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Abstract The fastest known algorithms for computing the R* consensus tree of
k rooted phylogenetic trees with n leaves each and identical leaf label sets run in
O(n2√log n) time when k = 2 (Jansson and Sung in Algorithmica 66(2):329–345,
2013) and O(kn3) time when k ≥ 3 (Bryant in Bioconsensus, volume 61 of DIMACS
series in Discrete Mathematics and Theoretical Computer Science. American Mathe-
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matical Society, pp 163–184, 2003). This paper shows how to compute it in O(n2) time
for k = 2, O(n2 log4/3 n) time for k = 3, and O(n2 logk+2 n) time for unbounded k.

Keywords Phylogenetic tree · R* consensus tree · Triplet · Strong cluster · Apresjan
cluster

1 Introduction

Distinctly leaf-labeled, unordered trees known as phylogenetic trees are used by scien-
tists to describe evolutionary history [11,18–20]. Given a set S of phylogenetic trees
having the same leaf labels but different branching structures, a single phylogenetic
tree that summarizes all the trees in S according to some well-defined rule is called
a consensus tree [4,11,20]. Consensus trees are useful when dealing with unreliable
data. For example, to infer an accurate phylogenetic tree for a set of species, one may
first construct a collection of alternative trees by applying resampling techniques such
as bootstrapping to the same data set, by running different tree construction algorithms,
or by using many independent data sets, and then compute a consensus tree from the
obtained trees. In general, maximum likelihood-based methods may construct a set of
almost-equally-optimal trees which can then be summarized in a consensus tree.

Anumber of different consensus trees havebeendefined and studied in the literature;
see [4], Chapter 30 in [11], or Chapter 8.4 in [20] for some surveys. This paper deals
with one particular consensus tree called the R* consensus tree [4], formally defined
in Sect. 1.1 below. Simply put, it is a tree with the same leaf label set as the input trees
and as many internal nodes as possible and whose resolved triplets (embedded binary
subtrees on three leaves) all occur frequently in the input trees.

One advantage of the R* consensus tree is that it provides a statistically consistent
estimator of the species tree topology when combining gene trees [9]. Furthermore,
under the multispecies coalescent model, the R* consensus tree is asymptotically
guaranteed to be fully resolved [9]. Also, as shown in [4], it is always a refinement
of the popular majority rule consensus tree [17], which means that besides all the
clusters of leaf labels present in the majority rule consensus tree, the R* consensus
tree may contain additional informative branching structure. From a theoretical point
of view, the R* consensus tree is also interesting because it generalizes the RV-III tree
of [15] to more than two input trees [4]. On the negative side, the existing algorithms
for building the R* consensus tree [4,14,15] are rather slow. To alleviate this issue,
we present faster algorithms.

1.1 Definitions and Notation

In this paper, a phylogenetic tree is a rooted, unordered, leaf-labeled tree inwhich every
internal node has at least two children and all leaves have different labels. See Fig. 1
for some examples. Unrooted phylogenetic trees are also used in many contexts [11],
but will not be considered here. Phylogenetic trees are called “trees” from here on,
and every leaf in a tree is identified with its label.

Let T be a tree. The set of all nodes in T and the set of all leaves in T are denoted
by V (T ) and Λ(T ), respectively. For any u ∈ V (T ), T u is the subtree of T rooted at
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Fig. 1 An example. Let S = {T1, T2, T3} with Λ(T1) = Λ(T2) = Λ(T3) = {a, b, c, d, e} as above. Then
Rmaj = {ab|d, ab|e, ac|d, ac|e, de|a, bc|d, bc|e, de|b, de|c} and the R* consensus tree τ of S is the
tree on the bottom. In this example, r(τ ) = Rmaj

u. For any X ⊆ V (T ), lcaT (X) is the lowest common ancestor in T of the nodes in
X , and when |X | = 2, we simplify the notation to lcaT (u, v), where X = {u, v}, and
if T is unambiguous, we sometimes just write lca(u, v).

A triplet is a tree with exactly three leaves. Suppose that t is a triplet with Λ(t) =
{x, y, z}. If t is non-binary, it has one internal node; in this case, t is called a fan
triplet and is denoted by x |y|z. Otherwise, t is binary and has two internal nodes;
in this case, t is called a resolved triplet and is denoted by xy|z where lcat (x, y) is
a proper descendant of lcat (x, z) = lcat (y, z). Thus, there are four possible triplets
x |y|z, xy|z, xz|y, yz|x for any given set of three leaves {x, y, z}.

For any tree T and {x, y, z} ⊆ Λ(T ), the fan triplet x |y|z is said to be consistent
with T if lcaT (x, y) = lcaT (x, z) = lcaT (y, z). The resolved triplet xy|z is consistent
with T if lcaT (x, y) is a proper descendant of lcaT (x, z) = lcaT (y, z). Let T ||{x,y,z}
be the unique triplet with leaf set {x, y, z} that is consistent with T . For any tree
T , let r(T ) be the set of resolved triplets consistent with T and let t (T ) be the set
of all triplets (resolved triplets as well as fan triplets) consistent with T , i.e., define
r(T ) = {T ||{x,y,z}: {x, y, z} ⊆ Λ(T ) and T ||{x,y,z} is a resolved triplet} and t (T ) =
{T ||{x,y,z}: {x, y, z} ⊆ Λ(T )}.

Next, let S = {T1, . . . , Tk} be a given set of trees with Λ(T1) = · · · = Λ(Tk) =
L . Write n = |L|. For any {a, b, c} ⊆ L , define #ab|c as the number of trees Ti ∈ S
for which ab|c ∈ t (Ti ). The set of majority resolved triplets, denoted by Rmaj, is
defined as

{
ab|c: a, b, c ∈ L and #ab|c > max{#ac|b, #bc|a}}. Note that the fan

triplets consistent with the trees in S have no impact here. An R* consensus tree of S
is a tree τ with Λ(τ) = L that satisfies r(τ ) ⊆ Rmaj and that maximizes the number
of internal nodes. See Fig. 1 for an example.

For any leaf label set L , a cluster of L is any nonempty subset of L , and a tree T is
said to include a cluster A of L if T contains a node u such that Λ(T u) = A. LetR be
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a set of triplets over a leaf label set L = ⋃
t∈R Λ(t) such that for each {x, y, z} ⊆ L ,

at most one of x |y|z, xy|z, xz|y, and yz|x belongs to R. A cluster A of L is called
a strong cluster of R if aa′|x ∈ R for all a, a′ ∈ A with a �= a′ and all x ∈ L\A.
Furthermore, L as well as every singleton set of L is also defined to be a strong cluster
of R. Strong clusters provide a useful alternative characterization of R* consensus
trees, stated in the last part of the next lemma:

Lemma 1.1 [4,14] The R* consensus tree always exists, is unique, and includes every
strong cluster of Rmaj and no other clusters.

