
Algorithms for the Majority Rule (+) Consensus
Tree and the Frequency Difference

Consensus Tree
Jesper Jansson , Ramesh Rajaby, Chuanqi Shen, and Wing-Kin Sung

Abstract—This article presents two new deterministic algorithms for constructing consensus trees. Given an input of k phylogenetic

trees with identical leaf label sets and n leaves each, the first algorithm constructs themajority rule (+) consensus tree in OðknÞ time,

which is optimal since the input size is VðknÞ, and the second one constructs the frequency difference consensus tree inminfOðkn2Þ;
Oðknðkþ log 2nÞÞg time.

Index Terms—Phylogenetic tree, consensus tree, cluster, pairwise compatibility, tree algorithm

Ç

1 INTRODUCTION

A consensus tree is a phylogenetic tree that summarizes a
given collection of phylogenetic trees having the same

leaf labels but different branching structures. Consensus
trees are used to resolve structural differences between two
or more existing phylogenetic trees arising from conflicts in
the raw data, to find strongly supported groupings, and to
reconcile large sets of candidate trees obtained by bootstrap-
ping when trying to infer a new phylogenetic tree accu-
rately [1], [2], [3], [4].

Since the first type of consensus tree was proposed by
Adams [5] in 1972, many others have been defined and ana-
lyzed. See, e.g., [6], Chapter 30 in [3], or Chapter 8.4 in [4] for
some surveys.Which particular type of consensus tree to use
in practice depends on the context. For example, the strict
consensus tree [7] is very intuitive and easy to compute [8]
and may be sufficient when there is not so much disagree-
ment in the data. On the other hand, the majority rule consen-
sus tree [9] is “the optimal tree to report if we view the cost of
reporting an estimate of the phylogeny to be a linear function
of the number of incorrect clades in the estimate and the
number of true clades that are missing from the estimate and
we view the reporting of an incorrect grouping as a more
serious error thanmissing a clade” [10]. As another example,

the R* consensus tree [6] may be useful when combining gene
trees [2]. Therefore, scientists need algorithms for construct-
ing a broad range of different consensus trees.

In a recent series of articles [11], [12], [13], [14], [15], we
have developed fast algorithms for computing the majority
rule consensus tree [9], the loose consensus tree [16] (also known
in the literature as the combinable component consensus tree or
the semi-strict consensus tree), a greedy consensus tree [6], [17],
theAdams consensus tree [5], the R* consensus tree [6], and con-
sensus trees for so-called multi-labeled phylogenetic trees
(MUL-trees) [18]. In this article, we study two relatively new
types of consensus trees called the majority rule (+) consensus
tree [19], [20] and the frequency difference consensus tree [21],
and give algorithms for constructing them efficiently.

1.1 Definitions and Notation

We shall use the following basic definitions. A phylogenetic
tree is a rooted, unordered, leaf-labeled tree in which every
internal node has at least two children and all leaves have
different labels. (Below, phylogenetic trees are referred to as
“trees” for short). For any tree T , the set of all nodes in T is
denoted by V ðT Þ and the set of all leaf labels in T by LðT Þ.
Any nonempty subset C of LðT Þ is called a c luster of LðT Þ;
if jCj ¼ 1 or C ¼ LðT Þ then C is trivial, and otherwise, C is
non-trivial. For any u 2 V ðT Þ, T ½u� denotes the subtree of T
rooted at the node u. Observe that if u is the root of T or if u
is a leaf then LðT ½u�Þ is a trivial cluster. The set CðT Þ ¼S

u2V ðT ÞfLðT ½u�Þg is called the cluster collection of T , and

any cluster C � LðT Þ is said to occur in T if C 2 CðT Þ.
Two clusters C1; C2 � LðT Þ are compatible if C1 � C2,

C2 � C1, or C1 \ C2 ¼ ;. If C1 and C2 are compatible, we
write C1 ^ C2; otherwise, C1 6^ C2. A cluster C � LðT Þ is
compatible with T if C ^ LðT ½u�Þ holds for every node
u 2 V ðT Þ. In this case, we write C ^ T , and C 6^ T other-
wise. If T1 and T2 are two trees with LðT1Þ ¼ LðT2Þ such that
every cluster in CðT1Þ is compatible with T2 then it follows
that every cluster in CðT2Þ is compatible with T1, and we say

� J. Jansson is with the Laboratory of Mathematical Bioinformatics (Akutsu
Laboratory), Institute for Chemical Research, Kyoto University, Gokasho
Uji, Kyoto 611-0011, Japan. E-mail: jj@kuicr.kyoto-u.ac.jp.

� R. Rajaby is with the NUS Graduate School for Integrative Sciences and
Engineering, National University of Singapore, 28 Medical Drive, Singa-
pore 117456. E-mail: e0011356@u.nus.edu, ramesh.rajaby@gmail.com.

� C. Shen is with Stanford University, 450 Serra Mall, Stanford, CA 94305-
2004. E-mail: shencq@stanford.edu.

� W.-K. Sung is with the School of Computing, National University of Singa-
pore, 13 Computing Drive, Singapore 117417, and the Genome Institute of
Singapore, 60 Biopolis Street, Genome, Singapore 138672.
E-mail: ksung@comp.nus.edu.sg.

Manuscript received 25 May 2016; revised 17 Aug. 2016; accepted 2 Sept.
2016. Date of publication 20 Sept. 2016; date of current version 2 Feb. 2018.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCBB.2016.2609923

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2018 15

1545-5963� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3295-9609
https://orcid.org/0000-0002-3295-9609
https://orcid.org/0000-0002-3295-9609
https://orcid.org/0000-0002-3295-9609
https://orcid.org/0000-0002-3295-9609
mailto:
mailto:
mailto:
mailto:

that T1 and T2 are compatible. Any two clusters or trees that
are not compatible are called incompatible.

Next, let S ¼ fT1; T2; . . . ; Tkg be a set of trees satisfying
LðT1Þ ¼ LðT2Þ ¼ . . . ¼ LðTkÞ ¼ L for some leaf label set L.
For any cluster C of L, denote the set of all trees in S in
which C occurs by KCðSÞ and the set of all trees in S that
are incompatible with C byQCðSÞ. Thus,KCðSÞ ¼ fTi : C 2
CðTiÞg and QCðSÞ ¼ fTi : C 6^ Tig. Define three special
types of clusters:

� If jKCðSÞj > k
2 then C is a majority cluster of S.

� If jKCðSÞj > jQCðSÞj then C is a majority (+) cluster
of S.

� If jKCðSÞj > maxfjKDðSÞj : D � L and C 6^ Dg then
C is a frequency difference cluster of S.

(In other words, a frequency difference cluster is a cluster that
occursmore frequently than each of the clusters that is incom-
patiblewith it.) According to the definitions, amajority cluster
of S is always a majority (+) cluster of S and a majority (+)
cluster of S is always a frequency difference cluster of S, but
not the otherway around, as illustrated in Fig. 1.

The majority rule consensus tree of S [9] is the tree T such
that LðT Þ ¼ L and CðT Þ consists of all majority clusters of S.
Similarly, the majority rule (+) consensus tree of S [19], [20] is
the tree T such that LðT Þ ¼ L and CðT Þ consists of all major-
ity (+) clusters of S, and the frequency difference consensus tree
of S [21] is the tree T such that LðT Þ ¼ L and CðT Þ consists
of all frequency difference clusters of S. See Fig. 1 for some

examples. By Theorem 1 in [9], Lemma 2 in [20], and Propo-
sition 3 in [22], respectively, each of these three consensus
trees always exists and is uniquely defined.

From here on, S is assumed to be an input set of trees
with identical leaf label sets. The leaf label set of the trees
in S is denoted by L. To express the size of the input, we
define k ¼ jSj and n ¼ jLj.

