we delete u in the complete trie. For the
incomplete trie, if u exists, we need to delete it to maintain invariant (3).

To maintain invariant (1), we do the following. After an insertion, if |T | > 2�−1,
we remove the trie implemented using N = 2� and introduce an empty trie imple-
mented using N = 2�+2. After a deletion, if |T | ≤ 2�−2, we remove the trie imple-
mented using N = 2�+1 and introduce an empty trie implemented using N = 2�−1.

To maintain invariant (2), we grow the incomplete trie and ensure that the incom-
plete trie is grown from empty to complete when the trie T is doubled or halved. More
precisely, when the incomplete trie is introduced, it consists of only the root node, and
a pointer P pointing to it is stored. We also store another pointer Q pointing to the
root node of the complete trie. After each Insert_leaf or Delete_leaf operation, we
start an Euler tour traversal from Q in the complete trie, and visit four nodes. If their
corresponding nodes do not exist in the incomplete trie, we create them. We update
the pointers to resume the traversal. Because the length of the Euler tour is 2t where
t is the size of the trie when an empty trie is introduced, the traversal is done after t/2
updates. This guarantees that when the trie T is doubled or halved after an incomplete
trie is introduced, the incomplete trie becomes complete. �

4 Dynamically Maintaining a Trie with Good Expected Amortized Update
Time

In cases where the expected amortized time complexity (as opposed to the worst-case
time complexity) is of primary concern, we can update the dynamic trie even more
efficiently than in the previous section. More precisely, we can dynamically maintain
a trie T using O(|T | logσ) bits of space so that Lcp(T,P) takes O(|P |/ logσ |T | +
log log |T |) worst-case time while insertion/deletion of a leaf takes O(log log |T |)
expected amortized time only.

The idea is to simulate Lemma 2 by using the data structure from Lemma 4. Then,
we can dynamically maintain a trie T of height O(logσ N) as follows:

Lemma 13 Given the six precomputed tables in Lemma 8 of O(N5ε) bits for any
constant 0 < ε < 0.2, we can dynamically maintain a trie T of height at most
ε
2 logσ N using O(|T | logσ) bits of space such that Lcp takes O(log logN) time
while Insert_leaf and Delete_leaf take O(log logN) expected amortized time.

Proof The trie representation is the same as in Lemma 10 except that the top-level
data structure is implemented using Lemma 4 instead of Lemma 2. �

By utilizing Lemmas 7 and 13, we can dynamically maintain a trie T with no
height restrictions according to the following theorem.

Algorithmica (2015) 71:969–988 983

Theorem 2 For any fixed constant 0 < ε < 0.2, we can dynamically maintain a trie T

using O(ε−1|T | logσ) bits of space such that the query Lcp(T ,P) takes O(
|P |

logσ |T | +
log log |T |) time while insertion or deletion of a leaf takes O(log log |T |) expected
amortized time.

Proof The trie representation is the same as in Theorem 1 except that Lemma 5 is
replaced by Lemma 7 and Lemma 10 is replaced by Lemma 13. �

5 LZ-Compression

This section presents a two-phase algorithm for constructing the LZ78 encoding of
an input text S[1 . . . n] where n ≤ 2w . Phase 1 first constructs the LZ-trie based on
our dynamic trie data structure from Theorem 1 or Theorem 2 and then enhances the
LZ-trie with the auxiliary data structure described in Lemma 14 so that the preorder
of any node can be computed efficiently. Next, Phase 2 scans the text S to output the
list of preorders of the phrases. Figure 2 describes the details.

5.1 Auxiliary Data Structure for Answering Preorder Queries

The next lemma shows how to build an auxiliary data structure for T to answer pre-
order queries efficiently. We assume that T has been constructed by using our dy-
namic data structure, but is fixed from now on.

Lemma 14 Given a trie T represented by the dynamic data structure in Theorem 1
(or Theorem 2), we can generate an auxiliary data structure of O(|T | logσ) bits
in O(|T |) time from which the preorder of any query node can be computed in
O(log log |T |) time.