Lastly, the following definitions will be used in our algorithms for constructing
the R* consensus tree. Suppose that R is a set of triplets as in the paragraph before
Lemma 1.1. For each a, b ∈ L with a �= b, define sR(a, b) = ∣

∣{w: ab|w ∈ R}∣∣ and
for each a ∈ L , define sR(a, a) = ∣

∣L
∣
∣ − 1. A cluster A of L is called an Apresjan

cluster of sR if sR(a, a′) > sR(a, x) for all a, a′ ∈ A and all x ∈ L\A.

1.2 Previous Work

The R* consensus tree can be computed in O(kn3) time, where k = |S| and n = |L|,
by an algorithm from [4]: first construct the sets r(Ti ) for all Ti ∈ S in O(kn3) time,
then construct the setRmaj by counting the occurrences in the r(Ti )-sets of the different
resolved triplets for every {x, y, z} ∈ L in O(kn3) total time, and finally apply the
O(n3)-time strong cluster algorithm from Corollary 2.2 in [5] toRmaj. For k = 2, an
older algorithm for computing the RV-III tree of two input trees in O(n3) time [15]
can also be used [4] to achieve the same running time.

Since Rmaj may contain Ω(n3) elements, any method that explicitly constructs
Rmaj requires Ω(n3) time. For the special case of k = 2, it was shown in [14] that
the R* consensus tree can in fact be computed in O(n2√log n) (= o(n3)) time. The
algorithm from [14] is reviewed in Sect. 1.3.

Note that the R* consensus tree τ satisfies r(τ ) ⊆ Rmaj by definition; in other
words, it is not allowed to introduce new resolved triplets that were not already in
Rmaj. Relaxing this requirement leads to other types of consensus trees such as the
local consensus trees studied in [4,13,15] and the triplec consensus tree [10].

1.3 Overview and Summary of New Results

To compute the R* consensus tree without constructingRmaj, the algorithm in [14] for
k = 2 and the new algorithms in this paper follow the same basic strategy, summarized
as Algorithm R*_consensus_tree in Fig. 2. Before explaining the details, some
simple observations are needed. Since every strong cluster ofR is an Apresjan cluster
of sR [4,14], one can see that in the case R = Rmaj, the set of Apresjan clusters of
sRmaj forms a superset of the set of strong clusters ofRmaj. Moreover, by Theorem 2.3
in [5], there are O(n)Apresjan clusters of sRmaj and they form a nested hierarchy on L ,
i.e., a tree, which can be constructed in O(n2) time with the method of Corollary 2.1
in [5] when the value of sRmaj (a, b) for any a, b ∈ L is available in O(1) time.
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Fig. 2 Algorithm R*_consensus_tree

Now, the idea behind Algorithm R*_consensus_tree is to first compute a
superset of the set of strong clusters of Rmaj, namely the Apresjan clusters of sRmaj

(Steps 1 and 2), then remove any clusters that are not strong clusters ofRmaj (Steps 3–
5), and return a tree that includes precisely the remaining clusters (Steps 6–7). By
Lemma 1.1, this tree is the R* consensus tree.

The time complexity of Algorithm R*_consensus_tree depends on various
factors. As shown in [14], if k = 2 then computing the values of sRmaj (a, b) for all
a, b ∈ L in Step 1 can be done in O(n2√log n) time in total, while all other steps
take O(n2) time. Section 2 below improves the time complexity of Step 1 to O(n2),
yielding an O(n2)-time solution for k = 2.

For k ≥ 3, we observe that Steps 2, 6, and 7 do not depend on k, so these steps
take a total of O(n2) time as in [14]. However, Steps 1 and 3–5 have to be modified;
for example, the conditions in Lemma 13 in [14] for checking if a given cluster is a
strong cluster ofRmaj only work if k = 2.1 As for Step 1, Sects. 3.1–3.3 show how to
compute sRmaj (a, b) for all a, b ∈ L in O(n2 log4/3 n) time when k = 3, and Sect. 4.1
in O(n2 logk n) time for unbounded k. For Steps 3–5, Sect. 3.4 gives an O(n2α(n))-
time solution when k = 3, where α(n) is the inverse Ackermann function of n, while
Sect. 4.2 gives an O(n2 logk+2 n)-time solution for unbounded k.

In summary, we obtain the following new results:

Theorem 1.2 Let S be an input set of k trees with n leaves each and identical leaf
label sets. The R* consensus tree of S can be computed in:

• O(n2) time when k = 2;
• O(n2 log4/3 n) time when k = 3; and
• O(n2 logk+2 n) time when k is unbounded.

1 An example with k = 3 for which Lemma 13 in [14] fails is: T1 = (((a, b), c, d), (e, f )); , T2 =
(((b, f ), a, c), (d, e)); , T3 = (((a, c), b, e), (d, f )); (here, trees are expressed using Newick
notation; see http://evolution.genetics.washington.edu/phylip/newicktree.html). Then Rmaj =
{ab|d, ab|e, ab| f, ac|d, ac|e, ac| f, bc|d, bc|e, bc| f }, and A = {a, b, c} is a strong cluster of
Rmaj by definition. However, condition (1) in Lemma 13 of [14] does not hold for i = 2 as the subtree

U = (b, f ); of T2 rooted at a child of lcaT2 (A) does not satisfy Λ(U ) ⊆ A or Λ(U ) ⊆ L\A.
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Thus, if k <
log n

(log log n)1+ε for some ε > 0, the time complexity of computing the R*
consensus tree is subcubic in n. We remark that in case k is large compared to n (for
example, if resampling techniques are used to generate the input trees), the simple
O(kn3)-time method referred to in Sect. 1.2 is faster than the above. On the other
hand, in applications where k may be much smaller than n (e.g., if the input trees are
derived from alternative data sets or collected manually from the literature), the new
algorithms will be useful.

2 Computing the R* Consensus Tree When k = 2

This section proves that sRmaj (a, b) for all a, b ∈ L with a �= b can be computed in
O(n2) time in total when k = 2, thereby reducing the time complexity of Step 1 of
Algorithm R*_consensus_tree in Sect. 1.3 (and hence the algorithm’s overall
running time) to O(n2).