1.2 Previous Work

Margush and McMorris [9] introduced the majority rule
consensus tree in 1981, and a deterministic algorithm for
constructing it in optimal OðknÞ worst-case running time
was presented in [13]. (A randomized algorithm with OðknÞ
expected running time and unbounded worst-case running
time was given earlier by Amenta et al. [1].) The majority
rule consensus tree has several desirable mathematical
properties [10], [23], [24], and algorithms for constructing it
have been implemented in popular computational phyloge-
netics packages like PHYLIP [17], TNT [25], COMPO-
NENT [26], MrBayes [27], SumTrees in DendroPy [28], and
PAUP* [29]. Consequently, it is one of the most widely used
consensus trees in practice [19, p. 450].

One drawback of the majority rule consensus tree is that it
may be too harsh anddiscard valuable branching information.
For example, in Fig. 1, even though the cluster fa; b; c; dg is
compatiblewith 75 percent of the input trees, it is not included
in the majority rule consensus tree. For this reason, people
have become interested in alternative types of consensus trees
that include all the majority clusters and at the same time, also
include other meaningful, well-defined kinds of clusters. The
majority rule (+) consensus tree and the frequency difference
consensus tree are two such consensus trees.

The majority rule (+) consensus tree was defined by
Dong et al. [20] in 2010. It was obtained as a special case of
an attempted generalization by Cotton and Wilkinson [19]
of the majority rule consensus tree. According to [20],
Cotton and Wilkinson [19] suggested two types of super-
trees1 called majority-rule (-) and majority-rule (+) that
were supposed to generalize the majority rule consensus
tree. Unexpectedly, only the first one did, and by restricting
the second one to the consensus tree case, [20] arrived at the
majority rule (+) consensus tree. Dong et al. [20] established
some fundamental properties of this type of consensus tree
and pointed out the existence of a polynomial-time algo-
rithm for constructing it, but left the task of finding the best
possible such algorithm as an open problem. As far as we
know, no implementation for computing the majority
rule (+) consensus tree is publicly available.

Goloboff et al. [21] initially proposed the frequency dif-
ference consensus tree as a way to improve methods for
evaluating group support in parsimony analysis. Its rela-
tionships to other consensus trees have been investigated
in [20]. In [22], Steel and Velasco studied a generalization of
the frequency difference consensus tree to the supertree set-
ting and concluded that “the frequency-difference method
is worthy of more widespread usage and serious study”. A
method for constructing the frequency difference consensus
tree has been implemented in the free software package

Fig. 1. Let S ¼ fT1; T2; T3; T4g as shown above with
L ¼ LðT1Þ ¼ LðT2Þ ¼ LðT3Þ ¼ LðT4Þ ¼ fa; b; c; d; eg. The only non-trivial
majority cluster of S is fa; bg, the non-trivial majority (+) clusters of S are
fa; bg and fa; b; c; dg, and the non-trivial frequency difference clusters
of S are fa; bg, fa; b; c; dg, and fc; dg. The majority rule, majority rule (+),
and frequency difference consensus trees of S are displayed.

1. A supertree is a generalization of a consensus tree that does not
require the input trees to have identical leaf label sets.

16 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2018

TNT [25] but the algorithm used is not documented and its
time complexity is unknown. We note that since the number
of clusters occurring in S may be VðknÞ, a naive algorithm
that compares every cluster in S to every other cluster in S
directly would require Vðk2n2Þ time.

1.3 Organization of the Article and New Results

The article is organized as follows. Section 2 summarizes
some results from the literature that are needed later. In
Section 3, we modify the techniques from [13] to obtain an
OðknÞ-time algorithm for the majority rule (+) consensus
tree. Its running time is optimal because the size of the input
is VðknÞ; hence, we resolve the open problem of Dong
et al. [20] mentioned above. Next, Section 4 gives a

minfOðkn2Þ; Oðknðkþ log2nÞÞg-time algorithm for con-
structing the frequency difference consensus tree (here, the
second term is smaller than the first term if k ¼ oðnÞ; e.g., if
k ¼ Oð1Þ then the running time reduces to Oðnlog2nÞ). Both
of the new algorithms are deterministic. Finally, Section 5
presents prototype implementations (which are not fully
deterministic) of our algorithms and experimental results,
and Section 6 gives some concluding remarks.

2 PRELIMINARIES

2.1 The delete and insert operations

The delete and insert operations are two operations that
modify the structure of a tree. They are defined in the fol-
lowing way.

Let T be a tree and let u be any non-root, internal node
in T . The delete operation on u makes all of u’s children
become children of the parent of u, and then removes u and
the edge between u and its parent. See Fig. 2. The time
needed for this operation is proportional to the number of
children of u, and the effect of applying it is that the cluster
collection of T is changed to CðT Þ n fLðT ½u�Þg.

Conversely, for any specified existing internal node v in a
tree T and any proper subset X of v’s children satisfying
jXj � 2, the insert operation first removes all edges
between v and X and then creates a new internal node u
that is set to be: (1) a child of v; and (2) the parent of all
nodes in X. The effect is that CðT Þ is changed to CðT Þ [
fLðT ½u�Þg, where LðT ½u�Þ ¼ S

vi2XLðT ½vi�Þ.

2.2 Subroutines

The new algorithms in this article use the following algo-
rithms from the literature as subroutines: Day’s algo-
rithm [8], Procedure One-Way_Compatible [13], and

Procedure Merge_Trees [13]. Day’s algorithm [8] is used
to efficiently check whether any specified cluster that
occurs in a tree T also occurs in another tree Tref , and can
be applied to find the set of all clusters that occur in
both T and Tref in linear time. Procedure One-Way_

Compatible takes as input two trees TA and TB with
identical leaf label sets and outputs a copy of TA in which
every cluster that is not compatible with TB has been
removed. (The procedure is asymmetric; e.g., if TA consists
of n leaves attached to a root node and TB 6¼ TA then
One-Way_CompatibleðTA; TBÞ ¼ TA, while One-Way_

CompatibleðTB; TAÞ ¼ TB.) Procedure Merge_Trees

takes as input two compatible trees with identical leaf label
sets and outputs a tree that combines their cluster collec-
tions. Their properties are summarized below; for details,
see references [8] and [13].

Lemma 1 (Day [8]). Let Tref and T be two given trees with
LðTrefÞ ¼ LðT Þ ¼ L and let n ¼ jLj. After OðnÞ time prepro-
cessing, it is possible to determine, for any u 2 V ðT Þ, if
LðT ½u�Þ 2 CðTrefÞ in Oð1Þ time.

Lemma 2 ([13]). Let TA and TB be two given trees with
LðTAÞ ¼ LðTBÞ ¼ L and let n ¼ jLj. Procedure One-Way_

CompatibleðTA; TBÞ returns a tree T with LðT Þ ¼ L such
that CðT Þ ¼ fC 2 CðTAÞ : C is compatible with TBg in OðnÞ
time.

Lemma 3 ([13]). Let TA and TB be two given trees with
LðTAÞ ¼ LðTBÞ ¼ L that are compatible and let n ¼ jLj.
Procedure Merge_TreesðTA; TBÞ returns a tree T with
LðT Þ ¼ L and CðT Þ ¼ CðTAÞ [CðTBÞ in OðnÞ time.

3 CONSTRUCTING THE MAJORITY RULE (+)
CONSENSUS TREE

This section presents an algorithm named Maj_Rule_Plus

for computing the majority rule (+) consensus tree of S in
(optimal) OðknÞ time.

