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Abstract A degree-constrained graph orientation of an undirected graph G is an
assignment of a direction to each edge in G such that the outdegree of every vertex
in the resulting directed graph satisfies a specified lower and/or upper bound. Such
graph orientations have been studied for a long time and various characterizations
of their existence are known. In this paper, we consider four related optimization
problems introduced in reference (Asahiro et al. LNCS 7422, 332–343 (2012)): For
any fixed non-negative integer W , the problems MAX W -LIGHT, MIN W -LIGHT,
MAX W -HEAVY, and MIN W -HEAVY take as input an undirected graph G and ask
for an orientation of G that maximizes or minimizes the number of vertices with
outdegree at most W or at least W . As shown in Asahiro et al. (LNCS 7422, 332–
343 (2012)), the problems’ computational complexity vary with W . Here, we present
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several new positive and negative results related to their polynomial-time approx-
imability, thereby extending the results from Asahiro et al. (LNCS 7422, 332–343
(2012)).

Keywords Graph orientation · Degree constraint · (In)approximability ·
Submodular function · Greedy algorithm

1 Introduction

Let G = (V , E) be an undirected (multi-)graph. An orientation of G is a func-
tion that maps each undirected edge {u, v} in E to one of the two possible directed
edges (u, v) and (v, u). For any orientation � of G, define �(E) = ⋃

e∈E{�(e)}
and let �(G) denote the directed graph (V , �(E)). For any vertex u ∈ V , the
outdegree of u under � is defined as d+

�(u) = |{(u, v) : (u, v) ∈ �(E)}|, i.e., the
number of outgoing edges from u in �(G). For any non-negative integer W , a ver-
tex u ∈ V is called W -light in �(G) if d+

�(u) ≤ W , and W -heavy in �(G) if
d+
�(u) ≥ W . For any U ⊆ V , if all the vertices in U are W -light (resp., W -heavy),

we say that U is W -light (resp., W -heavy).
The optimization problems MAX W -LIGHT, MIN W -LIGHT, MAX W -HEAVY,

and MIN W -HEAVY, where W is any fixed non-negative integer, were introduced
in [5]. In each problem, the input is an undirected (multi-)graph G = (V , E) and the
objective is to output an orientation � of G such that:

• MAX W -LIGHT:
∣
∣{u ∈ V : d+

�(u) ≤ W }∣∣ is maximized
• MIN W -LIGHT:

∣
∣{u ∈ V : d+

�(u) ≤ W }∣∣ is minimized
• MAX W -HEAVY:

∣
∣{u ∈ V : d+

�(u) ≥ W }∣∣ is maximized
• MIN W -HEAVY:

∣
∣{u ∈ V : d+

�(u) ≥ W }∣∣ is minimized

We write n = |V | and m = |E| for the input graph G. The degree of u in G,
denoted by d(u), is the number of edges that are incident to u in G, and we define
δ = min{d(u) : u ∈ V } and � = max{d(u) : u ∈ V }.

Observe that MAX W -LIGHT and MIN (W + 1)-HEAVY are supplementary prob-
lems in the sense that an exact algorithm for one gives an exact algorithm for the
other although their polynomial-time approximability properties may differ. The
same observation holds for the pair MIN W -LIGHT and MAX (W + 1)-HEAVY.

The computational complexity of MAX W -LIGHT, MIN W -LIGHT, MAX

W -HEAVY, and MIN W -HEAVY was investigated for different values of W

in [5]. As observed in [5], the special case of MAX 0-LIGHT is identical to
the well-known MAXIMUM INDEPENDENT SET problem, and its supplemen-
tary problem MIN 1-HEAVY is identical to MINIMUM VERTEX COVER. Thus,
allowing the value of W to vary yields a natural generalization of MAXIMUM

INDEPENDENT SET and MINIMUM VERTEX COVER. However, for many val-
ues of W , the computational complexity was unknown. In this paper, we estab-
lish a number of new results on the polynomial-time approximability of these
problems.
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1.1 New results

Below is a list of previous results from [5] and the new results presented in this paper.
See Table 1 for a summary.

– MAX W -LIGHT: It is known that MAX 0-LIGHT cannot be approximated within
a ratio of n1−ε for any positive constant ε in polynomial time, unless P = NP [5,
30]. Theorem 4 in Section 5.1 below proves that for every fixed W ≥ 1, MAX

W -LIGHT cannot be approximated within (n/W)1−ε in polynomial time, unless
P = NP . On the positive side, Theorem 1 in Section 3 provides a polynomial-
time (n/(2W + 1))-approximation algorithm for MAX W -LIGHT.

– MIN W -HEAVY: MIN 1-HEAVY cannot be approximated within 1.3606 in poly-
nomial time, unless P = NP [5, 10]. Corollary 1 in Section 5.2 extends this
inapproximability result to hold for MIN W -HEAVY for every fixed W ≥ 2.
We also show how to approximate MIN W -HEAVY within a ratio of ln(� −
W + 1) + 1 in polynomial time for every fixed W ≥ 2 in Theorem 3 in
Section 4.2.