Recall that the function sRmaj is defined by sRmaj (a, b) = ∣
∣{w: ab|w ∈ Rmaj}

∣
∣ for

any a, b ∈ L with a �= b, and sRmaj (a, a) = |L| − 1 for any a ∈ L . By definition, a
resolved triplet ab|w belongs to Rmaj if and only if it is consistent with both T1 and
T2, or it is consistent with one of T1 and T2 and a|b|w is consistent with the other
tree. Corollary 1 in [14] states that sRmaj (a, b) = countr,r (a, b) + countr, f (a, b) +
count f,r (a, b) for every a, b ∈ L with a �= b, where:

⎧
⎪⎪⎨

⎪⎪⎩

countr,r (a, b) = ∣
∣{w ∈ L\{a, b}: ab|w ∈ t (T1) ∩ t (T2)}

∣
∣

countr, f (a, b) = ∣
∣{w ∈ L\{a, b}: ab|w ∈ t (T1), a|b|w ∈ t (T2)}

∣
∣

count f,r (a, b) = ∣
∣{w ∈ L\{a, b}: a|b|w ∈ t (T1), ab|w ∈ t (T2)}

∣
∣

Section 4 in [14] showed that countr,r (a, b), countr, f (a, b), and count f,r (a, b) for all
a, b ∈ L can be calculated in O(n2√log n), O(n2), and O(n2) total time, respectively.
We now eliminate the bottleneck by computing countr,r (a, b) for all a, b ∈ L in O(n2)

total time.

Lemma 2.1 For every a, b ∈ L, it holds that:

countr,r (a, b) = |L| − |Λ
(

T lca(a,b)
1

)
| − |Λ

(
T lca(a,b)
2

)
|

+ |Λ
(

T lca(a,b)
1

)
∩ Λ

(
T lca(a,b)
2

)
|.

Proof It is easy to see that countr,r (a, b)=∣
∣{w ∈ L\{a, b}: ab|w ∈ t (T1) and ab|w ∈

t (T2)}
∣
∣ = |(L\Λ(T lca(a,b)

1 )) ∩ (L\Λ(T lca(a,b)
2 ))| = |L| − |Λ(T lca(a,b)

1 ) ∪
Λ(T lca(a,b)

2 )|. By the inclusion-exclusion principle, the latter expression is equal to

|L| − |Λ(T lca(a,b)
1 )| − |Λ(T lca(a,b)

2 )| + |Λ(T lca(a,b)
1 ) ∩ Λ(T lca(a,b)

2 )|. 
�
Lemma 2.2 The values of countr,r (a, b) for all a, b ∈ L can be computed in O(n2)

time in total.
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Proof For i ∈ {1, 2}, compute and store all values of |Λ(T u
i )|, where u ∈ V (Ti ), in

O(n) time by doing a bottom-up traversal of each tree. Also, compute and store all
values of |Λ(T u

1 ) ∩ Λ(T v
2 )|, where u ∈ V (T1) and v ∈ V (T2), in O(n2) time by the

postorder traversal-based method used in Lemma 7.1 in [1]. Preprocess T1 and T2 in
O(n) time so that any subsequent lca-query can be answered in O(1) time [2,12].
Next, for each a, b ∈ L , obtain countr,r (a, b) in O(1) time by applying the formula
in Lemma 2.1. The total running time is O(n2). 
�

3 Computing the R* Consensus Tree When k = 3

We now focus on the case of three input trees. Sects. 3.1–3.3 and 3.4 describe how to
implement Step 1 and Steps 3–5, respectively, of Algorithm R*_consensus_tree.

3.1 Computing sRmaj When k = 3

Suppose that S = {T1, T2, T3}. For every ab|w ∈ Rmaj, there are three possibilities:

Lemma 3.1 For any a, b, w ∈ L , ab|w ∈ Rmaj if and only if either

1. ab|w is consistent with T1, T2, and T3; or
2. ab|w is consistent with Ti and Tj but not Tk for {i, j, k} = {1, 2, 3}; or
3. ab|w is consistent with one of T1, T2, T3, and a|b|w with the other two.

To help us count the triplets covered by the different cases in Lemma 3.1, we define:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

countr,r,r (a, b) = ∣
∣{w ∈ L\{a, b}: ab|w ∈ t (T1) ∩ t (T2) ∩ t (T3)}

∣
∣

count
Ti ,Tj
r,r,∗ (a, b) = ∣

∣{w ∈ L\{a, b}: ab|w ∈ t (Ti ) ∩ t (Tj )
}∣∣, for i, j ∈ {1, 2, 3}

with i < j

countTi
r, f, f (a, b) = ∣

∣{w ∈ L\{a, b}: ab|w ∈ t (Ti ) and a|b|w is consistent with
the other two trees}∣∣, for i ∈ {1, 2, 3}

Then, sRmaj (a, b) can be expressed as in the next lemma.

Lemma 3.2 For every a, b ∈ L with a �= b,

sRmaj (a, b) =
3∑

i=1

countTi
r, f, f (a, b) +

∑

1≤i< j≤3

count
Ti ,Tj
r,r,∗ (a, b) − 2countr,r,r (a, b).

Proof For any {i, j, k} = {1, 2, 3} with i < j , define W Ti ,Tj (a, b) = {w ∈
L\{a, b}: ab|w ∈ t (Ti ) ∩ t (Tj ) and ab|w /∈ t (Tk)}. Then count

Ti ,Tj
r,r,∗ (a, b) =

|W Ti ,Tj (a, b)| + countr,r,r (a, b). By summing over all pairs of trees, we get

|W T1,T2(a, b)| + |W T1,T3(a, b)| + |W T2,T3(a, b)| = ∑
1≤i< j≤3 count

Ti ,Tj
r,r,∗ (a, b) −

3countr,r,r (a, b).
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Next, by Lemma 3.1,

sRmaj (a, b) = countr,r,r (a, b) + |W T1,T2(a, b)| + |W T1,T3(a, b)| + |W T2,T3(a, b)|
+ countT1

r, f, f (a, b) + countT2
r, f, f (a, b) + countT3

r, f, f (a, b)

= countr,r,r (a, b) +
∑

1≤i< j≤3

count
Ti ,Tj
r,r,∗ (a, b) − 3countr,r,r (a, b)

+
3∑

i=1

countTi
r, f, f (a, b)

=
3∑

i=1

countTi
r, f, f (a, b) +

∑

1≤i< j≤3

count
Ti ,Tj
r,r,∗ (a, b) − 2countr,r,r (a, b).


�
For each pair i, j ∈ {1, 2, 3} with i < j , the values of count

Ti ,Tj
r,r,∗ (a, b) for all

a, b ∈ L can be obtained in O(n2) time by the method from Lemma 2.2 in Sect. 2
with Ti and Tj as the two input trees. The next subsections show how to calculate
the values of countr,r,r (a, b) for all a, b ∈ L in O(n2 log4/3 n) time (Lemma 3.6 in
Sect. 3.2) and countTi

r, f, f (a, b) for all a, b ∈ L for each i ∈ {1, 2, 3} in O(n2) time
(Lemma 3.9 in Sect. 3.3). Then, we can apply the formula in Lemma 3.2 to get each
value of sRmaj (a, b) in O(1) time. In summary:

Lemma 3.3 When k = 3, the values of sRmaj (a, b) for all a, b ∈ L can be computed

in O(n2 log4/3 n) time in total.