The pseudocode of Maj_Rule_Plus is given in Fig. 3.
The algorithm has two phases. Phase 1 examines the input
trees, one by one, to construct a set of candidate clusters that
includes all majority (+) clusters. Then, Phase 2 removes all
candidate clusters that are notmajority (+) clusters.2

During Phase 1, the current candidate clusters are stored
as nodes in a tree T . Every node v in T represents a current
candidate cluster LðT ½v�Þ and has a counter countðvÞ that,
starting from the iteration at which LðT ½v�Þ became a candi-
date cluster, keeps track of the number of input trees in
which it occurs minus the number of input trees that are
incompatible with it. More precisely, while treating the
tree Tj for any j 2 f2; 3; . . . ; kg in Step 3.1, countðvÞ for each
current candidate cluster LðT ½v�Þ is updated as follows: if
LðT ½v�Þ occurs in Tj then countðvÞ is incremented by 1, if
LðT ½v�Þ does not occur in Tj and is not compatible with Tj

then countðvÞ is decremented by 1, and otherwise (i.e.,
LðT ½v�Þ does not occur in Tj but is compatible with Tj)

Fig. 2. Figure from [13]. Applying a delete operation on u removes the
cluster fd; e; fg from the cluster collection. Symmetrically, one can insert
the cluster fd; e; fg into the cluster collection of the rightmost tree by per-
forming an insert operation with v in the definition above equal to the
root andX ¼ fx;fg, where x is the parent of d and e, which results in the
leftmost tree.

2. This basic strategy was previously used in the OðknÞ-time algo-
rithm in [13] for computing the majority rule consensus tree. The main
difference is how the counters are updated in Phase 1; instead of pro-
ducing a superset of the majority clusters as in [13], we now produce a
superset of the majority (+) clusters.

JANSSON ET AL.: ALGORITHMS FOR THE MAJORITY RULE (+) CONSENSUS TREE AND THE FREQUENCY DIFFERENCE CONSENSUS TREE 17

countðvÞ is unchanged. Furthermore, if any countðvÞ
reaches 0 then the node v is deleted from T so that LðT ½v�Þ is
no longer a current candidate cluster. Next, in Step 3.3,
every cluster occurring in Tj that is not a current candidate
but compatible with T is inserted into T (thus becoming a
current candidate cluster) and its counter is initialized to 1.
Lemma 4 below proves that the set of majority (+) clusters
of S is contained in the set of candidate clusters at the end
of Phase 1.

Lemma 4. For any C � L, if C is a majority (+) cluster of S then
C 2 CðT Þ at the end of Phase 1.

Proof. Suppose that C is a majority (+) cluster of S. Let Tx be
any tree in QCðSÞ and consider iteration x in Step 3: If C is
a current candidate at the beginning of iteration x then its
counter will be decremented, cancelling out the occur-
rence of C in one tree Tj where 1 � j < x; otherwise,
C may be prevented from being inserted into T in at most
one later iteration j (where x < j � k and C 2 CðTjÞ)
because of some cluster occurring in Tx. It follows from
jKCðSÞj � jQCðSÞj > 0 that C’s counter will be greater
than 0 at the end of Phase 1, and therefore C 2 CðT Þ. tu

In Phase 2, Step 5 of the algorithm computes the values of
jKCðSÞj and jQCðSÞj for every candidate cluster C and
stores them in KðvÞ and QðvÞ, respectively, where
C ¼ LðT ½v�Þ. Finally, Step 6 removes every candidate
cluster C that does not satisfy the condition jKCðSÞj >
jQCðSÞj. By definition, the clusters that remain in T are the
majority (+) clusters.

Theorem 1. Algorithm Maj_Rule_Plus constructs the
majority rule (+) consensus tree of S in OðknÞ time.

Proof. The correctness follows from Lemma 4 and the
above discussion.

The time complexity analysis is analogous to the proof
of Theorem 3.3 in [13]. First consider Phase 1. Step 3.1
takes OðnÞ time by: (1) running Day’s algorithm with
Tref ¼ Tj and then checking each node v in V ðT Þ to see if
LðT ½v�Þ occurs in Tj (according to Lemma 1, this requires
OðnÞ time for preprocessing, and each of the OðnÞ nodes
in V ðT Þmay be checked in Oð1Þ time), and (2) computing
X :¼ One-Way CompatibleðT; TjÞ and then checking for
each node v in V ðT Þ if v does not exist inX to determine if
LðT ½v�Þ 6^ Tj (this takes OðnÞ time by Lemma 2). The
delete operations in Step 3.2 take OðnÞ time because the
nodes are handled in top-down order, which means that
for every node, its parent will change at most once in each
iteration. In Step 3.3, define Y :¼ One-Way Compatible

ðTj; T Þ and Z :¼ Merge TreesðY; T Þ. Then by Lemmas 2
and 3, the cluster collection of Y consists of the clusters
occurring in Tj that are compatible with the set of current
candidates, and Z is the result of inserting these clusters
into T . Thus, Step 3.3 can be implemented by computing
Y and Z, updating T ’s structure according to Z, and set-
ting the counters of all new nodes to 1, so Step 3.3 takes
OðnÞ time. The main loop in Step 3 consists of OðkÞ itera-
tions, and Phase 1 therefore takesOðknÞ time in total.

Next, Phase 2 also takes OðknÞ time because Step 5.1
can be implemented in OðnÞ time with the same techni-
ques as in Step 3.1, and Step 6 is performed in OðnÞ time
by handling the nodes in top-down order so that each
node’s parent is changed at most once, as in Step 3.2. tu

4 CONSTRUCTING THE FREQUENCY DIFFERENCE

CONSENSUS TREE

Here, we present an algorithm for finding the frequency con-
sensus tree of S in minfOðkn2Þ, Oðknðkþ log2nÞÞg time. It is
called Frequency_Difference and is described in
Section 4.1. The algorithmuses the procedure Merge_Trees
as well as a new procedure named Filter_Clusters

whose details are given in Section 4.2.
For each tree Tj 2 S and each node u 2 V ðTjÞ, define the

weight of u as the value jKLðTj½u�ÞðSÞj, i.e., the number of trees

from S in which the cluster LðTj½u�Þ occurs, and denote it
by wðuÞ. For convenience, also define wðCÞ ¼ wðuÞ, where
C ¼ LðTj½u�Þ. The input to Procedure Filter_Clusters

is two trees TA, TB with LðTAÞ ¼ LðTBÞ ¼ L such that every
cluster occurring in TA or TB also occurs in at least one tree
in S, and the output is a copy of TA in which every cluster
that is incompatible with some cluster in TB with a higher
weight has been removed. Formally, the output

Fig. 3. Algorithm Maj_Rule_Plus for constructing the majority rule (+)
consensus tree.

18 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2018

of Filter_Clusters is a tree T with LðT Þ ¼ L such that
CðT Þ ¼ fLðTA½u�Þ : u 2 V ðTAÞ and wðuÞ > wðxÞ for every 2
V ðTBÞ with LðTA½u�Þ 6^ LðTB½x�Þg.

4.1 Algorithm Frequency_Difference

We first describe Algorithm Frequency_Difference.
Refer to Fig. 4 for the pseudocode.

The algorithm starts by computing the weight wðCÞ of
every cluster C occurring in S in a preprocessing step
(Step 1). Next, let CðSÞ for any set S of trees denote the unionS

Ti2SCðTiÞ, and for any j 2 f1; 2; . . . ; kg, define a forward

frequency difference consensus tree of fT1; T2; . . . ; Tjg as any
tree that includes every cluster C in CðfT1; T2; . . . ; TjgÞ satis-
fying wðCÞ > wðXÞ for all X 2 CðfT1; T2; . . . ; TjgÞ with
C 6^ X. Steps 2–3 use Procedure Filter_Clusters from
Section 4.2 to build a tree T that, after any iteration
j 2 f1; 2; . . . ; kg, is a forward frequency difference consen-
sus tree of fT1; T2; . . . ; Tjg, as proved in Lemma 5 below.
After iteration k, CðT Þ contains all frequency difference clus-
ters of S but possibly some other clusters as well, so Step 4
applies Filter_Clusters again to remove all non-fre-
quency difference clusters of S from T .