Table 1 Summary of the results from [5] and the new results in this paper

W

MAX W -LIGHT MIN (W + 1)-HEAVY

= 0 Identical to Identical to

MAXIMUM INDEPENDENT SET [5] MINIMUM VERTEX COVER [5]

≥ 1 Tractable for trees [5], Tractable for trees [5],

(n/(2W + 1))-approximable (ln(� − W) + 1)-approximable

(Theorem 1, Section 3), (Theorem 3, Section 4.2),

(n/W)1−ε-inapproximable 1.3606-inapproximable

(Theorem 4, Section 5.1) (Corollary 1, Section 5.2)

MIN W -LIGHT MAX (W + 1)-HEAVY

= 0 Tractable [5] Tractable [5]

≥ 0 Tractable for outerplanar graphs [5] Tractable for outerplanar graphs [5]

≥ 1 (ln(W + 1) + 1)-approximable 2-approximable for planar graphs [5],

(Theorem 2, Section 4.1) (W + 2)-approximable [5]

≥ 2 NP-hard for planar graphs [5] NP-hard for planar graphs [5]

large (ln(W + 1) − O(log log W)) (n/W)1/2−ε-inapproximable

-inapproximable (Theorem 7, Section 5.4),

(Corollary 2, Section 5.3) W 1−ε-inapproximable

(Corollary 3, Section 5.4)

“Tractable” means “exactly solvable in polynomial time”
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– MIN W -LIGHT: A polynomial-time (W +1)-approximation algorithm was given
in [5]. Theorem 2 in Section 4.1 improves the approximation ratio to ln(W +
1) + 1 for any W≥ 1. Moreover, Corollary 2 in Section 5.3 shows that for suf-
ficiently large values of W , MIN W -LIGHT is NP-hard to approximate within
ln(W + 1) − O(log log W), implying that our (ln(W + 1) + 1)-approximation is
almost tight.

– MAX W -HEAVY: It was shown in [5] that MAX 1-HEAVY and MIN 0-LIGHT

are in P , but MAX (W + 1)-HEAVY and MIN W -LIGHT are NP-hard for every
fixed W ≥ 2. Theorem 7 in Section 5.4 strengthens the latter result for MAX

W -HEAVY by proving that for sufficiently large values of W , the problem is
NP-hard to approximate within (n/W)1/2−ε for any ε > 0. Furthermore, Corol-
lary 3 in Section 5.4 shows that it is also NP-hard to approximate within W1−ε

for any ε > 0 and W = �(n1/3). (Note that the best known polynomial-time
approximation ratio for MAX W -HEAVY is W + 1 [5].)

– The computational complexity of MAX 2-HEAVY and MIN 1-LIGHT for arbi-
trary input graphs has still not been resolved, but this paper considers two special
cases: (i) � ≤ 3; and (ii) δ ≥ 4. Corollary 9 in Section 6.2 and Corollary 8 in
Section 6.1 demonstrate that both problems can be solved in polynomial time for
case (i) and case (ii), respectively.

1.2 Motivation

Graph orientations that optimize certain objective functions involving the result-
ing directed graph or that satisfy some special property such as acyclicity [26] or
k-edge connectivity [9, 21, 24] have many applications to graph theory, combinato-
rial optimization, scheduling (load balancing), resource allocation, and efficient data
structures. For example, an orientation that minimizes the maximum outdegree [3,
8, 11, 19, 28] can be used to support fast vertex adjacency queries in a sparse graph
by storing each edge in exactly one of its two incident vertices’ adjacency lists while
ensuring that all adjacency lists are short [8]. There are many other optimization cri-
teria for graph orientations besides these; see [4] or chapter 61 in [25] for more details
and additional references.

Degree-constrained graph orientations [14, 15, 18, 20], studied in this paper, are
one particular type of graph orientations that arise when a lower degree bound Wl(v)

and/or an upper degree bound Wu(v) for each vertex v in the input graph are speci-
fied, and the outdegree of v in any valid graph orientation is required to lie in the range
Wl(v), . . . , Wu(v). Obviously, a graph does not always have such an orientation,
and in this case, one might want to compute an orientation that best fits the outde-
gree constraints according to some well-defined criteria [4, 5]. In case Wl(v) = 0
and Wu(v) = W for every vertex v in the input graph, where W is a non-negative
integer, and the objective is to maximize (resp., minimize) the number of vertices
that satisfy (resp., violate) the outdegree constraints, then we obtain MAX W -LIGHT

(resp., MIN (W + 1)-HEAVY). Similarly, if W l(v) = W + 1 and Wu(v) = ∞
for every vertex v in the input graph, then we obtain MAX (W + 1)-HEAVY and
MIN W -LIGHT.
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2 Preliminaries

Let G be an undirected graph. We denote the vertex set and the edge set of G by V (G)

and E(G), respectively. For any U ⊆ V (G), the subgraph of G induced by U is
denoted by G[U ]. For any fixed integer W ≥ 0, an orientation of a graph is called a
W -orientation if the maximum outdegree is at most W . If a W -orientation exists, the
graph is said to be W -orientable. For any S ⊆ V (G), we let E(S) denote the subset
of edges whose both endpoints belong to S, i.e., G[S] = (S, E(S)). Also, for any
two disjoint subsets S, T ⊆ V , we write E(S, T ) to denote the subset of all edges
with one endpoint belonging to S and the other to T . The ratio |E(S)|/|S| is called
the density of S. The maximum density ρG of an undirected graph G is defined by

ρG = maxS⊆V

⌈ |E(S)|
|S|

⌉
. 1 We denote a subgraph G[V (G) \ S] of G whose vertex

set and edge set are V (G) \ S and E(V (G) \ S), respectively, by G \ S. Finally, an
orientation � of an undirected graph G is called Eulerian if d+

�(v) = d(v) − d+
�(v),

i.e., if the outdegree equals the indegree for every vertex v in V (G).
It is known [14] that finding the maximum density of a graph is equivalent to

finding the smallest integer W such that the graph is W -orientable:

Proposition 1 ([14]) Any graph G is W -orientable if and only if ρG ≤ W .