3.2 Computing countr,r,r

First, rewrite countr,r,r (a, b) in a way analogous to the expression in Lemma 2.1:

Lemma 3.4 For every a, b ∈ L, it holds that:

countr,r,r (a, b) = |L|−
3∑

i=1

∣
∣
∣Λ

(
T lca(a,b)

i

)∣
∣
∣+

∑

1≤i< j≤3

∣
∣
∣Λ

(
T lca(a,b)

i

)
∩ Λ

(
T lca(a,b)

j

)∣
∣
∣

−
∣
∣
∣Λ

(
T lca(a,b)
1

)
∩ Λ

(
T lca(a,b)
2

)
∩ Λ

(
T lca(a,b)
3

)∣
∣
∣ .

Proof By definition, countr,r,r (a, b) = ∣
∣{w ∈ L\{a, b}: ab|w ∈ t (T1), ab|w ∈

t (T2), ab|w ∈ t (T3)}
∣
∣ = |(L\Λ(T lca(a,b)

1 ))∩(L\Λ(T lca(a,b)
2 ))∩(L\Λ(T lca(a,b)

3 ))| =
|L| − |Λ(T lca(a,b)

1 ) ∪ Λ(T lca(a,b)
2 ) ∪ Λ(T lca(a,b)

3 )|. The inclusion-exclusion princi-

ple gives |Λ(T lca(a,b)
1 ) ∪ Λ(T lca(a,b)

2 ) ∪ Λ(T lca(a,b)
3 )| = ∑3

i=1 |Λ(T lca(a,b)
i )| −

∑
1≤i< j≤3 |Λ(T lca(a,b)

i )∩Λ(T lca(a,b)
j )|+|Λ(T lca(a,b)

1 )∩Λ(T lca(a,b)
2 )∩Λ(T lca(a,b)

3 )|.
The lemma follows. 
�
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Lemma 3.5 Let a ∈ L be fixed. Then the values of |Λ(T lca(a,b)
1 ) ∩ Λ(T lca(a,b)

2 ) ∩
Λ(T lca(a,b)

3 )| for all b ∈ L\{a} can be computed in O(n log4/3 n) time in total.

Proof For every w ∈ L\{a} and i ∈ {1, 2, 3}, let dTi (w) be the distance in
Ti from the leaf a to the node lcaTi (a, w). Observe that for any b, w ∈ L\{a}
and i ∈ {1, 2, 3}, w ∈ Λ(T lca(a,b)

i ) if and only if dTi (w) ≤ dTi (b). Thus, for

any b ∈ L\{a}, we have |Λ(T lca(a,b)
1 ) ∩ Λ(T lca(a,b)

2 ) ∩ Λ(T lca(a,b)
3 )| = |{w ∈

L\{a, b}: dT1(w) ≤ dT1(b), dT2(w) ≤ dT2(b), and dT3(w) ≤ dT3(b)}|.
Represent each w ∈ L\{a} as a three-dimensional point with coordinates

(dT1(w), dT2(w), dT3(w)). For any specified b ∈ L\{a}, it follows that |Λ(T lca(a,b)
1 )∩

Λ(T lca(a,b)
2 ) ∩ Λ(T lca(a,b)

3 )| equals the number of points on or inside the box
[1: dT1(b)] × [1: dT2(b)] × [1: dT3(b)]. By using Corollary 4.1 in [6] for offline
orthogonal range counting in three dimensions, these numbers can be obtained for
all b ∈ L\{a} in O(n log3−2+1/3 n) = O(n log4/3 n) time in total. 
�
Lemma 3.6 The values of countr,r,r (a, b) for all a, b ∈ L can be computed in
O(n2 log4/3 n) total time.

Proof As in the proof of Lemma 2.2, use O(n2) time to compute and store all values of
|Λ(T u

i )|, where u ∈ V (Ti ) and i ∈ {1, 2, 3}, and all values of |Λ(T u
i )∩Λ(T v

j )|, where
u ∈ V (Ti ), v ∈ V (Tj ) and 1 ≤ i < j ≤ 3. Also, preprocess Ti for each i ∈ {1, 2, 3} in
O(n) time so that lca-queries can be answered in O(1) time [2,12]. Then, for each a ∈
L , apply the method in Lemma 3.5 to compute and store |Λ(T lca(a,b)

1 )∩Λ(T lca(a,b)
2 )∩

Λ(T lca(a,b)
3 )| for all b ∈ L\{a}; this takes O(n log4/3 n)·O(n) = O(n2 log4/3 n) time.

Finally, for each a, b ∈ L , compute countr,r,r (a, b) in O(1) time according to
Lemma 3.4. The total time complexity is O(n2 log4/3 n). 
�

3.3 Computing countTir, f, f

This subsection describes how to compute all values of countT1
r, f, f (a, b) = ∣

∣{w ∈
L\{a, b}: ab|w ∈ t (T1), a|b|w ∈ t (T2), and a|b|w ∈ t (T3)}

∣
∣, where a, b ∈ L . The

other two functions of the same type, countT2
r, f, f and countT3

r, f, f , can be computed in
the same way.

Suppose that a ∈ L is fixed. Let 〈v0 = a, v1, . . . , vp〉 be the path in T3 from leaf
a to the root of T3. For j ∈ {1, . . . , p}, define W j = Λ(T

v j
3 )\Λ(T

v j−1
3 ). Importantly,

{W1, . . . , Wp} forms a partition of L\{a}. Also, for any b ∈ L\{a} and any w ∈
L\{a, b}, a|b|w is a fan triplet in t (T3) if and only if w belongs to the same W j -set as
b while b andw belong to different subtrees rooted at the children of v j ; see Fig. 3. For
any S ⊆ L and b ∈ S, define σ T1,¬T2(S, b) = |{w ∈ S: ab|w ∈ t (T1) and a|b|w ∈
t (T2)}|. Lemma 3.7 explains how to use σ T1,¬T2(S, b) to compute countT1

r, f, f (a, b).

Lemma 3.7 For any W j , where j ∈ {1, . . . , p}, and any b ∈ W j , let cb be the

child of v j such that b ∈ Λ(T cb
3 ). Then countT1

r, f, f (a, b) = σ T1,¬T2(W j , b) −
σ T1,¬T2(Λ(T cb

3 ), b).
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Fig. 3 Suppose b ∈ W j . Then
a|b|w ∈ t (T3) for every leaf w

in the shaded parts of T3.

a

b

w

jv

T :3

1v

Proof

countT1
r, f, f (a, b) = | {w ∈ L\{a, b}: ab|w ∈ t (T1), a|b|w ∈ t (T2), a|b|w ∈ t (T3)} |

= | {w ∈ (
W j\Λ(T cb

3 )
) : ab|w ∈ t (T1) and a|b|w ∈ t (T2)

} |
= | {w ∈ W j : ab|w ∈ t (T1) and a|b|w ∈ t (T2)

} |
− | {w ∈ Λ(T cb

3 ): ab|w ∈ t (T1) and a|b|w ∈ t (T2)
} |

= σ T1,¬T2(W j , b) − σ T1,¬T2(Λ(T cb
3 ), b) (by definition) 
�

To compute σ T1,¬T2(S, b) efficiently, we rely on the next lemma.