Lemma 5. For any j 2 f2; 3; . . . ; kg, suppose that T is a forward
frequency difference consensus tree of fT1; T2; . . . ; Tj�1g.
Let A :¼ Filter_ClustersðT; TjÞ and B :¼ Filter_

ClustersðTj; T Þ. Then Merge_TreesðA;BÞ is a forward
frequency difference consensus tree of fT1; T2; . . . ; Tjg.

Proof. Wefirst show thatA andB are compatible. For the sake
of obtaining a contradiction, suppose that A and B are not
compatible. This means there exist two clusters CA 2 CðAÞ
and CB 2 CðBÞ such that CA 6^ CB. However, A :¼ Fil-

ter_ClustersðT;TjÞ means that wðCAÞ > wðXÞ for all
X 2 CðTjÞ with CA 6^ X, and in particular, wðCAÞ >

wðCBÞ. Analogously, B :¼ Filter_ClustersðTj; T Þ
means that wðCBÞ > wðCAÞ, which yields a contradiction.
We conclude thatA andB are compatible.

Next, consider the result of computing
Merge_TreesðA;BÞ. By definition, CðT Þ includes every

cluster C in CðfT1; T2; . . . ; Tj�1gÞ satisfying wðCÞ > wðXÞ
for allX 2 CðfT1; T2; . . . ; Tj�1gÞwithC 6^ X. Observe that:

(1) Since A :¼ Filter_ClustersðT; TjÞ, CðAÞ is a
subset of CðT Þ that includes every cluster C in
CðfT1; T2; . . . ; Tj�1gÞ satisfying wðCÞ > wðXÞ for
allX 2 CðfT1; T2; . . . ; TjgÞwith C 6^ X.

(2) Similarly, CðBÞ includes every cluster C in CðTjÞ
satisfying wðCÞ > wðXÞ for all X 2 CðfT1; T2; . . . ;
Tj�1gÞ with C 6^ X. It follows immediately that
CðBÞ includes every cluster C in CðTjÞ satisfying
wðCÞ > wðXÞ for all X 2 CðfT1; T2; . . . ; TjgÞ with
C 6^ X.

By (1) and (2), CðAÞ [CðBÞ contains every cluster C in
CðfT1; T2; . . . ; TjgÞ satisfying wðCÞ > wðXÞ for all
X 2 CðfT1; T2; . . . ; TjgÞ with C 6^ X. This shows that
Merge_TreesðA;BÞ is a forward frequency difference
consensus tree of fT1; T2; . . . ; Tjg. tu

Theorem 2. Algorithm Frequency_Difference con-
structs the frequency difference consensus tree of S in

minfOðkn2Þ; Oðk2nÞg þ Oðk � fðnÞÞ time, where fðnÞ is the
running time of Procedure Filter_Clusters.

Proof. After completing iteration k of Step 3, CðT Þ is a
superset of the set of all frequency difference clusters of S
by Lemma 5. Next, Step 4 removes all non-frequency dif-
ference clusters of S, so the output will be the frequency
difference consensus tree of S.

To analyze the time complexity, first consider how to
compute all the weights in Step 1. Onemethod is to first fix
an arbitrary ordering of L and represent every cluster C
of L as a bit vector of length n (for every i 2 f1; 2; . . . ; ng,
the ith bit is set to 1 if and only if the ith leaf label belongs

toC). Then, spendOðkn2Þ time to construct a list of bit vec-
tors for allOðknÞ clusters occurring inS by a bottom-up tra-
versal of each tree in S, sort the resulting list of bit vectors
by radix sort, and traverse the sorted list to identify the
number of occurrences of each cluster. All this takes

Oðkn2Þ time. An alternative method, which uses Oðk2nÞ
time, is to initialize the weight of every node in S to 1 and
then, for j 2 f1; 2; . . . ; kg, apply Day’s algorithm (see
Lemma 1) with Tref ¼ Tj and T ranging over all Ti with
1 � i � k; i 6¼ j to find all clusters in T that also occur in Tj

and increase the weights of their nodes in T by 1. There-

fore, Step 1 takesminfOðkn2Þ; Oðk2nÞg time.
Next, Steps 3 and 4 make OðkÞ calls to the procedures

Merge_Trees and Filter_Clusters. The running
time of Merge_Trees is OðnÞ by Lemma 3 and the run-
ning time of Filter_Clusters is fðnÞ ¼ VðnÞ, so
Steps 3 and 4 take Oðk � fðnÞÞ time. tu
Lemma 8 in the next section shows that fðnÞ ¼

Oðn log2nÞ is possible, which yields:

Corollary 1. Algorithm Frequency_Difference con-
structs the frequency difference consensus tree of S in min

fOðkn2Þ; Oðknðkþ log2nÞÞg time.

4.2 Procedure Filter_Clusters

Recall that for any node u in any input tree Tj,
its weight wðuÞ is jKLðTj½u�ÞðSÞj. Also, wðCÞ ¼ wðuÞ,

Fig. 4. Algorithm Frequency_Difference for constructing the fre-
quency difference consensus tree.

JANSSON ET AL.: ALGORITHMS FOR THE MAJORITY RULE (+) CONSENSUS TREE AND THE FREQUENCY DIFFERENCE CONSENSUS TREE 19

where C ¼ LðTj½u�Þ. We assume that all wðuÞ-values
have been computed in a preprocessing step and are
available.

Let T be a tree. For every nonempty X � V ðT Þ,
lcaT ðXÞ denotes the lowest common ancestor of X in T . To
obtain a fast solution for Filter_Clusters, we need the
next lemma.

Lemma 6. Let T be a tree, let X be any cluster of LðT Þ, and let

rX ¼ lcaT ðXÞ. For any v 2 V ðT Þ, it holds that X 6^ LðT ½v�Þ
if and only if: (1) v lies on a path from a child of rX to some leaf
belonging toX; and (2) LðT ½v�Þ 6� X.

Proof. Given T , X, rX , and v as in the lemma statement,
there are four possible cases: (i) v is a proper ancestor
of rX or equal to rX; (ii) v lies on a path from a child of rX
to some leaf in X and all leaf descendants of v belong
to X; (iii) v lies on a path from a child of rX to some leaf
in X and not all leaf descendants of v belong to X; or
(iv) v is a proper descendant of rX that does not lie on any
path from a leaf in X to rX. In case (i), X � LðT ½v�Þ. In
case (ii), LðT ½v�Þ z X. In case (iii), X \ LðT ½v�Þ 6¼ ; while
X 6� LðT ½v�Þ and LðT ½v�Þ 6� X. In case (iv), X \ LðT ½v�Þ ¼
;. By the definition of compatible clusters, X 6^ LðT ½v�Þ if
and only if case (iii) occurs. tu
Lemma 6 leads to an Oðn2Þ-time method for Filter_

Clusters, which we now briefly describe. For each node
u 2 V ðTAÞ in top-down order, do the following: Let
X ¼ LðTA½u�Þ and find all v 2 V ðTBÞ such that X 6^
LðTB½v�Þ in OðnÞ time by doing bottom-up traversals of TB

to first mark all ancestors of leaves belonging to X that are
proper descendants of the lowest common ancestor of X
in TB, and then unmarking all marked nodes that have no
leaf descendants outside of X. By Lemma 6, X 6^ LðTB½v�Þ
if and only if v is one of the resulting marked nodes. If
wðuÞ � wðvÞ for any such v then do a delete operation on u

in TA. Clearly, the total running time is Oðn2Þ. (This simple
method gives fðnÞ ¼ Oðn2Þ in Theorem 2 in Section 4.1,
and hence a total running time of Oðkn2Þ for
Algorithm Frequency_Difference.) In the rest of this
section, we refine this idea to get an even faster solution
for Filter_Clusters, summarized in Fig. 5.