Throughout the paper, we use the notation Ki to denote the complete graph
with i vertices for any positive integer i. The following immediate consequence of
Proposition 1 plays an important role:

Proposition 2 The complete graph K2W+1 has an orientation in which the indegree
and the outdegree of every vertex are equal to W .

Note that the orientation referred to in Proposition 2 is Eulerian.

Proposition 3 (p. 91 of [25]) Given a graph G with all degrees even, an Eulerian
orientation of G can be found in O(m) time.

We extend the notion of the maximum density to oriented graphs as follows:

Proposition 4 Consider an undirected graph G and an orientation � of G, and
assume that m′ edges in E(U, V (G) \ U) for a subset U of vertices are oriented
outwards from U to V (G) \ U in �. Then the average outdegree of the vertices in
U is (|E(U)| + m′)/|U |. As a result, there exists a vertex v ∈ U with d+

�(v) ≥
�(|E(U)| + m′)/|U |	.

1The average degree of a vertex in the subgraph G[S] is given by the density |E(S)|/|S|, which implies
that there is a vertex of degree at least this value. Since |E(S)|/|S| is not always an integer, the maximum
degree of the graph G[S] is at least �|E(S)|/|S|	. This is why we use the ceiling function in the definition
of the maximum density.
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3 An approximation algorithm for MAX W -LIGHT with W ≥ 1

Since MAX 0-LIGHT is identical to MAXIMUM INDEPENDENT SET [5], it cannot be
approximated within a ratio of n1−ε in polynomial time, unless P = NP [30], while
it can be approximated within a ratio of O(n(log log n)2/(log n)3) [12]. This section
shows how to approximate MAX W -LIGHT for any W ≥ 1 within a ratio of n/(2W +
1) in polynomial time. This bound is almost tight due to the inapproximability ratio
(n/W)1−ε derived in Section 5.1 below.

First, consider the following simple algorithm, named EulerO, for orienting the
edges of an input graph G based on Proposition 3 (see also [13]):

By using the algorithm in Proposition 3 as a subroutine in Step 3, the total running
time of Algorithm EulerO becomes O(m). As will be discussed in Section 6.1, EulerO
can solve certain restricted instances of MAX W -LIGHT, MIN W -HEAVY, MIN

W -LIGHT, and MAX W -HEAVY exactly. For now, we just observe the following
property:

Lemma 1 In the orientation output by Algorithm EulerO, every vertex has outdegree
at most ��/2	, where � is the maximum degree of G.

Proof Let v be any vertex in G. The degree of v in G is at most �. By the construc-
tion of G+, if the degree of v in G is even then its degree will be the same in G+, but
if the degree of v in G is odd then its degree in G+ equals its degree in G plus one.
Then, according to the definition of an Eulerian orientation, the outdegree of v in �+
is at most ��/2	. Removing E+ in Step 4 sometimes decreases but never increases
the outdegree of v in the resulting �(G). In other words, the outdegree of v in �(G)

is at most ��/2	.
The next algorithm, PickUp, will be used to approximate MAX W -LIGHT.

2 If there is no vertex of odd degree in G then G+ = G and E+ = ∅.
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We have:

Theorem 1 Algorithm PickUp is a linear-time (n/(2W + 1))-approximation algo-
rithm for MAX W -LIGHT.

Proof The maximum degree �′ in G[U ] is at most 2W because |U | ≤ 2W + 1.
Furthermore, if �′ is odd then �′ + 1 ≤ 2W . Thus, W ≥ ��′/2	 holds. By
Lemma 1, every vertex belonging to U has outdegree at most ��′/2	 in �(G)

and will therefore be W -light in �(G). The number of W -light vertices in any
optimal orientation of G is at most n, so the approximation ratio of PickUp is
n/(2W + 1). The time complexity of PickUp is the same as that of EulerO, i.e.,
O(m).

4 Greedy algorithms for MIN W -LIGHT and MIN (W + 1)-HEAVY

This section presents greedy algorithms for MIN W -LIGHT and MIN

(W + 1)-HEAVY with unbounded W . They both use the same framework,
involving the theory of submodular functions, but adopt different criterion
functions.

4.1 Greedy algorithm for MIN W -LIGHT

We first explain the main idea of the greedy algorithm for MIN W -LIGHT. The algo-
rithm chooses vertices from G, one at a time, which are successively added to an
initially empty set S. This process continues until G admits an orientation in which
all remaining vertices (i.e., belonging to V (G) \ S) are (W + 1)-heavy. The criterion
for choosing which vertex to insert into S in each iteration is defined in terms of the
solution to the following problem:

As will be shown in Lemma 2, the problem P1(G, W, S) can be solved in poly-
nomial time via the maximum flow problem. Motivated by this fact, define g1(S) to
be the value of the solution to P1(G, W, S) plus |S| · (W + 1). We call g1 a criterion
function. It is easy to see that g1(S) = g1(V ) = n(W + 1) if and only if there exists
an orientation of G in which every vertex in V \ S is (W + 1)-heavy. In addition, g1
is a non-decreasing submodular function by Lemma 4 shown below. Assuming that
Lemmas 2 and 4 hold, we can prove:
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Theorem 2 MIN W -LIGHT can be approximated within a ratio of ln(W + 1) + 1 in
O((mn + m1.5 min{m0.5, log m log W })n) time.