Lemma 3.8 After O(n) time preprocessing, given any S ⊆ L , σ T1,¬T2(S, b) for all
b ∈ S can be computed in O(|S|) time.

Proof Use the method in Section 8 of [7] to preprocess each Tj , j ∈ {1, 2}, in O(n)

time so that the subtree of Tj induced by any L ′ ⊆ L can be retrieved in O(|L ′|)
time. Then, given any S ⊆ L , apply Algorithm Compute_count_rf in Section 4.3
of [14] (which computes countr, f (a, b) = ∣

∣{w ∈ S: ab|w is consistent with the first
tree and a|b|w is consistent with the other tree}∣∣ for all b), to the subtrees of T1 and
T2 induced by S ∪ {a} to get σ T1,¬T2(S, b) for all b ∈ S in O(|S|) time. 
�

This suggests the algorithm named Compute_count_rff_T1 in Fig. 4 for com-
puting countT1

r, f, f (a, b) for all b ∈ L\{a} for any fixed a ∈ L . First, it builds the
partition {W1, . . . , Wp} of L\{a} as defined above. This takes O(n) time. Then, T1
and T2 are preprocessed in O(n) time so that Lemma 3.8 can be applied. For each
j ∈ {1, . . . , p}, the algorithm then computes σ T1,¬T2(W j , b) and σ T1,¬T2(Λ(T cb

3 ), b)

for all b ∈ W j . By Lemma 3.8, this step can be done in O(
∑p

j=1 |W j |) = O(n) time

(for every b ∈ W j , to identify the child cb of v j such that b ∈ Λ(T cb
3 ) in O(1) time,

one can store the depths of all nodes in T3 and use the level-ancestor data structure,
which requires an additional O(n) time preprocessing [3]). Finally, Lemma 3.7 is
used to obtain countT1

r, f, f (a, b) for every b ∈ W j and j ∈ {1, . . . , p} in O(n) time.

123



1234 Algorithmica (2016) 76:1224–1244

;
;

;
;

Fig. 4 Algorithm Compute_count_rff_T1

In total, the time complexity of Compute_count_rff_T1 is O(n). By running
Compute_count_rff_T1 once for each a ∈ L , we get countT1

r, f, f (a, b) for all

a, b ∈ L in O(n2) total time. The functions countT2
r, f, f and countT3

r, f, f are handled
similarly.

Lemma 3.9 For each i ∈ {1, 2, 3}, the values of countTi
r, f, f (a, b) for all a, b ∈ L can

be computed in O(n2) total time.

3.4 Determining Which Clusters are Strong Clusters for k = 3

Steps 3–5 ofAlgorithm R*_consensus_tree in Sect. 1.3 need to determinewhich
Apresjan clusters of sRmaj are strong clusters of Rmaj. This subsection presents a
method for doing so efficiently.

We first give some definitions. Let A ⊆ L . For each j ∈ {1, 2, 3}, write u j
A =

lcaTj (A). Define the following two disjoint subsets of L\A:

(i) PA = the set of all x ∈ L\A such that lcaTj (a, x) is a proper descendant of u j
A

for some a ∈ A and some j ∈ {1, 2, 3}; and
(ii) Q A = the set of all x ∈ L\A such that lcaTj (a, x) = u j

A for all a ∈ A and all
j ∈ {1, 2, 3}.

If |A| = 1 then PA = Q A = ∅. A leaf x ∈ L\A is called an outsider in Tj , where

j ∈ {1, 2, 3}, if x is not a descendant of u j
A in Tj . See Fig. 5 for some examples.

Also, for any A ⊆ L , define an undirected graph G A = (A, E A) whose edge set
is given by E A = {{a, a′}: lcaTj (a, a′) is a proper descendant of u j

A for at least one
j ∈ {1, 2, 3}}. Then we have:

Lemma 3.10 For any A ⊆ L , A is a strong cluster of Rmaj if and only if: (1) each
x ∈ PA is an outsider in exactly two trees from {T1, T2, T3}; and (2) if Q A is nonempty,
the graph G A is a complete graph.
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T :

u1
A

x z

y

1 T :

u

3

3
A

zyx

T :2

u2
A

z

yx

Fig. 5 Illustrating the definitions of PA and Q A . Suppose that A consists of the leaves marked by short
vertical lines in T1, T2, and T3. Then x ∈ PA, y ∈ Q A , and z /∈ PA ∪ Q A . Also, x is an outsider in T1
while z is an outsider in T1 and T2

Proof (→) If A is a strong cluster ofRmaj then aa′|x ∈ Rmaj for all a, a′ ∈ A, a �= a′,
and x ∈ L\A. For every x ∈ PA, by definition, there exists a tree Ti with i ∈ {1, 2, 3}
and some b ∈ A such that lcaTi (x, b) is a proper descendant of ui

A. Let B be the
subset of A such that lcaTi (x, b) is a proper descendant of ui

A for all b ∈ B. Then,
for every a ∈ A\B and b ∈ B, it immediately follows that bx |a ∈ t (Ti ). For any
a ∈ A\B, b ∈ B, in order for ab|x ∈ Rmaj to hold, we therefore need ab|x ∈ t (Tj ) for
all j ∈ {1, 2, 3}\{i}, a ∈ A\B, b ∈ B. We claim that this requires x to be an outsider
in Tj for both j ∈ {1, 2, 3}\{i}. For the sake of obtaining a contradiction, assume x is
not an outsider in Tj . To ensure ab|x ∈ t (Tj ), lcaTj (a, b)must be a proper descendant

of u j
A for all a ∈ A\B and b ∈ B. This means that lcaTj ((A\B) ∪ B) = lcaTj (A)

is a proper descendant of u j
A, which is impossible because u j

A = lcaTj (A). Hence,
x ∈ PA is an outsider in two trees.

When Q A is nonempty, there exists some x ∈ Q A. For all a, a′ ∈ A with a �= a′,
since aa′|x ∈ Rmaj, the node lcaTj (a, a′) is a proper descendant of u j

A for at least one
j ∈ {1, 2, 3}, so {a, a′} ∈ E A. Hence, G A is a complete graph.
(←) First consider any x ∈ PA. Since x is an outsider in two trees, for every

a, a′ ∈ A with a �= a′, the resolved triplet aa′|x occurs twice in the sets t (T1), t (T2),
and t (T3). Hence, aa′|x ∈ Rmaj.

Next, suppose that Q A �= ∅. For any x ∈ Q A, x is not an outsider in any of the
trees and thus either a|a′|x ∈ t (Tj ) or aa′|x ∈ t (Tj ) for each j ∈ {1, 2, 3} and
a, a′ ∈ A, a �= a′. Since G A is a complete graph, it holds for all a, a′ ∈ A with
a �= a′ that lcaTi (a, a′) is a proper descendant of ui

A for at least one i ∈ {1, 2, 3},
which implies that aa′|x ∈ t (Ti ). Thus, for all a, a′ ∈ A, aa′|x ∈ Rmaj.