High-Level Description. We use the centroid path decomposi-
tion technique [30] to divide the nodes of TA into a so-called
centroid path and a set of side trees. A centroid path of TA is
defined as a path in TA of the form p ¼ hpa; pa�1; . . . ; p1i,
where pa is the root of TA, the node pi�1 for every
i 2 f2; . . . ;ag is any child of pi with the maximum number of
leaf descendants, and p1 is a leaf. Given a centroid path p,
removing p and all its incident edges from TA produces a
set sðpÞ of disjoint trees whose root nodes are children of
nodes belonging to p in TA; these trees are called the side trees
of p. Importantly, jLðtÞj � n=2 for every side tree t of p. Also,
fLðtÞ : t 2 sðpÞg forms a partition of L n fp1g. Furthermore,
if p is a centroid path of TA then the cluster collection CðTAÞ
can be written recursively as CðTAÞ ¼ S

t2sðpÞCðtÞ [S
pi2pfLðTA½pi�Þg. Intuitively, this allows the cluster collec-

tion of TA to be broken into smaller sets that can be checked
more easily, and then put together again at the end.

The fast version of Filter_Clusters (shown in Fig. 5)
first computes a centroid path p ¼ hpa; pa�1; . . . ; p1i of TA and

the set sðpÞ of side trees of p in Step 1. Then, in Steps 2 and 3,
it applies itself recursively to each side tree of p to get rid of
any cluster in

S
t2sðpÞCðtÞ that is incompatible with some

Fig. 5. The fast version of procedure Filter_Clusters.

20 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2018

cluster in TB with a higher weight than itself, and the remain-
ing clusters are inserted into a temporary tree Rs. Next,
Steps 4, 5, and 6 check all clusters in

S
pi2pfLðTA½pi�Þg to

determine which of them are not incompatible with any clus-
ter in TB with a higher weight, and create a temporary treeRc

whose cluster collection consists of all those clusters that pass
this test. Finally, Step 7 combines the cluster collections of Rs

andRc by applying the procedure Merge_Trees. The details
of Procedure Filter_Clusters are discussed next.

Steps 2-3 (Handling the Side Trees). For every nonempty
C � LðT Þ, define T jC (“the restriction of T to C”; see, e.g.,
[31]) as the tree T 0 with leaf label set C and internal node

set flcaT ðfa; bgÞ : a; b 2 Cgwhich preserves the ancestor rela-

tions from T , i.e., which satisfies lcaT ðC0Þ ¼ lcaT
0 ðC0Þ for all

nonempty C0 � C. Now, let sðpÞ be the set of side trees of the
centroid path p of TA computed in Step 1. For each t 2 sðpÞ,
define a weighted tree TBjjLðtÞ as follows. First, construct
TBjLðtÞ and let the weight of each node in this tree equal its
weight in TB. Next, for each edge ðu; vÞ in TBjLðtÞ, let P be the
path in TB between u and v, excluding u and v; if P contains at
least one node then create a new node z in TBjLðtÞ, replace
the edge ðu; vÞ by the two edges ðu; zÞ and ðz; vÞ, and set the
weight of z to the maximum weight of all nodes belonging
to P . See Fig. 6 for an example. Below, each such inserted
node z in TBjjLðtÞ is identifiedwith any of the nodes in P that
has themaximumweight.

During the construction of TBjjLðtÞ, if for any node u
inTBjjLðtÞ it holds that ðTBjjLðtÞÞ½u� 6¼ TB½u� thenu ismarked
as spoiled. The spoiled nodes in TBjjLðtÞ are those nodes
whose leaf descendant sets are missing one or more elements
from L n LðtÞ. By definition, any ancestor of a spoiled node is
also a spoiled node.We extend the concept of “compatible” to

nodes in TBjjLðtÞ as follows. Suppose that C � LðtÞ. If u is a
node in TBjjLðtÞ and u is not spoiled thenC ^ u if and only if
C ^ LðTB½u�Þ holds in the original tree TB. On the other hand,
if u is a spoiled node in TBjjLðtÞ then C ^ u if and only if
C and LððTBjjLðtÞÞ½u�Þ are disjoint or C � LððTBjjLðtÞÞ½u�Þ.
(Note that if u is spoiled and LððTBjjLðtÞÞ½u�Þ z C then
C 6^ u.) Then, for every cluster C in CðtÞ, maxfwðXÞ : X 2
CðTBÞ and C 6^ Xg can be expressed as maxfwðuÞ : u is a
node in TBjjLðtÞ and C 6^ ug.

In Step 3, Filter_Clusters is applied to ðt; TBjjLðtÞÞ
recursively to remove all bad clusters from t, using the
spoiled nodes to pass on information regarding where
in TBjjLðtÞ that at least one leaf descendant not belonging
to LðtÞ has been pruned. For each t 2 sðpÞ, the resulting
tree is denoted by t0. All the clusters of each obtained t0 are
inserted into a tree Rs (initially consisting of a root node
and a single leaf labeled by p1) by directly attaching the root
of t0 as a child of the root of Rs. Since fLðt0Þ : t 2 sðpÞg
forms a partition of L n fp1g, every leaf label in L appears
exactly once in Rs and we have CðRsÞ ¼ fLðTA½u�Þ : u 2
V ðtÞ for some t 2 sðpÞ and wðuÞ > wðxÞ for every x 2 V ðTBÞ
with LðTA½u�Þ 6^ LðTB½x�Þg [fLg after Step 3 is finished.

Steps 4, 5, and 6 (Handling the Centroid Path). The clustersS
pi2pfLðTA½pi�Þg on the centroid path are nested because pi

is the parent of pi�1, so LðTA½pi�1�Þ � LðTA½pi�Þ for every
i 2 f2; 3; . . . ;ag. The main loop (Step 6) checks each of these
clusters in order of increasing cardinality. For this purpose,
the algorithm maintains a binary search tree BT that, right
after Step 6.6 in any iteration i of the main loop is complete,
contains nodes x from TB with LðTA½pi�Þ 6^ LðTB½x�Þ. When-
ever a node x is inserted into BT , its key is set to the
weightwðTB½x�Þ. UsingBT , Step 6.8 retrieves the weightM of
the heaviest cluster in TB that is incompatible with LðTA½pi�Þ
(if any). Step 6.9 savesLðTA½pi�Þ by inserting it into the treeRc

if its weight is strictly greater than M. Thus, after Step 6 is
done, CðRcÞ ¼ fLðTA½u�Þ : u 2 p and wðuÞ > wðxÞ for every
x 2 V ðTBÞ with LðTA½u�Þ 6^ L ðTB½x�Þg.

In order to update BT correctly while moving upwards
along p in Step 6, the algorithm relies on Lemma 6. In each
iteration i 2 f2; 3; . . . ;ag of Step 6, ri is the lowest common
ancestor in TB of LðTA½pi�Þ. By Lemma 6, the clusters in TB

that are incompatible with LðTA½pi�Þ are of the
form LðTB½v�Þ, where: (1) v lies on a path in TB from a child
of ri to a leaf in LðTA½pi�Þ; and (2) LðTB½v�Þ 6� LðTA½pi�Þ.
Accordingly, BT is updated in Steps 6.3, 6.4, 6.5, 6.6, and 6.7
as follows. Condition (1) is taken care of by first inserting all
nodes from TB between ri�1 and ri except ri�1 into BT in
Step 6.3, then also inserting ri�1 if LðTB½ri�1�Þ 6¼ LðTA½pi�1�Þ,
and finally inserting all leaf descendants of pi that are not
descendants of pi�1, along with any of their ancestors in TB

that were not already in BT , into BT in Step 6.5. Lastly,
Step 6.6 enforces condition (2) by using counters to locate
and remove all nodes from BT (if any) whose clusters are
proper subsets of LðTA½pi�Þ. To do this, counterðxÞ for every
node x in TB is updated so that it stores the number of
leaves in LðTB½x�Þ \ LðTA½pi�Þ for the current i, and if
counterðxÞ reaches the value jLðTB½x�Þj then x is removed
from BT . To account for leaf labels in the original TB that
are no longer present in the current TB because of a recur-
sive call in Steps 2 and 3, the algorithm exits the while-loop
in Step 6.6 whenever it reaches a spoiled node. Hence,

Fig. 6. Illustrating the definition of TBjjLðtÞ. (a) A side tree t of a centroid
path of TA with LðtÞ ¼ fa; c; d; g; ig. (b) A tree TB with a node weight
displayed next to each node. (c) The tree TBjfa; c; d; g; ig. (d) The tree
TBjjfa; c; d; g; ig with circles indicating the spoiled nodes.