Proof It is known that optimization problems of the form minS⊆V {|S| :
g(S) = g(V )} can be approximated within a ratio of H(maxi∈V {g({i}) −
g(∅)}) ≤ ln(maxi∈V {g({i}) − g(∅)}) + 1, where H(i) is the ith Harmonic
number, by the following greedy algorithm if g is a non-decreasing submodular
function [29]:

1. Set S := ∅.
2. If g(S) = g(V ), then output S and halt.
3. Find an i ∈ V \ S that maximizes g(S ∪ {i}) − g(S) and update S := S ∪ {i}.
4. Goto Step 2.

Since ln(maxi∈V {g1({i}) − g1(∅)}) ≤ ln(W + 1), we obtain a (ln(W + 1) + 1)-
approximation algorithm by adopting g1 as g in the above algorithm.

The algorithm executes at most n iterations of Step 3, each one running in
O(m1.5 min{m0.5, log m log W }) + O(mn) time, where the O(m1.5 min{m0.5,

log m log W })-term is for computing the maximum flow for g1(S) according to
Lemma 2, and the O(mn)-term is for finding an augmenting path to compute
g1(S ∪ {i}) from g1(S) n times.

The rest of this section proves the lemmas needed to complete the proof of
Theorem 2. First, we show the polynomial-time solvability of P1(G, W, S).

Lemma 2 ATTAINMENT OF (W + 1)-HEAVY ORIENTATION(P1(G, W, S)) can be
solved in O(m1.5 min{m0.5, log m log W }) time.

Proof The problem P1(G, W, S) can be reduced to the maximum flow problem
as follows. Construct a flow network N1(G, W, S) whose set of vertices is {s, t} ∪
E(G) ∪ V (G) and whose set of arcs is {(s, e) : e ∈ E} ∪ {(e, u), (e, v) : e =
{u, v} ∈ E(G)} ∪ {(u, t) : u ∈ V (G)}. The number n1 of vertices in N1(G, W, S)

is m + n + 2, and the number m1 of arcs is 3m + n. The capacities of the arcs are
defined by:

cap((s, e)) = 1 for e ∈ E(G),

cap((e, u)) = 1 for u ∈ e ∈ E(G),

cap((u, t)) =
{

0 for u ∈ S,

W + 1 for u ∈ V (G) \ S.

Refer to Fig. 1 (i) and (ii) for an example of the construction with W = 2. In
Fig. 1 (ii), only the capacities of arcs of the form (u, t) are shown.

Now, we can see that the value of the solution to P1(G, W, S) corresponds to
the maximum flow in the network N1(G, W, S). For any e(= {u, v}) ∈ E(G), if
there is a flow of size one from s to e, then we may assume that will pass through
exactly one of u and v by the integrality theorem. This is interpreted as follows:
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Fig. 1 (i) A graph G and a set S = {1, 2}; (ii) The constructed network N1(G, 2, {1, 2}) and a maximum
flow; (iii) An orientation of G corresponding to the maximum flow, where the direction of the edge a =
{1, 2} can be determined arbitrarily

The edge e = {u, v} in G is oriented as (u, v) if the unit of flow exiting e passes
through u, and as (v, u) otherwise. The amount of flow passing through u is the
minimum of W + 1 and the outdegree of u of the corresponding orientation. The
optimal value of P1(G, W, S) is thus obtained by solving the maximum flow problem
on N1(G, W, S). As an example, a maximum flow of value 6 in the flow network in
Fig. 1 (ii) is depicted by bold lines, and a corresponding orientation of G giving the
solution to P1(G, W, S) is shown in Fig. 1 (iii).

The running time is analyzed as follows. Since m1 = O(n
16/15−ε

1 ), the maxi-
mum flow algorithm from [23] can be applied to the flow network N1(G, W, S).
Its running time is O(n1m1), where n1 and m1 are the number of vertices and
arcs in the input network. We have n1 = O(m) and m1 = O(m), so this
takes O(m2) time. Alternatively, the maximum flow algorithm in [17] can be
applied, which takes O(min{n2/3

1 , m
1/2
1 }m1 log(n2

1/m1) log U1) time, where U1 is
the maximum capacity of an arc in the input network. Since the maximum capac-
ity of an arc in N1(G, W, S) is O(W), this algorithm takes O(m1.5 log m log W)

time. To summarize, P1(G, W, S) can be solved in O(m1.5 min{m0.5, log m log W })
time.

By the optimality of the maximum flow, there is a simple characterization of an
optimal orientation. The next lemma is based on an observation about a certain type
of paths: If there is a directed path from a (W + 2)-heavy vertex in V \ S or a vertex
in S to a W -light vertex in V \ S, then flipping the directions of the edges of the path
gives a better orientation for P1(G, W, S).
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Lemma 3 � is an optimal orientation of P1(G, W, S) if and only if there is no
directed path in �(G) from a (W + 2)-heavy vertex in V \ S or a vertex in S to a
W -light vertex in V \ S.