Finally, consider any x ∈ (((L\A)\PA)\Q A). Since x /∈ PA, lcaTj (x, a) is not a
proper descendant of u j

A for any a ∈ A and j ∈ {1, 2, 3}. Thus, for any a, a′ ∈ A
with a �= a′, either aa′|x ∈ t (Tj ) or a|a′|x ∈ t (Tj ) for each j ∈ {1, 2, 3}. In addition,
since x /∈ Q A, we have a|a′|x /∈ t (Tj ) for every j ∈ {1, 2, 3}, which shows that
aa′|x ∈ Rmaj for all a, a′ ∈ A.

In conclusion, aa′|x ∈ Rmaj for all a, a′ ∈ A, a �= a′, and x ∈ L\A, so A is a
strong cluster. 
�
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Fig. 6 Procedure for finding all strong clusters ofRmaj

Procedure Check_all_Apresjan_clusters in Fig. 6 applies the condition
in Lemma 3.10 to find all strong clusters of Rmaj. To avoid building each G A-graph
from scratch, the procedure assumes that theApresjan clusters are specified in the form
of a treeA, so that the information in the G A-graphs can be reused as it goes upwards
inA (as mentioned in Sect. 1.3,A can be obtained in O(n2) time [5]). The procedure
builds the G A-graphs for all Apresjan clusters A in bottom-up order, according to the
given tree A. Each G A is represented as a set of edges. To simplify the construction,
for j = {1, 2, 3}, the procedure maintains u j

A = lcaTj (A). It also maintainsB j
A, which

is the partition of A such that each block B ∈ B j
A contains all elements in A that appear

in one subtree attached to the node u j
A.

For any set X of subsets of L and any L ′ ⊆ L , define X |L ′ = {X ∈ X : X ⊆ L ′}.
Lemma 3.11 The procedure Check_all_Apresjan_clusters outputs all
strong clusters of Rmaj in O(n2α(n)) time, where α(n) is the inverse Ackermann
function of n.

Proof For each leaf inA (corresponding to an Apresjan cluster of the form A = {a}),
G A has no edges. For j ∈ {1, 2, 3}, u j

A is the leaf with label a and B j
A consists of

exactly one set A. This shows that every leaf in A can be processed in O(1) time.
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For each internal node v in A (corresponding to a non-singleton Apresjan cluster
A), the procedure needs to compute u j

A and B j
A for j ∈ {1, 2, 3} and the graph G A.

Let A1, . . . , Am be the Apresjan clusters corresponding to the children of v inA. For
j ∈ {1, 2, 3}, u j

A = lcaTj (A) can be computed in O(|A|) time [2,12] after linear-time
preprocessing. Similarly, by enumerating all a ∈ A and checking which subtree of
u j

A that a belongs to by the level-ancestor data structure [3], B j
A for j ∈ {1, 2, 3} can

be computed in O(|A|) time. The graph G A should contain all edges {x, y} where
x, y ∈ B and B ∈ B j

A. To construct G A, include: (1) all edges in G A1 , . . . , G Am ; and

(2) for j ∈ {1, 2, 3}, for all B ∈ B j
A, all edges {x, y} where x ∈ X, y ∈ Y, X �= Y ,

and X, Y ∈ ⋃m
i=1(B j

Ai
|B).

Finally,we analyze the timecomplexity of Check_all_Apresjan_clusters.
For each Apresjan cluster A, the partition B j

A and the node u j
A can be obtained in

O(|A|) = O(n) time. To build the G A-graphs, observe that we will insert O(n2) new
edges in total and do a merge O(n) times. Using the union-and-find data structure
(see, e.g., [8]), building all G A-graphs takes O(n2α(n)) time. The total running time
becomes O(n2α(n)). 
�

4 Computing the R* Consensus Tree for Unbounded k

Section 4.1 shows how to compute sRmaj (a, b) for all a, b ∈ L in O(n2 logk n)

time. Section 4.2 shows how to check which Apresjan clusters are strong clusters
in O(n2 logk+2 n) time.

4.1 Computing sRmaj for Unbounded k

Here, we give a procedure that, for any fixed a ∈ L , computes sRmaj (a, b) for all
b ∈ L\{a} in O(n logk n) time.

Let occ(ab|w, T[i.. j]) be the number of occurrences of ab|w in t (Ti ), . . . , t (Tj ).

Denote sW,x,y,z
T[1..i] (a, b) = ∣

∣{w ∈ W : occ(ab|w, T[1..i])+x > max{occ(aw|b, T[1..i])+
y, occ(bw|a, T[1..i]) + z}}∣∣. For a fixed a ∈ L , our goal is to compute sRmaj (a, b) =
sL ,0,0,0

T[1..k] (a, b) for all b ∈ L\{a}. In the formula for sW,x,y,z
T[1..i] (a, b), W is not any arbitrary

subset of L; we require, for all w ∈ W , that x, y, and z are the number of occurrences
of ab|w, aw|b, and bw|a, respectively, in Ti+1, . . . , Tk . These three integers will be
used to pass information during recursive calls.

In each tree Ti ∈ {T1, . . . , Tk}, any w ∈ L\{a} is represented by a pair
(dTi (w), πi (w)), where dTi (w) is the distance in Ti from a to lcaTi (a, w), and
πi (w) = j , where w is a descendant of the j th child of lcaTi (a, w). The occurrence
of a triplet in t (Ti ) is then given by (cf. Theorem 1 in [16] and Lemma 7 in [14]):

Lemma 4.1 Let b ∈ L\{a}. For any w ∈ L\{a, b} and i ∈ {1, . . . , k}:
1. ab|w ∈ t (Ti ) if and only if dTi (b) < dTi (w);
2. aw|b ∈ t (Ti ) if and only if dTi (b) > dTi (w); and
3. bw|a ∈ t (Ti ) if and only if dTi (b) = dTi (w) and πi (b) = πi (w).
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Fig. 7 Sketch of the data structure BW,k . Each node u in BT (Wi , Ti ) at level i points to BT (Wi−1, Ti−1)

at level i − 1, where Wi−1 = Λ(BT (Wi , Ti )
u)

Fig. 8 At each level i, BT (Wi , Ti ) is a balanced binary search tree for {d1, . . . , dp}, where W =
{w1, . . . , w|W |} ⊆ L and {d1, . . . , dp} are the distinct values in the set {dTi (w1), . . . , dTi (w|W |)}. Every
node v in BT (Wi , Ti )points to a balanced binary search tree for {π1, . . . , πq }, denoted by BT (πTi (dTi (v)))

above, where πTi (d) = {w ∈ W : dTi (w) = d} and where {π1, . . . , πq } are the distinct values in the set
{πi (w):w ∈ πTi (d)}. Every node u in BT (πTi (dTi (v))) contains a set {w ∈ W : dTi (w) = d, πi (w) = π}

We build a recursive data structure BW,k in O(|W | logk |W |) time that yields the
value of sW,x,y,z

T[1..k] (a, b) for any b ∈ W\{a} and any x, y, z in O(logk |W |) time.
Figures 7 and 8 outline the structure of BW,k graphically. The details of BW,k are
described next.