JANSSON ET AL.: ALGORITHMS FOR THE MAJORITY RULE (+) CONSENSUS TREE AND THE FREQUENCY DIFFERENCE CONSENSUS TREE 21

all encountered spoiled nodes will remain in BT after
Step 6.6.

Time Complexity. To analyze the time complexity of Fil-
ter_Clusters, we first prove a lemma.

Lemma 7. Let T be a tree with n leaves in which every node v has a
weightwðvÞ. AfterOðn lognÞ time preprocessing, themaximum
weight of all nodes on the path from any specified node in T
to any specified descendant node can be recalled inOð1Þ time.

Proof. Decompose T into a centroid path and a set of side
trees as above. Then, recursively decompose each side tree
in the same way until V ðT Þ has been partitioned into a set
of disjoint centroid paths. This takes OðnÞ time according
to Section 2 in [30]. Next, build two sets of data structures.
First, for every centroid path Pc ¼ ðv1; v2; . . . ; vtÞ, let
Pc½1::t� be an array of integers with Pc½i� ¼ wðviÞ for every
i 2 f1; 2; . . . ; tg. Store Pc in the RMQ (range minimum/
maximum query) data structure of [32] which, after linear-
time preprocessing, can return the index of a maximum
element in the subarray Pc½i::j� for any 1 � i � j � t in
Oð1Þ time. Second, for every x 2 LðT Þ, denote the list of all
centroid subpaths contained in the path from the root of T
to leaf x by Q1; Q2; . . . ; Qf , where each Qi is a subpath of
some centroid path of T . LetWx½1::f � be an array such that
Wx½i� ¼ maxv2Qi

wðvÞ for every i 2 f1; 2; . . . ; fg. Each
Wx½i�-entry is obtained from the Pc-RMQ data structures
in Oð1Þ time, so we construct another RMQ data structure
to storeWx in OðfÞ time, and since f ¼ OðlognÞ, this takes
Oðn lognÞ time in total for all x 2 LðT Þ.

Then, to find the maximum weight along the path
from any node u to a descendant v, let Q1; Q2; . . . ; Qf be
the concatenation of subpaths of centroid paths of T that
lead from u to v. The values maxv2Q1

wðvÞ and maxv2Qf

wðvÞ are found in Oð1Þ time by querying the Pc-RMQ
data structures for the centroid paths that contain Q1

and Qf , respectively, and maxv2Q2[...[Qf�1
wðvÞ is found in

Oð1Þ time by querying the RMQ data structure for Wx for
any x 2 LðT ½v�Þ. tu

Lemma 8. Procedure Filter_Clusters runs in Oðn log 2nÞ
time.

Proof. Step 1 is straightforward and takes OðnÞ time [30].
As for Steps 2 and 3, using Lemma 5.2 in [31] to first con-

struct TBjLðtÞ for every side tree t of p takes OðnÞ time in
total.After that, TBjjLðtÞ for each side tree t ofp is obtained
from TBjLðtÞ in OðjLðtÞj � log jLðtÞjÞ time by applying
Lemma 7, so this construction takes a total of OðnlognÞ
time. In addition, Step 3makes a recursive call for each t.

Steps 4, 5, and 6 take Oðn lognÞ time because every
operation involving BT takes OðlognÞ time and because
TB can be preprocessed in OðnÞ time so that any

lcaT ðfa; bgÞ-query with a; b 2 L can be answered in Oð1Þ
time [32], [33].

Finally, Step 7 takes OðnÞ time according to Lemma 3.
For any side tree t of p, let gðtÞ represent the running

time of Filter_Clustersðt; TBjjLðtÞÞ. Then the total
running time can be written as Oðn lognÞ þP

t2sðpÞ gðtÞ.
Every side tree t satisfies jLðtÞj � n=2, so there are
OðlognÞ recursion levels and the total running time is

Oðn log 2nÞ. tu

5 IMPLEMENTATIONS

As noted in Section 1.2, there does not seem to be any
publicly available implementation for the majority
rule (+) consensus tree. To fill this void, we implemented
algorithm Maj_Rule_Plus from Section 3. The situation
for the frequency difference consensus tree is less critical
as there already exists an implementation in the software
package TNT [25]; however, TNT is very slow for large
inputs, so we implemented algorithm Frequency_

Difference from Section 4 as an alternative. Our
implementations were written in C++, using some C++
libraries from Boost [34], and follow the descriptions in
this article with a few exceptions (see Section 5.1). They
have been included in the source code of the FACT (Fast
Algorithms for Consensus Trees) package [13] which can
be downloaded from:

http://compbio.ddns.comp.nus.edu.sg/

	consensus.tree/

To test the implementations, we measured their running
times for randomly generated inputs of various sizes. The
experiments and their outcomes are described below.

5.1 Setup

The experiments were carried out on a Dell Optiplex 990
desktop computer running Ubuntu 15.10 and equipped
with 8 GB of RAM and an Intel i7-2600 quad-core processor
clocked at 3.40 GHz. The compiler was g++, version 5.2.1.
Running times were measured using the bash time

command.
The following methods were evaluated:

� Algorithm Maj_Rule_Plus from Section 3.
� Algorithm Frequency_Difference from Section 4.
� The “freqdifs” method in TNT [25] for computing

the frequency difference consensus tree.
� The majority rule consensus tree algorithm from [13]

(implementation available in the FACT package [13]).
For Step 1 of Frequence_Difference, we imple-

mented both ways of computing the weights of all the clus-
ters mentioned in the proof of Theorem 2. From here on,
they are called W1 and W2, where W1 corresponds to the

Oðk2nÞ-time method and W2 to the Oðkn2Þ-time method.
We also implemented the two versions of procedure

Filter_Clusters with time complexity Oðn2Þ (see the

paragraph after Lemma 6) and Oðn log2nÞ (see Lemma 8);
these implementations are henceforth referred to as FC1
and FC2, respectively. (Thus, a total of four different var-
iants of Frequence_Difference were included in the
experiments: W1+FC1, W1+FC2, W2+FC1, and W2+FC2.)
We remark here that in W2, we replaced the radix sort by
quicksort, leading to an increase in its theoretical time com-
plexity but great improvements in the actual running times.
Also, although the fast version of Filter_Clusters is
fully deterministic according to the description in Section
4.2, the implementation of it in FC2 is not, as the latter uses
hash maps in order to construct the TBjjLðtÞ-trees more
efficiently in practice.

In TNT, before running “freqdifs”, the input trees were
converted to its native format and the command “collapse -”
was issued to prevent TNT from collapsing edges of length 0
(by default, all edges have length 0).