Proof (If part) We prove the contrapositive, i.e., if � is not optimal, then there is a
directed path from a (W +2)-heavy vertex in V \S or a vertex in S to a W -light vertex
in V \ S. Consider an optimal orientation �∗. Since � = �∗, there is a directed path
P starting from a vertex u and ending at a vertex v in �(G), while the set of vertices
of P forms a directed path in the opposite direction in �∗(G). Note that P may be
a single edge. For simplicity, assume that the only difference between � and �∗ is
a part of P . Since �∗ is obtained by flipping the directions of the edges of P in �,
d+
�∗(u) = d+

�(u) − 1 and d+
�∗(v) = d+

�(v) + 1 hold.
Since � is not optimal, i.e.,

∑
v∈V \S min{W + 1, d+

�(v)} <
∑

v∈V \S min{W +
1, d+

�∗(v)}, one of the following two conditions must hold: (i) u, v ∈ V \ S, d+
�(u) ≥

W + 2 and d+
�(v) ≤ W ; and (ii) u ∈ S, v ∈ V \ S, and d+

�(v) ≤ W . (If both of u and
v are included in S, the value of

∑
v∈V \S min{W + 1, d+

�(v)} does not change even
if we flip the direction of P .) Thus, there is a directed path from a (W + 2)-heavy
vertex in V \S or a vertex in S to a W -light vertex in V \S. The discussion is similar
for the case where at least two paths differ between � and �∗.

(Only-if part) Again, we prove the contrapositive, that is, if there is a directed path
from any (W + 2)-heavy vertex in V \ S or any vertex in S to a W -light vertex in
V \ S, then � is not optimal. Let the start and end vertices of the path be u and v,
and consider an orientation �′ in which the directions of the edges of the path are
flipped and the rest is the same as �. As in the discussion for the (If part) above,
d+
�′(v) = d+

�(v) + 1 and d+
�′(u) = d+

�(u) − 1. Here, in case u is in V \ S and is
(W + 2)-heavy, we have min{W + 1, d+

�(u)} = min{W + 1, d+
�′(u)} = W + 1. In

addition, since v is W -light in �(G), the inequality d+
�(v) < d+

�′(v) ≤ W + 1 also
holds. This implies that

∑
v∈V \S min{W +1, d+

�(v)} <
∑

v∈V \S min{W +1, d+
�′(v)},

i.e., � is not optimal.

Finally, we show that g1 is a non-decreasing submodular function.

Lemma 4 g1 is a non-decreasing submodular function, that is, it satisfies (non-
decreasingness) g1(S ∪ {i}) − g1(S) ≥ 0 for any S ⊆ V and i ∈ V \ S, and
(submodularity) g1(S) + g1(T ) ≥ g1(S ∩ T ) + g1(S ∪ T ) for any S, T ⊆ V .

Proof For any two disjoint subsets S, S′ ⊆ V of vertices, denote:

α(S, S ′) = min

{
∑

v∈S′
min{W + 1, d+

�(v)} : � ∈ OptO(P1(G, W, S))

}

, (1)

where OptO(P1(G, W, S)) is the set of all optimal orientations of P1(G, W, S). We
first show that the following equality holds for any disjoint S, S′ ⊆ V :

g1(S ∪ S′) − g1(S) = |S′| · (W + 1) − α(S, S ′). (2)
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Let �S,S′ be an orientation of G that achieves α(S, S ′). By Lemma 3 and the opti-
mality of �S,S′ for P1(G, W, S), there is no directed path from any (W + 2)-heavy
vertex in V \ S or any vertex in S to a W -light vertex in �S,S′(G). Also, there exists
no directed path from any vertex in S′ to a W -light vertex in V \ (S ∪S′); otherwise it
would contradict that �S,S′ minimizes

∑
v∈S′ min{W + 1, d+

�(v)}. These facts imply
that �S,S′ is also an optimal orientation for P1(G, W, S ∪ S′). Thus, we have:

g1(S) = |S| · (W + 1) +
∑

v∈V \S
min{W + 1, d+

�S,S′ (v)}

= (|S ∪ S′| − |S′|) · (W + 1) +
∑

v∈V \(S∪S′)
min{W + 1, d+

�S,S′ (v)}

+
∑

v∈S′
min{W + 1, d+

�S,S′ (v)}

= g1(S ∪ S′) − |S′| · (W + 1) +
∑

v∈S′
min{W + 1, d+

�S,S′ (v)},

which proves (2). Note that the first equality above is based on the optimality of
�S,S′ , while the second one is based on the fact that S and S′ are disjoint. Then, by
combining (1) and (2), g1(S ∪ {i}) − g1(S) = (W + 1) − α(S, {i}) ≥ 0 holds for any
i ∈ V \ S, which implies the non-decreasing property of g1.

Next, we prove the submodularity of g1. An equivalent condition is that:

g1(S ∪ {i}) − g1(S) ≥ g1(S ∪ {i, j}) − g1(S ∪ {j}) (3)

for every S ⊆ V and every i, j ∈ V \ S. By (2), we have:

g1(S ∪ {i}) − g1(S) = (W + 1) − α(S, {i}),
g1(S ∪ {j}) − g1(S) = (W + 1) − α(S, {j}),

g1(S ∪ {i, j}) − g1(S) = 2(W + 1) − α(S, {i, j}).