4.1.1 The Case k = 1

For the base case k = 1, the data structure BW,1 consists of a balanced binary search
tree BT (W, T1) for all distinct dT1(w)-values, where w ∈ W . There may be multiple
elements of W with the same dT1(w)-value. For each such node, we replace it by a
balanced binary search tree for these multiple elements and index them using the keys
π1(w). The additional nodes are called yellow nodes. The data structure BW,1 can be
constructed in O(|W |) time.
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Now we show how to compute sW,x,y,z
T[1..1] (a, b) from BW,1. For any leaf b ∈ W , let

P be the path from the root of BT (W, T1) to b. Since BT (W, T1) is a balanced tree,
P is of length O(log |W |). We partition the subtrees attached to P into four sets:

• Wfan is the set of subtrees attached to the yellow nodes of P where π1(b) �= π1(w)

for all leaves w in the subtrees of Wfan.
• Wmid is the set of subtrees attached to the yellow nodes of P where π1(b) = π1(w)

for all leaves w in the subtrees of Wmid .
• Wleft is the set of left subtrees attached to the non-yellow nodes of P .
• Wright is the set of right subtrees attached to the non-yellow nodes of P .

Note that a|b|w ∈ t (T1) for all w ∈ Λ(S) and S ∈ Wfan. Similarly, bw|a ∈ t (T1) for
all w ∈ Λ(S) and S ∈ Wmid . Also, aw|b ∈ t (T1) for all w ∈ Λ(S) and S ∈ Wleft .

By the definitions and Lemma 4.1, sW,x,y,z
T[1..1] (a, b) = A + B + C + D where:

• A = ∑
S∈Wfan

|Λ(S)| if x > y, x > z; and 0 otherwise.
• B = ∑

S∈Wmid
|Λ(S)| if x > y, x > 1 + z; and 0 otherwise.

• C = ∑
S∈Wleft

|Λ(S)| if x > 1 + y, x > z; and 0 otherwise.
• D = ∑

S∈Wright
|Λ(S)| if x + 1 > y, x + 1 > z; and 0 otherwise.

There are O(log |W |) subtrees, so we can easily determine sW,x,y,z
T[1..1] (a, b) in

O(log |W |) time.

4.1.2 The Case k > 1

Next, for any k > 1, assume we can create a data structure BW,k−1 from which
sW,x,y,z

T[1..k−1] (a, b) can be computed in O(logk−1 |W |) time. Then we build the data struc-
ture BW,k , consisting of two parts, as follows. Firstly, similar to the case k = 1, we
build a binary search tree BT (W, Tk). Secondly, for every subtree S in BT (W, Tk),
we build the data structure BΛ(S),k−1. The time required to build BW,k depends on
the time needed for the two parts. For the first part, as shown above, BT (W, Tk)

can be constructed in O(|W | log |W |) time. For the second part,
∑{|Λ(S)|: S is a

subtree of BT (W, Tk)} = O(|W | log |W |). Since BΛ(S),k−1 can be constructed in
O(|Λ(S)| logk−1 |Λ(S)|) time, the second part takes O(|W | logk |W |) time.

We now discuss how to use BW,k to compute sW,x,y,z
T[1..k] (a, b). For any b ∈ W ,

similar to the case k = 1, first find the path P from the root of BT (W, Tk) to b.
There are O(log |W |) subtrees attached to P . Partition these subtrees into the four sets
Wfan, Wmid, Wleft , and Wright according to the same criteria as for k = 1 above. Then:

Lemma 4.2 For any b ∈ W , let Wfan, Wmid, Wright, Wleft be the four sets of subtrees

attached to the path from the root of BT (W, Tk) to b. It holds that sW,x,y,z
T[1..k] (a, b) =

A + B + C + D, where

• A = ∑
S∈Wfan

sΛ(S),x,y,z
T[1..k−1] (a, b).

• B = ∑
S∈Wmid

sΛ(S),x,y,z+1
T[1..k−1] (a, b).
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Fig. 9 Procedure for computing sW,x,y,z
T[1..i] (a, b), assuming BW,i is available

• C = ∑
S∈Wleft

sΛ(S),x,y+1,z
T[1..k−1] (a, b).

• D = ∑
S∈Wright

sΛ(S),x+1,y,z
T[1..k−1] (a, b).

Figure 9 lists the pseudocode of the procedure counting_query for computing
sW,x,y,z

T[1..k] (a, b), given BW,k . See also Fig. 10 for an illustration. The next lemma bounds
its running time.

Lemma 4.3 Given the data structure BW,k for a fixed a ∈ L, for any b ∈ L\{a}, Pro-

cedure counting_query(k, W, x, y, z, b) computes sW,x,y,z
T[1..k] (a, b) in O(logk n)

time.

Proof The procedure first identifies the path P from the root to b in BT (W, Tk). Then,
it computes four sets of subtrees Wfan, Wmid, Wright , and Wleft . Since BT (W, Tk) is a
balanced tree, it takes O(log n) time to obtain them. Then, for each subtree S, it makes
a recursive call using the data structure BΛ(S),k−1, which requires O(logk−1 n) time.
In total, the running time is O(logk n). 
�

4.2 Determining Which Clusters are Strong Clusters for Unbounded k

LetA be the tree of all Apresjan clusters. An O(n2 logk+2 n)-timemethod for checking
all the clusters included in A to see which of them are strong clusters is developed in
this subsection.

For any A ⊆ L and a, b ∈ A with a �= b, define s A
Rmaj

(a, b) = |{w ∈ A: ab|w ∈
Rmaj}|. The following lemma allows us to verify if A is a strong cluster.
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Fig. 10 Illustrating the process to compute sW,x,y,z
T[1..k] (a, b) from BW,k (Procedure counting_query).