22 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2018

http://compbio.ddns.comp.nus.edu.sg/~consensus.tree/
http://compbio.ddns.comp.nus.edu.sg/~consensus.tree/

In the experiments, we measured the running times of all
the above methods, averaged over 50 randomly generated
inputs of size ðk; nÞ for various specified values of ðk; nÞ. The
inputs were generated according to two different scenarios,

called “Scenario 1” and “Scenario 2”. Scenario 1 represents
the situation where the input trees are closely related (which
one may assume will occur in practice) while Scenario 2
corresponds to an extreme case in which the input trees

TABLE 1
Scenario 1 with k ¼ 100 (Fixed) and Varying Values of n

TABLE 2
Scenario 1 with n ¼ 100 (Fixed) and Varying Values of k

TABLE 3
Scenario 2 with k ¼ 100 (Fixed) and Varying Values of n

TABLE 4
Scenario 2 with n ¼ 100 (Fixed) and Varying Values of k

JANSSON ET AL.: ALGORITHMS FOR THE MAJORITY RULE (+) CONSENSUS TREE AND THE FREQUENCY DIFFERENCE CONSENSUS TREE 23

are uncorrelated. The main difference between them is that
the total number of distinct clusters can be much greater in
Scenario 2. To be precise, the procedures used to generate a
set of k trees over the leaf label set f1; 2; . . . ; ng, for any pair
of specified positive integers k and n, were:

� Scenario 1: First, a single binary tree with leaf label set
f1; 2; . . . ; ng is generated in the uniform model [35].
Then, for each non-root, internal node u, a delete
operation is performed on u with probability 0.2 to
obtain a non-binary tree Tr. Finally, k trees are
obtained from Tr by repeating the following steps
k times: take a copy of Tr and 0:05 � n times randomly
select a non-root node u and an internal node v,
remove the subtree rooted at u, and attach it to v.

� Scenario 2: First, k binary trees with leaf label set
f1; 2; . . . ; ng are generated in the uniform model [35],
independently of each other. Next, for each non-
root, internal node u in each tree, a delete operation
is performed on u with probability 0.2, yielding
k non-binary trees.

5.2 Experimental Results

The obtained average running times (in seconds) are
reported in Tables 1, 2, 3, and 4. Tables 1 and 2 refer to Sce-
nario 1, and Tables 3 and 4 to Scenario 2.

According to the obtained results, the majority rule con-
sensus tree method from [13] is faster than all the other
ones. But since the majority rule consensus tree is not
always informative enough (see Section 1.2), it is reassuring
to see that the potentially more meaningful majority rule (+)
consensus tree can be computed at a modest increase in the
running time.

For computing the frequency difference consensus tree,
TNT is the slowest method. The increase in its running
time as the input size gets larger is particularly bad in
Scenario 2, demonstrating that this method is much more
vulnerable to having a huge number of distinct clusters
than the others. In contrast, Frequency_Difference

actually performs better in Scenario 2 than in Scenario 1.
The reason is that trees (over a fixed leaf label set) ran-
domly generated independently of each other tend to
have many incompatible pairs of clusters, each with very
few occurrences, so not many clusters will remain after
Frequency_Difference applies Filter_Clusters

in each iteration of its main loop. Therefore, the tree T
maintained during its execution is typically much smaller
in Scenario 2 than in Scenario 1, making the method run
faster. We also see that the best combination of W1, W2,
FC1, and FC2 to use in Frequency_Difference

depends on ðk; nÞ. E.g., as one might expect, FC1 is faster
than FC2 for small values of n due to smaller constants
hidden in the big O-notation while FC2 is clearly faster
than FC1 for large n. Note that Tables 1 and 3 (fixed k
and varying n) suggest that the rate of growth of W2’s
running time is not really quadratic in n, but more like
linear and very close to that of W1; nevertheless, addi-
tional (informal) experiments indicate that the memory
usage of W2 grows quadratically with n, which can be
explained by the algorithm using n bits for each cluster
occurring in S. Based on the experimental results, we
offer the following rules of thumb: Use W2 if memory is

not an issue and W1 otherwise, and use FC1 for
n < 1;000 and FC2 for n � 1;000.

6 CONCLUDING REMARKS

We have presented new algorithms for constructing the
majority rule (+) and frequency difference consensus trees.
The time complexity of our algorithm for the majority
rule (+) consensus tree is optimal because it matches the size
of the input. An open problem is to further improve the run-
ning time of procedure Filter_Clusters in Section 4. If it
is reduced to OðnÞ then the time complexity of algorithm

Frequency_Difference becomes minfOðkn2Þ; Oðk2nÞg,
according to Theorem 2. This would be better than the cur-
rent bound given in Corollary 1 for small k, that is, when

k ¼ oðlog2nÞ. An even more challenging open problem is to
design an algorithm for computing the frequency difference
consensus tree in optimalOðknÞ time.

We conclude this article with a simple observation. As
shown in Fig. 1 in Section 1.1, the majority rule, majority
rule (+), and frequency difference consensus trees may be
different from each other. However, in the special case
where all trees in S are binary, we have the following:

Lemma 9. If S ¼ fT1; T2; . . . ; Tkg is a set of binary trees with
LðT1Þ ¼ LðT2Þ ¼ . . . ¼ LðTkÞ ¼ L then the majority rule and
the majority rule (+) consensus trees are equal, but the fre-
quency difference consensus tree may be different.

Proof. Consider anyC � L and any treeTi 2 S.Wefirst show
that in the binary tree setting, ifC 62 CðTiÞ thenC 6^ Ti.

Suppose C 62 CðTiÞ. Let u be the lowest common
ancestor in Ti of all leaves belonging to C. Then
C 6¼ LðTi½u�Þ, so LðTi½u�Þ n C is nonempty. Select any leaf
x 2 LðTi½u�Þ nC and let v be the child of u that is an ances-
tor of x. Since Ti is binary, Ti½v� must contain at least one
leaf that also belongs to C (otherwise, u would not be

Fig. 7. Let S ¼ fT1; T2; T3; T4g be the binary trees shown above with
L ¼ LðT1Þ ¼ LðT2Þ ¼ LðT3Þ ¼ LðT4Þ ¼ fa; b; c; dg. Then, the cluster
fb; cg is a frequency difference cluster but not a majority (+) cluster.

24 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2018

the lowest common ancestor of C), and we have
LðTi½v�Þ \ C 6¼ ;, LðTi½v�Þ 6� C, and C 6� LðTi½v�Þ. By defi-
nition, C 6^ Ti.

Thus, for each Ti 2 S, either C 2 CðTiÞ or C 6^ Ti

holds. This gives jKCðSÞj þ jQCðSÞj ¼ k. Next, if C is a
majority (+) cluster of S then jKCðSÞj > jQCðSÞj together
with jKCðSÞj þ jQCðSÞj ¼ k implies jKCðSÞj > k

2, so C is

a majority cluster of S.
In contrast, an example of a set of binary trees whose

frequency difference consensus tree differs from the
majority rule and majority rule (+) consensus trees is
given in Fig. 7. tu
By Lemma 9, if all the input trees are binary then one can

just apply the fast algorithm for the majority rule consensus
tree from [13] to directly obtain the majority rule (+) consen-
sus tree, but computing the frequency difference consensus
tree is not so easy even in this special case.

ACKNOWLEDGMENTS

J.J. was funded by The Hakubi Project at Kyoto University
and KAKENHI grant numbers 23700011 and 26330014. A
preliminary version of this article appeared in the Proceed-
ings of the Thirteenth International Workshop on Algorithms in
Bioinformatics (WABI 2013), volume 8126 of Lecture Notes
in Computer Science, pp. 141–155, Springer-Verlag Berlin
Heidelberg, 2013.

REFERENCES

[1] N. Amenta, F. Clarke, and K. S. John, “A linear-time majority
tree algorithm,” in Proc. 3rd Int. Workshop Algorithms Bioinf., Lec-
ture Notes in Computer Science, vol. 2812, pp. 216–227, 2003.

[2] J. H. Degnan, M. DeGiorgio, D. Bryant, and N. A. Rosenberg,
“Properties of consensus methods for inferring species trees from
gene trees,” Systematic Biol., vol. 58, no. 1, pp. 35–54, 2009.