Proof The auxiliary data structure stores information about every linking node u (that
is, every u ∈ T ′). Firstly, it stores the preorder of u. Next, for the corresponding sub-
trie τu, define B and the set {sb(1), sb(2), . . . sb(|B|)} as in Lemma 10 (or Lemma 13).
The auxiliary data structure also stores the following information:

– The set {sb(1), sb(2), . . . , sb(|B|)}. By Lemma 2 (or Lemma 4), we can extract all
strings in {sb(1), sb(2), . . . , sb(|B|)} in O(|B|(log log |T |)2/ log log log |T |) time (or
O(|B| log log |T |) time), and store them in O(|B| log |T |) bits of space using
O(|B| log log |T |) time with the y-fast trie data structure [27]. After that, given
any string P , we can report the largest i such that sb(i) is alphabetically smaller
than or equal to P in O(log log |T |) time.

– An array V [1 . . . |B|], where V [j] equals the preorder values of the sb(i). Since
each preorder value can be stored in log |T | bits, the array V can be stored in
|B| log |T | = O(|T |) bits.

– For each Bi ∈ B, all strings in Bi are stored in a trie of O(log |T |) bits using
Lemma 8.

984 Algorithmica (2015) 71:969–988

Algorithm LZcompress
Input: A sequence S[1 . . . n].
Output: The compressed text of S.

/* Phase 1: Construct the LZ-trie T */
1 Initialize T as consisting of a single node (the root) corresponding to the empty string.
2 Denote the empty phrase as phrase 0.
3 p = 1;
4 while p ≤ n do
4.1 Find the longest phrase t ∈ T that appears as a prefix of S[p . . . n].
4.2 Store the length of t by delta-code.
4.3 Insert the phrase t · S[p + |t |] into T .
4.4 p = p + |t | + 1;

endwhile
5 Enrich the trie T so that we can compute the preorder of any node in T by Lemma 14.

/* Phase 2: Construct the phrase list s1s2 . . . sc */
6 p = 1; j = 1
7 while p ≤ n do
7.1 Obtain the length � of the next phrase stored by delta-code.
7.2 Find the phrase t = S[p . . . (p + � − 1)] ∈ T .
7.3 qj = preorder index of t in T

7.4 Output (qj , S[p + � − 1]).
7.5 p = p + |t | + 1; j = j + 1;

endwhile
End LZcompress

Fig. 2 Algorithm for LZ-compression

For any query node v ∈ T , let u be the linking node p(v) ∈ LN , let B be the block
in τu which contains v, and let v′ be the node in τu corresponding to the smallest
string in B . Clearly, the preorder of v equals the sum of: (1) the preorder of u in T ;
(2) the preorder of v′ in τu; and (3) the preorder of v in B . For (1), the preorder of u

in T is stored in the auxiliary data structure. For (2), using the y-fast trie we can find
the preorder of v′ in τu in O(log log |T |) time. For (3), by Lemma 8, the preorder v

in B can be determined in O(1) time. The lemma follows. �

5.2 Complexity Analysis

We now analyze the complexity of the algorithm. We assume a unit-cost RAM model
with word size �logn�, and σ ≤ n. As in Sect. 2.3, c denotes the number of phrases.
Recall that

√
n ≤ c ≤ n/ logσ n. We first prove a simple lemma used in the proof of

Theorem 3 below.

Lemma 15 c ln n
c

≤ n ln logσ n

logσ n
.

Algorithmica (2015) 71:969–988 985

Proof Write f (c) = c ln n
c

. Observe that the function f (c) is increasing with respect
to c in the interval [0 . . . n

e
], where e denotes the base of the natural logarithm (i.e.,

e = 2.71828 . . .), and that f (c) ≤ n
e

for all c. There are two cases:

• Case 1: logσ n > e
n

logσ n
< n

e
together with c ≤ n

logσ n
implies that c < n

e
. Hence, f (c) is increasing

with respect to c and we obtain f (c) ≤ f (n
logσ n

) = n
logσ n

· ln(logσ n) = n ln logσ n

logσ n
.

• Case 2: logσ n ≤ e

We have f (c) ≤ n
e

≤ n
logσ n

<
n ln logσ n

logσ n
.