Suppose the current recursion level is i . Let P be the path from the root of BT (Wi , Ti ) to the node
v, where dTi (v) = dTi (b) or v is a leaf of BT (Wi , Ti ). Along P , nodes with values < dTi (b) and
> dTi (b) are marked by white and black filled circles, respectively, and a diamond symbol indicates that
dTi (v) = dTi (b). Any leaf wL stored at some node in BT (Wi−1, Ti−1) pointed to from a white circle
satisfies dTi (wL ) < dTi (b), which yields formula (1). Similarly, any leaf wR stored at some node pointed
to from a black circle satisfies dTi (wR) > dTi (b), giving formula (2). For the yellow node v pointing to

BT (πTi (dTi (v))), traverse from the root to node u, whereπi (u) = πi (b) or u is a leaf of BT (πTi (dTi (v))).
If πi (u) = πi (b) then node u contains every leaf wF with dTi (wF ) = dTi (b) and πi (wF ) = πi (b);
any other leaf wM in BT (πTi (dTi (v))) satisfies dTi (wM ) = dTi (b) and πi (wM ) �= πi (b). This gives

formulas (3) and (4). Procedure counting_query computes all contributions to sW,x,y,z
T[1..i] (a, b) from (1),

(2), (3), and (4) recursively, and sums them up

Lemma 4.4 For any A ⊆ L , A is a strong cluster of Rmaj if and only if sRmaj (a, b) =
|L\A| + s A

Rmaj
(a, b) for all a, b ∈ A with a �= b.

Proof (→) For any a, b ∈ L with a �= b, note that sRmaj (a, b) = sL\A
Rmaj

(a, b) +
s A
Rmaj

(a, b). Since A is a strong cluster, we have ab|c ∈ Rmaj for all c ∈ L\A. Hence,

sL\A
Rmaj

(a, b) = |L\A|, which yields sRmaj (a, b) = |L\A| + s A
Rmaj

(a, b).
(←) For any a, b ∈ L with a �= b, it is given that sRmaj (a, b) = |L\A| +

s A
Rmaj

(a, b). Together with the fact that sRmaj (a, b) = sL\A
Rmaj

(a, b)+s A
Rmaj

(a, b), we get
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sL\A
Rmaj

(a, b) = |L\A|. This implies that ab|q ∈ Rmaj for all q ∈ L\A. By definition,
A is a strong cluster. 
�

Observe that s A
Rmaj

(a, b) = s A,0,0,0
T[1..k] (a, b), using the notation from Sect. 4.1. For

any fixed a ∈ L , the next lemma gives a data structure for computing s A
Rmaj

(a, b) in

O(logk+1 n) time for any cluster A ∈ A and b ∈ A\{a}.
Lemma 4.5 For any a ∈ L, we can construct a data structure in O(n logk+1 n) time
which enables us to compute s A

Rmaj
(a, b) = s A,0,0,0

T[1..k] (a, b) in O(logk+1 n) time for any

cluster A ∈ A that contains the element a and any b ∈ A\{a}.
Proof As in Sect. 4.1, we create a data structure with two parts. The first part is a
balanced binary tree BT (L ,A) (see Sect. 4.1). For the second part, we build BΛ(S),k

(again, see Sect. 4.1) for all subtrees S in BT (L ,A). This takes O(n logk+1 n) time
in total.

For any Apresjan cluster A that contains a and any b ∈ A\{a}, use BT (L ,A) to
partition A into p = O(log n) subsets {A1, . . . , Ap} where each subset corresponds

to a subtree in BT (L ,A). For each subset A j , compute s
A j

Rmaj
(a, b) in O(logk n) time

with the data structure BA j ,k . Since s A
Rmaj

(a, b) = ∑p
j=1 s

A j

Rmaj
(a, b), s A

Rmaj
(a, b) can

be computed in O(p logk n) = O(logk+1 n) time. 
�
Also, observe the following:

Lemma 4.6 If a node u in A satisfies sRmaj (a, b) = |L\Λ(Au)| + sΛ(Au)

Rmaj
(a, b),

then, for every ancestor u′ of u, sRmaj (a, b) = |L\Λ(Au′
)| + sΛ(Au′

)

Rmaj
(a, b) holds.

Proof Since sRmaj (a, b) = |L\Λ(Au)| + sΛ(Au)

Rmaj
(a, b), we have sL\Λ(Au)

Rmaj
(a, b) =

sRmaj (a, b) − sΛ(Au)

Rmaj
(a, b) = |L\Λ(Au)|. This means that ab|w ∈ Rmaj for all

w ∈ L\Λ(Au). Now let v be the parent of u in A. Because L\Λ(Av) ⊆ L\Λ(Au),
we have sL\Λ(Av)

Rmaj
(a, b) = |L\Λ(Av)|. Moreover, sRmaj (a, b) = sL\Λ(Av)

Rmaj
(a, b) +

sΛ(Av)

Rmaj
(a, b), so sRmaj (a, b) = |L\Λ(Av)| + sΛ(Av)

Rmaj
(a, b). 
�

By Lemma 4.6, A contains a node ua,b
min such that sRmaj (a, b) = |L\Λ(Au)| +

sΛ(Au)

Rmaj
(a, b) for any ancestor u of ua,b

min. In fact, ua,b
min can be found in O(logk+2 n)

time:

Lemma 4.7 Given the data structure in Lemma 4.5, ua,b
min for any b ∈ L can be found

in O(logk+2 n) time.

Proof Let P be the path in A between lcaA(a, b) and the root. Among the clusters
Λ(Au) for all u ∈ P , we aim to find the lowest node u such that sRmaj (a, b) =
|L\Λ(Au)| + sΛ(Au)

Rmaj
(a, b).
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Fig. 11 Procedure for checking which Apresjan clusters are strong clusters

For each node u ∈ P , it takes O(logk+1 n) time to check if sRmaj (a, b) =
|L\Λ(Au)|+ sΛ(Au)

Rmaj
(a, b). Checking all nodes in P would thus take O(|P| logk+1 n)

time. We can speed up the process to O(log |P| logk+1 n) = O(logk+2 n) time by
performing a binary search instead. 
�

Finally, we describe the procedure Verify_strong_clusters for checking
which clusters inA are strong clusters. See Fig. 11 for the pseudocode. First, initialize
count(u) = 0 for every node u in A. Then, compute ua,b

min for all a, b ∈ L using

Lemma 4.7, and increase each count(ua,b
min) by 1. Next, set sum(u) to be the total

sum of count(v) for all descendants v of u in A. By Lemma 4.8 below, if sum(u) =( |Λ(Au)|
2

)
then Λ(Au) is a strong cluster; otherwise, it is not. In case Λ(Au) is not

a strong cluster, contract u inA (that is, attach all children of u to the parent of u inA
and remove the node u). By Lemmas 4.5 and 4.7, the running time of the procedure
Verify_strong_clusters is O(n2 logk+2 n).

Lemma 4.8 For any node u in A,Λ(Au) is a strong cluster if and only if sum(u) =( |Λ(Au)|
2

)
.

Proof According to Lemma 4.4, Λ(Au) is a strong cluster of Rmaj if and only if

sRmaj (a, b) = |L\Λ(Au)| + sΛ(Au)

Rmaj
(a, b) for all a, b ∈ Λ(Au). This is equivalent to

saying that ua,b
min is a descendant of u for all a, b ∈ Λ(Au), which in turn is equivalent

to the condition sum(u) =
( |Λ(Au)|

2

)
. 
�
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