[3] J. Felsenstein, Inferring Phylogenies. Sunderland, MA, USA: Sinauer
Associates, 2004.

[4] W.-K. Sung, Algorithms in Bioinformatics: A Practical Introduction.
Boca Raton, FL, USA: Chapman & Hall/CRC, 2010.

[5] E.N. Adams III, “Consensus techniques and the comparison of taxo-
nomic trees,” Systematic Zoology, vol. 21, no. 4, pp. 390–397, 1972.

[6] D. Bryant, “A classification of consensus methods for
phylogenetics,” in Bioconsensus, M. F. Janowitz, F.-J. Lapointe,
F. R. McMorris, B. Mirkin, and F. S. Roberts, Eds. Providence, RI,
USA: American Mathematical Society, 2003, vol. 61, pp. 163–184.

[7] R. R. Sokal and F. J. Rohlf, “Taxonomic congruence in the Lepto-
podomorpha re-examined,” Systematic Zoology, vol. 30, no. 3,
pp. 309–325, 1981.

[8] W. H. E. Day, “Optimal algorithms for comparing trees with
labeled leaves,” J. Classification, vol. 2, no. 1, pp. 7–28, 1985.

[9] T. Margush and F. R. McMorris, “Consensus n-Trees,” Bulletin
Math. Biol., vol. 43, no. 2, pp. 239–244, 1981.

[10] M. T. Holder, J. Sukumaran, and P. O. Lewis, “A justification for
reporting the majority-rule consensus tree in Bayesian
phylogenetics,” Systematic Biol., vol. 57, no. 5, pp. 814–821, 2008.

[11] Y. Cui, J. Jansson, and W.-K. Sung, “Polynomial-time algorithms
for building a consensus MUL-tree,” J. Comput. Biol., vol. 19, no. 9,
pp. 1073–1088, 2012.

[12] J. Jansson, Z. Li, and W.-K. Sung, “On finding the Adams consen-
sus tree,” in Proc. 32nd Int. Symp. Theoretical Aspects Comput. Sci.,
vol. 30, pp. 487–499, 2015.

[13] J. Jansson, C. Shen, and W.-K. Sung, “Improved algorithms for con-
structing consensus trees,” J. ACM, vol. 63, no. 3, 2016, Art. no. 28.

[14] J. Jansson and W.-K. Sung, “Constructing the R* consensus tree of
two trees in subcubic time,” Algorithmica, vol. 66, no. 2, pp. 329–
345, 2013.

[15] J. Jansson, W.-K. Sung, H. Vu, and S.-M. Yiu, “Faster algorithms for
computing the R* consensus tree,” Algorithmica, accepted for publi-
cation, doi: 10.1007/s00453-016-0122-2.

[16] K. Bremer, “Combinable component consensus,” Cladistics, vol. 6,
no. 4, pp. 369–372, 1990.

[17] J. Felsenstein, “PHYLIP, version 3.6,” Software package, Depart-
ment of Genome Sciences, University of Washington, Seattle,
USA, 2005.

[18] M. Lott, A. Spillner, K. T. Huber, A. Petri, B. Oxelman, and
V. Moulton, “Inferring polyploid phylogenies from multiply-
labeled gene trees,” BMC Evol. Biol., vol. 9, 2009, Art. no. 216.

[19] J. A. Cotton andM.Wilkinson, “Majority-rule supertrees,” System-
atic Biol., vol. 56, no. 3, pp. 445–452, 2007.

[20] J. Dong, D. Fern�andez-Baca, F. R. McMorris, and R. C. Powers,
“Majority-rule (+) consensus trees,” Math. Biosciences, vol. 228,
no. 1, pp. 10–15, 2010.

[21] P. A. Goloboff, J. S. Farris, M. K€allersj€o, B. Oxelman, M. J. Ram�ırez,
and C. A. Szumik, “Improvements to resampling measures of
group support,” Cladistics, vol. 19, no. 4, pp. 324–332, 2003.

[22] M. Steel and J. D. Velasco, “Axiomatic opportunities and obstacles
for inferring a species tree from gene trees,” Systematic Biol.,
vol. 63, no. 5, pp. 772–778, 2014.

[23] J.-P. Barth�elemy and F. R. McMorris, “The median procedure for
n-trees,” J. Classification, vol. 3, no. 2, pp. 329–334, 1986.

[24] F. R. McMorris and R. C. Powers, “A characterization of majority
rule for hierarchies,” J. Classification, vol. 25, no. 2, pp. 153–158, 2008.

[25] P. A. Goloboff, J. S. Farris, and K. C. Nixon, “TNT, a free program
for phylogenetic analysis,” Cladistics, vol. 24, no. 5, pp. 774–786,
2008.

[26] R. Page, “COMPONENT, version 2.0,” Software package, Univer-
sity of Glasgow, U.K., 1993.

[27] F. Ronquist and J. P. Huelsenbeck, “MrBayes 3: Bayesian phyloge-
netic inference under mixed models,” Bioinf., vol. 19, no. 12, pp.
1572–1574, 2003.

[28] J. Sukumaran and M. T. Holder, “DendroPy: A Python library for
phylogenetic computing,” Bioinf., vol. 26, no. 12, pp. 1569–1571,
2010.

[29] D. L. Swofford, “PAUP*, version 4.0,” Software package, Sinauer
Associates, Inc., Sunderland, MA, USA, 2003.

[30] R. Cole, M. Farach-Colton, R. Hariharan, T. Przytycka, and
M. Thorup, “AnOðn lognÞ algorithm for the maximum agreement
subtree problem for binary trees,” SIAM J. Comput., vol. 30, no. 5,
pp. 1385–1404, 2000.

[31] M. Farach and M. Thorup, “Fast comparison of evolutionary
trees,” Inform. Comput., vol. 123, no. 1, pp. 29–37, 1995.

[32] M. A. Bender and M. Farach-Colton, “The LCA problem revis-
ited,” in Proc. 4th Latin Amer. Symp. Theoretical Informat., Lecture
Notes in Computer Science, Springer-Verlag, vol. 1776, pp. 88–94,
2000.

[33] D. Harel and R. E. Tarjan, “Fast algorithms for finding nearest com-
mon ancestors,” SIAM J. Comput., vol. 13, no. 2, pp. 338–355, 1984.

[34] The Boost C++ Libraries. [Online]. Available: http://www.boost.
org/

[35] A. McKenzie and M. Steel, “Distributions of cherries for two mod-
els of trees,”Math. Biosciences, vol. 164, no. 1, pp. 81–92, 2000.

Jesper Jansson received the MSc degree in
mathematics in 2002 and the PhD degree in com-
puter science in 2003, both from Lund University,
Sweden. He is currently an associate professor
at Kyoto University, Japan. His research interests
include graph algorithms, succinct data struc-
tures, and bioinformatics.

Ramesh Rajaby received the BSc and MSc
degrees from the Department of Computer Sci-
ence, the University of Milano-Bicocca, Italy. He
is currently working toward the PhD degree at the
Graduate School for Integrative Sciences and
Engineering, the National University of Singa-
pore.

JANSSON ET AL.: ALGORITHMS FOR THE MAJORITY RULE (+) CONSENSUS TREE AND THE FREQUENCY DIFFERENCE CONSENSUS TREE 25

http://www.boost.org/
http://www.boost.org/

Chuanqi Shen received the BSc and MSc
degrees from the Department of Computer Sci-
ence, Stanford University. Currently, he is a soft-
ware engineer at Google.

Wing-Kin Sung received the BSc and PhD
degrees from the Department of Computer Sci-
ence, the University of Hong Kong. He is a pro-
fessor in the Department of Computer Science,
the National University of Singapore. He also
works as a senior group leader in the Genome
Institute of Singapore.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

26 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 15, NO. 1, JANUARY/FEBRUARY 2018

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