�

Theorem 3 Suppose we use the trie data structure in Theorem 1. Algorithm LZcom-

press in Fig. 2 builds the LZ-trie T and the phrase list using O(n
logσ n

(log logn)2

log log logn
) time

and O(
n(logσ+log logσ n)

logσ n
) bits of working space.

Proof Phase 1 builds the LZ-trie T during the while-loop in Step 4. Since there are c

phrases, the while-loop will execute c times and generate c phrases s1, s2, . . . , sc . In

the i-th iteration, Step 4.1 identifies phrase si in O(
|si |

logσ n
(log logn)2

log log logn
) time according

to Theorem 1, and Step 4.2 stores the length of si by delta-code. Then, Step 4.3 in-
serts si into T using O((log logn)2/ log log logn) time (again, by Theorem 1). Since
∑c

i=1 |si | = n, the c iterations take O(
∑c

i=1
|si |

logσ n
(log logn)2

log log logn
) = O(n

logσ n
(log logn)2

log log logn
)

time. Lastly, in Step 5, T is enhanced with the auxiliary data structure from Lemma 14
for computing preorder, which takes O(c) = O(n

logσ n
) time because the LZ-trie has

O(c) nodes.
Next, in Phase 2, for each phrase si , the algorithm first retrieves its length �

stored by delta-code in Step 7.1. Then, Step 7.2 searches the trie for the node rep-

resenting the phrase si = S[p . . . p + � − 1], which takes O(
|si |

logσ n
(log logn)2

log log logn
) time

by Theorem 1. In Step 7.3, the preorder of phrase si is obtained in O(log logn)

time from the auxiliary data structure of Lemma 14. In total, Phase 2 takes

O(
∑c

i=1
|si |

logσ n
(log logn)2

log log logn
+ c · log logn) = O(n

logσ n
(log logn)2

log log logn
) time.

Hence, the total running time of Phase 1 and Phase 2 is O(n
logσ n

(log logn)2

log log logn
).

The working space required to build and to store the LZ-trie in Phase 1 is
O(c logσ) = O(

n logσ
logσ n

) bits according to Theorem 1. Step 4.2 stores the length of
each phrase si by delta-code in 1 + �log si� + 2�log(1 + �log si�)� bits; thus, the to-
tal space for storing the lengths of all phrases is

∑c
i=1 O(1 + log si) = O(c log n

c
) =

O(c ln n
c
) = O(

n log logσ n

logσ n
) bits by Lemma 15. Finally, the space required by the pre-

order auxiliary data structure is O(c logσ) = O(
n logσ
logσ n

) bits. In total, the algorithm

uses O(
n(logσ+log logσ n)

logσ n
) bits. �

In the same way, we obtain:

986 Algorithmica (2015) 71:969–988

Theorem 4 Suppose we use the trie data structure in Theorem 2. Algorithm LZcom-
press in Fig. 2 builds the LZ-trie T and the phrase list using O(

n log logn
logσ n

) expected

time and O(
n(logσ+log logσ n)

logσ n
) bits of working space.

Proof Analogous to the proof of Theorem 3. �

Finally, two comments are in order.
Firstly, the working space of our LZ78 encoding algorithm is O(c logσ + c log n

c
)

according to the proof of Theorem 3. Since
√

n ≤ c, i.e., n
c

≤ c, the working space
must be asymptotically the same as or smaller than that of the output compressed
text, which is 	(c logσ + c log c). This shows that representing the LZ-trie by our
new dynamic trie data structure yields a highly workspace-efficient LZ-compression
algorithm. Also note that the output size is larger than c log c ≥ 1

2

√
n logn, while the

tables used by our dynamic data structure have size O(nε) for arbitrarily small ε > 0.
Secondly, the output code of the algorithm in Fig. 2 differs from the original LZ78.

The algorithm outputs the same code as reference [25]; more precisely, the output
code represents preorders of the trie, while in the original LZ78 phrases are numbered
in the order of their creation. To convert it into the original LZ78, we need one more
scan of S using the trie. In the scan, we replace the preorders of the phrases by the
original numbers. The output size of [25] is asymptotically the same as the original
LZ78.