Combining these equations, we obtain the following:

g1(S ∪ {i}) − g1(S) + g1(S ∪ {j}) − g1(S ∪ {i, j})
= − α(S, {i}) − α(S, {j}) + α(S, {i, j}).

It is straightforward to see that α(S, {i}) + α(S, {j}) ≤ α(S, {i, j}) holds by the
definition of α. This implies condition (3), i.e., the submodularity of g1.

Remark 1 The submodularity of g1 can be also established by matroid theory. Such
a proof is given in Appendix A. Although it is in some sense simpler, it has been
placed in the appendix because the above proof and the proof of Lemma 7 in the next
subsection are more closely related.
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4.2 Greedy algorithm for MIN (W + 1)-HEAVY

To obtain a greedy algorithm for MIN (W + 1)-HEAVY, we follow the same strategy
as for MIN W -LIGHT in Section 4.1. However, the proofs become slightly more com-
plicated because here we need to rely on minimum cost flows instead of maximum
flows. 3

We first construct a criterion function g2, analogous to g1 for MIN W -LIGHT in
Section 4.1. For this purpose, define the following problem:

Lemma 5 below describes how to solve P2(G, W, S) in polynomial time
via the minimum cost flow problem. Let h(S) be the value of the solution
to P2(G, W, S) and define the criterion function g2(S) = h(∅) − h(S). Then
g2(V ) = g2(S) = h(∅) if and only if G \ S is W -orientable. Lemma 7 will show
that g2 is a non-decreasing submodular function, yielding the main result of this
subsection:

Theorem 3 MIN (W + 1)-HEAVY can be approximated within a ratio of ln(� −
W) + 1 in O(nm3 log n) time.

Proof By an argument similar to the one previously used for MIN W -LIGHT,
the greedy algorithm in the proof of Theorem 2 with g set to g2 finds a
(ln(maxi∈V {g2({i}) − g2(∅)}) + 1)-approximate solution to the problem of finding a
smallest possible S ⊆ V that satisfies g2(S) = g2(V ), i.e., a smallest S ⊆ V such
that there exists an orientation of G in which every vertex in V \S is W -light. This is
precisely the MIN (W +1)-HEAVY problem. Since g2(∅) = 0 and g2({i}) ≤ �−W ,
the approximation ratio is ln(� − W) + 1.

As for the running time, the greedy algorithm needs to solve the EXCESS OF W -
LIGHT ORIENTATION problem at most n times. By Lemma 5, the running time of
the greedy algorithm becomes O(nm3 log n).

The rest of this subsection fills in the technical details.

3Recall that the minimum cost flow problem (see, e.g., [22]) takes as input a flow network with a specified
capacity ui and cost ci for each arc ai , and asks for a flow from the source to the sink of some specified
size that has the minimum cost, where the cost is defined as

∑
ai

cixi and where xi is the amount of the
flow along the arc ai .
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Lemma 5 EXCESS OF W -LIGHT ORIENTATION (P2(G, W, S)) can be solved in
O(m3 log n) time.

Proof Reduce the problem P2(G, W, S) to the minimum cost flow problem as
follows. Construct a flow network N2(G, W, S) whose set of vertices is {s, t} ∪
E(G) ∪ V (G) and whose set of arcs is {(s, e) : e ∈ E} ∪ {(e, u), (e, v) : e =
{u, v} ∈ E(G)} ∪ {(u, t)1, (u, t)2 : u ∈ V (G)}. We assume that d(u) ≥ W + 1
for every vertex u, since otherwise all edges incident to u can be oriented out-
ward, and we can remove such edges in advance. The capacities of the arcs are
defined by:

cap((s, e)) = 1 for e ∈ E(G),

cap((e, u)) = 1 for u ∈ e ∈ E(G),

cap((u, t)1) =
{

d(u) for u ∈ S,

W for u ∈ V (G) \ S,

cap((u, t)2) =
{

0 for u ∈ S,

d(u) − W for u ∈ V (G) \ S.

The costs of the arcs are defined by:

cost ((s, e)) = 0 for e ∈ E(G),

cost ((e, u)) = 0 for u ∈ e ∈ E(G),

cost ((u, t)1) = 0 for u ∈ V (G),

cost ((u, t)2) = 1 for u ∈ V (G).

See Fig. 2 for an example of the construction with W = 1.
Then the value of the solution to P2(G, W, S) corresponds to the minimum cost

flow in the network N2(G, W, S) of size m from the source s to the sink t . To
illustrate, in Fig. 2(ii), a minimum cost flow of cost 1 is indicated by bold lines.
Fig. 2 (iii) shows a corresponding orientation of G that yields the solution to
P2(G, W, S).

The minimum cost flow problem for an input flow network with n1 vertices
and m1 arcs can be solved in O(n2

1m1 log n1) time [22]. Since N2(G, W, S) has
n1 = O(m) vertices and m1 = O(m) arcs and m = O(n2), the time complexity is
O(m3 log n).

The optimality of the minimum cost flow problem can be characterized by the
nonexistence of a negative cycle in its residual network [1], interpreted as in the
following lemma:
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Fig. 2 (i) A graph G and a set S = {1}; (ii) The constructed network N2(G, 1, {1}) and a minimum cost
flow; (iii) An orientation of G corresponding to the minimum cost flow

Lemma 6 � is an optimal orientation of P2(G, W, S) if and only if there is no
directed path in �(G) from a (W +1)-heavy vertex in V \S to a (W −1)-light vertex
in V \ S or a vertex in S.

Proof This proof is analogous to the proof of Lemma 3.
(If part) We prove the contrapositive, i.e., if � is not optimal, then there is a directed
path from a (W + 1)-heavy vertex in V \ S to a (W − 1)-light vertex in V \ S or
a vertex in S. Proceed exactly as in the first paragraph of the proof of Lemma 3.
Here however, since � is not optimal, we have

∑
v∈V \S max{0, d+

�(v) − W } >
∑

v∈V \S max{0, d+
�∗(v)−W }, so that either one of the following two conditions must

hold: (i) u, v ∈ V \ S, d+
�(u) ≥ W + 1 and d+

�(v) ≤ W − 1; and (ii) u ∈ S,
d+
�(u) ≥ W + 1, and v ∈ V \ S. This means that there is a directed path from a

(W + 1)-heavy vertex in V \ S to a (W − 1)-light vertex in V \ S or a vertex in S. In
the case where at least two paths differ between � and �∗, the discussion is similar.

(Only-if part) We prove the contrapositive, that is, if there is a directed path from
a (W + 1)-heavy vertex in V \ S to a (W − 1)-light vertex in V \ S or a vertex
in S, then � is not optimal. Just like before, let the start and end vertices of the
path be u and v, and consider an orientation �′ in which the directions of all edges
on the path are flipped and the rest is the same as �. Then d+

�′(v) = d+
�(v) + 1

and d+
�′(u) = d+

�(u) − 1 still hold, and in case v is in V \ S and (W − 1)-
light, we also have max

{
0, d+

�(v) − W
} = max

{
0, d+

�′(v) − W
} = 0. In addition,

since u is (W + 1)-heavy in �(G), d+
�(u) > d+

�′(u) ≥ W holds. This implies
that

∑
v∈V \S max

{
0, d+

�(v) − W
}

>
∑

v∈V \S max
{
0, d+

�′(v) − W
}
, i.e., � is not

optimal.
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Finally, we prove that g2 is a non-decreasing submodular function by using the
arguments from the proof of Lemma 4.

Lemma 7 g2(S) satisfies: (non-decreasingness) g2(S ∪ {i}) − g2(S) ≥ 0 for any
S ⊆ V and i ∈ V \ S, and (submodularity) g2(S) + g2(T ) ≥ g2(S ∩ T ) + g2(S ∪ T )

for any S, T ⊆ V .

Proof For any two disjoint subsets S, S′ ⊆ V , denote:

β(S, S ′) = max

{
∑

v∈S′
max

{
0, d+

�(v) − W
} : � ∈ OptO(P2(G, W, S))

}

, (4)

where OptO(P2(G, W, S)) is the set of all optimal orientations of P2(G, W, S). We
first show that for any disjoint S, S′ ⊆ V :

g2(S ∪ S′) − g2(S) = β(S, S′) (5)

holds. Let �′
S,S′ be an orientation that achieves β(S, S′) (note that �′

S,S′ is differ-
ent from �S,S′ used in the proof of Lemma 4). By Lemma 6 and the optimality of
�′

S,S′ for P2(G, W, S), there is no directed path from a W -heavy vertex in V \ S

to a (W − 1)-light vertex in V \ S or a vertex in S. Furthermore, �′
S,S′ maximizes

∑
v∈S′ max{0, d+

�(v) − W }, so there is no directed path from a (W + 1)-heavy ver-
tex in V \ (S ∪ S′) to a vertex in S′. We therefore see that �′

S,S′ is also an optimal
orientation of P2(G, W, S ∪ S′) and:

g2(S) = g′(∅) −
∑

v∈V \S
max{0, d+

�′
S,S′

(v) − W }

= g′(∅) −
∑

v∈V \(S∪S′)
max{0, d+

�S,S′ (v) − W }

−
∑

v∈S′
max{0, d+

�S,S′ (v) − W }

= g2(S ∪ S′) −
∑

v∈S′
max{0, d+

�S,S′ (v) − W },

which is equivalent to (5). By (4) and (5), g2(S ∪ {i}) − g2(S) = β(S, {i}) ≥ 0 holds
for any i ∈ V \ S, guaranteeing the non-decreasing property of g2.

Finally, to prove the submodularity of g2, use the following equivalent condition
of the submodularity of g2 (analogous to (3)):

g2(S ∪ {i}) − g2(S) ≥ g2(S ∪ {i, j}) − g2(S ∪ {j}) (6)

for every S ⊆ V and every i, j ∈ V \ S. It follows from (5) that:

g2(S ∪ {i}) − g2(S) = β(S, {i}),
g2(S ∪ {j}) − g2(S) = β(S, {j}),

g2(S ∪ {i, j}) − g2(S) = β(S, {i, j}),



Theory Comput Syst (2016) 58:60–93 75

and hence:

g2(S ∪ {i}) − g2(S) + g2(S ∪ {j}) − g2(S ∪ {i, j})
= β(S, {i}) + β(S, {j}) − β(S, {i, j}).

Since β(S, {i}) ≥ β(S, {i, j}) − β(S, {j}) by the definition of β, this gives (6). We
conclude that g2 is submodular.