6 Concluding Remarks

In this paper, we have proposed linked dynamic tries, dynamic data structures for stor-
ing a set of strings. Using our data structures, a trie T can be stored in O(|T | logσ)

bits, where σ is the alphabet size. We have described two variants: the first one sup-
ports the insertion or deletion of a leaf in O((log log |T |)2/ log log log |T |) worst-case
time and computing the longest common prefix between a query pattern P and T

in O(
|P |

logσ |T |
(log log |T |)2

log log log |T |) worst-case time [Theorem 1]; the second one supports in-
sertion/deletion in O(log log |T |) expected amortized time and the longest common
prefix query in O(

|P |
logσ |T | + log log |T |) worst-case time [Theorem 2].

We have also shown how to apply our new data structure to LZ-compression.
The previously most efficient algorithms for constructing the Ziv-Lempel encoding
(LZ78) of a given string S of length n over an alphabet of size σ run in either:
(1) O(n logσ) time and O(n) words of working space; or (2) O(n(logσ + log logn))

time and (1 + ε)nHk + O(n(k logσ + log logσ n)/ logσ n) bits of working space,
where Hk ≤ logσ denotes the k-th order empirical entropy of S and ε > 0 is an ar-
bitrary constant [3]. Our new linked dynamic trie data structure yields an algorithm
for generating the LZ78 encoding of S in only O(n(logσ + log logσ n)/ logσ n) bits
of working space which runs in either: (1) O(n(log logn)2/(logσ n · log log logn))

worst-case time [Theorem 3]; or (2) O(n log logn/ logσ n) expected time [Theo-
rem 4], i.e., in sublinear (o(n)) time and sublinear (o(n logσ) bits) working space

for small alphabets (σ = 2
o(logn

log log logn

(log logn)2
)
).

Algorithmica (2015) 71:969–988 987

Our linked dynamic trie data structure cannot store any satellite information in
nodes directly. However, after constructing a trie, we can add a static auxiliary data
structure to compute the preorder of a node in O(log log |T |) time. Using the nodes’
preorders as indices of an array, we can then store satellite information if needed.

Future work will be to reduce the space from O(|T | logσ) bits to the information-
theoretic lower bound, and to improve the time complexity, e.g., by using other pre-
decessor data structures. One might also consider supporting an extended set of oper-
ations on a dynamic trie. For example, reporting the degree (the number of children)
of a node is easy; it can be done simply by storing the answer for each node using
O(|T | logσ) bits. Computing the depth of a node may be done by explicitly storing
the depths for the nodes in T ′ and storing relative depths inside each τu. On the other
hand, reporting subtree sizes seems difficult because it requires information for all
the nodes from a leaf to the root of the trie to be updated.

Acknowledgements The authors would like to thank the anonymous referees for their helpful com-
ments.

References

1. Andersson, A., Nilsson, S.: Improved behaviour of tries by adaptive branching. Inf. Process. Lett.
46(6), 295–300 (1993)

2. Arroyuelo, D.: An improved succinct representation for dynamic k-ary trees. In: Proceedings of the
19th Annual Symposium on Combinatorial Pattern Matching (CPM 2008). Lecture Notes in Com-
puter Science, vol. 5029, pp. 277–289. Springer, Berlin (2008)

3. Arroyuelo, D., Navarro, G.: Space-efficient construction of Lempel-Ziv compressed text indexes. Inf.
Comput. 209(7), 1070–1102 (2011)

4. Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem and related problems. J. Comput.
Syst. Sci. 65(1), 38–72 (2002)

5. Blandford, D.K., Blelloch, G.E.: Dictionaries using variable-length keys and data, with applications.
In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005),
pp. 1–10 (2005)

6. Darragh, J.J., Cleary, J.G., Witten, I.H.: Bonsai: a compact representation of trees. Softw. Pract. Exp.
23(3), 277–291 (1993)

7. Devroye, L., Szpankowski, W.: Probabilistic behavior of asymmetric level compressed tries. Random
Struct. Algorithms 27(2), 185–200 (2005)

8. Ferragina, P., Grossi, R.: The string B-tree: a new data structure for string search in external memory
and its applications. J. ACM 46(2), 236–280 (1999)

9. Ferragina, P., Manzini, G.: Indexing compressed texts. J. ACM 52(4), 552–581 (2005)
10. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960)
11. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. J. Comput.

Syst. Sci. 30(2), 209–221 (1985)
12. Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal representation for balanced paren-

theses. Theor. Comput. Sci. 368(3), 231–246 (2006)
13. Hagerup, T.: Sorting and searching on the word RAM. In: Procedings of the 15th Annual Symposium

on Theoretical Aspects of Computer Science (STACS 1998). Lecture Notes in Computer Science,
vol. 1373, pp. 366–398. Springer, Berlin (1998)

14. Hon, W.-K., Lam, T.-W., Sadakane, K., Sung, W.-K., Yiu, S.-M.: A space and time efficient algorithm
for constructing compressed suffix arrays. Algorithmica 48(1), 23–36 (2007)

15. Kärkkäinen, J., Sutinen, E.: Lempel-Ziv index for q-grams. Algorithmica 21(1), 137–154 (1998)
16. Kosaraju, S.R., Manzini, G.: Compression of low entropy strings with Lempel-Ziv algorithms. SIAM

J. Comput. 29(3), 893–911 (1999)
17. Lippert, R.A., Mobarry, C.M., Walenz, B.P.: A space-efficient construction of the Burrows-Wheeler

transform for genomic data. J. Comput. Biol. 12(7), 943–951 (2005)

988 Algorithmica (2015) 71:969–988

18. Mehlhorn, K., Näher, S.: Bounded ordered dictionaries in O(log logN) time and O(n) space. Inf.
Process. Lett. 35(4), 183–189 (1990)

19. Morrison, D.R.: PATRICIA—Practical Algorithm To Retrieve Information Coded In Alphanumeric.
J. ACM 15(4), 514–534 (1968)

20. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM J.
Comput. 31(3), 762–776 (2001)

21. Navarro, G.: Indexing text using the Ziv-Lempel trie. J. Discrete Algorithms 2(1), 87–114 (2004)
22. Nilsson, S., Karlsson, G.: IP-address lookup using LC-tries. IEEE J. Sel. Areas Commun. 17(6),

1083–1092 (1999)
23. Overmars, M.H.: The Design of Dynamic Data Structures. Lecture Notes in Computer Science.,

vol. 156. Springer, Berlin (1983)
24. Raman, R., Rao, S.S.: Succinct dynamic dictionaries and trees. In: Proceedings of the 30th Inter-

national Colloquium on Automata, Languages and Programming (ICALP 2003). Lecture Notes in
Computer Science, vol. 2719, pp. 357–368. Springer, Berlin (2003)

25. Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy bounds. In: Proceedings
of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), pp. 1230–1239
(2006)

26. Welch, T.A.: A technique for high-performance data compression. IEEE Comput. 17(6), 8–19 (1984)
27. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space �(N). Inf. Process.

Lett. 17(2), 81–84 (1983)
28. Willard, D.E.: New trie data structures which support very fast search operations. J. Comput. Syst.

Sci. 28(3), 379–394 (1984)
29. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf.

Theory 24(5), 530–536 (1978)

	Linked Dynamic Tries with Applications to LZ-Compression in Sublinear Time and Space
	Abstract
	Introduction
	Previous Work
	New Results
	Applications to LZ-Compression
	Organization of Paper

	Preliminaries
	Data Structures for Maintaining a Set of Strings of Length at most logsigma N
	Data Structures for Maintaining an Edge-Labeled Tree
	LZ78 Encoding and the LZ-Trie

	Dynamically Maintaining a Trie with Good Worst-Case Update Time
	Maintaining a Trie of Size O(logsigma N)
	Maintaining a Trie of Height O(logsigma N)
	Maintaining a Trie with no Height Restrictions

	Dynamically Maintaining a Trie with Good Expected Amortized Update Time
	LZ-Compression
	Auxiliary Data Structure for Answering Preorder Queries
	Complexity Analysis

	Concluding Remarks
	Acknowledgements
	References