5 Inapproximability results

Here, we present new inapproximability results for MAX W -LIGHT, MIN W -
HEAVY, MIN W -LIGHT, and MAX W -HEAVY (in this order). The problems are
treated in Sections 5.1, 5.2, 5.3, and 5.4, respectively. For more information about
the MAXIMUM INDEPENDENT SET, MINIMUM VERTEX COVER, and SET COVER

problems referred to below, see, e.g., [16].

5.1 Inapproximability of MAX W -LIGHT

Our first inapproximability result concerns MAX W -LIGHT:

Theorem 4 For every fixed W ≥ 1, MAX W -LIGHT cannot be approximated within
a ratio of (n/W)1−ε for any constant ε > 0 in polynomial time, unless P = NP .

Proof The result is obtained via a gap-preserving reduction from MAXIMUM

INDEPENDENT SET, which is known to be hard to approximate [30].
Given any instance G of MAXIMUM INDEPENDENT SET, an instance H of

MAX W -LIGHT is constructed in polynomial time as follows. (See Fig. 3 for an
example of the construction with W = 1.) For each vertex vi ∈ V (G), we pre-
pare a set of 2(2W + 1) = 4W + 2 vertices Ui = Ui,1 ∪ Ui,2, where Ui,j =

Fig. 3 Reduction from MAXIMUM INDEPENDENT SET to MAX 1-LIGHT. (Left) An input graph G;
(Right) The constructed graph H .
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{ui,j,1, ui,j,2, . . . , ui,j,2W+1} for j ∈ {1, 2}, and let V (H) = ⋃
vi∈V (G) Ui . Thus,

|V (H)| = (4W + 2)nG = �(WnG), where nG = |V (G)|. We define the edges
of H so that each of the induced subgraphs H [Ui,1] and H [Ui,2], denoted by Hi,1
and Hi,2 respectively, forms a complete graph K2W+1. (There are no edges between
Ui,1 and Ui,2.) Then the number of edges in H [Ui] is W(4W + 2). For each edge
{vi, vj } ∈ E(G), we connect every pair of vertices ui,k,x ∈ Ui and uj,l,y ∈ Uj for
k, l ∈ {1, 2} and 1 ≤ x, y ≤ 2W + 1 in H .

Let OPT (G) and OPT ′(H) denote the value of an optimal solution for G of
MAXIMUM INDEPENDENT SET and for H of MAX W -LIGHT, respectively. We need
to prove that the above reduction is a gap-preserving one, i.e., that:

(i) If OPT (G) ≥ k then OPT ′(H) ≥ (4W + 2)k; and
(ii) If OPT (G) < k/n1−ε

G then OPT ′(H) < (4W + 2)k/n1−ε
G for any positive

constant ε.

Lemmas 8 and 9 below prove that the two conditions (i) and (ii) are indeed sat-
isfied. Since nH = �(W · nG), where nH = |V (H)|, the approximation gap is
O((nH /W)1−ε). The theorem then follows from the fact that MAXIMUM INDEPEN-
DENT SET cannot be approximated within a ratio of n1−ε

G for any constant ε > 0 in
polynomial time, unless P = NP [30].

Lemma 8 If OPT (G) ≥ k, then OPT ′(H) ≥ (4W + 2)k.

Proof Without loss of generality, assume that there is an independent set
{v1, v2, . . . , vk} of size k in G. Consider a subset of vertices U = ⋃

1≤i≤k Ui

of H such that |U | = (4W + 2)k. The subgraph H [U ] contains 2k K2W+1’s,
H1,1, H1,2, H2,1, H2,2, . . . , Hk,1, and Hk,2. Note that each Hi,j (1 ≤ i ≤ j and
j ∈ {1, 2}) is not adjacent to the other K2W+1’s, i.e., Hi,j ′ (j ′ = j ) and Hi′,j ’s
(i′ = i) in H [U ], because of the independence of v1, . . . , vk . Construct an orien-
tation of H as follows. First, orient the edges of K2W+1’s in H [U ] in accordance
with Proposition 2. Then, orient every edge {s, t} as (s, t) for s ∈ V (H) \ U and
t ∈ U . The remaining edges in H , whose orientations are not decided yet, are ori-
ented arbitrarily. In this orientation, all vertices in U have outdegree W in H [U ] by
Proposition 2, so OPT ′(H) ≥ (4W + 2)k.

Before proceeding to Lemma 9, we make an observation regarding the number of
W -light vertices in two adjacent Ui’s. We introduce the following concept: A canon-
ical orientation of H is an orientation of H in which each Ui satisfies either of the
following two conditions: (A) Ui is W -light; or (B) Ui is (W + 1)-heavy.4

Proposition 5 If Ui and Uj are adjacent and the number of W -light vertices in Ui

is at least as large as the number of W -light vertices in Uj , then at most 4W + 1
vertices in Ui ∪ Uj are W -light in any non-canonical orientation.

4It is not necessary for all Ui ’s to satisfy the same condition; i.e., it is possible that Ui is W -light while Uj

is (W + 1)-heavy for some i = j .
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Fig. 4 Illustrating the proof of Proposition 5

Proof The subgraph Hi,1 (Hi,2, resp.) can be W -light only if all the edges {v,w}
connecting a vertex v ∈ Ui,1 with w ∈ Ui,1 (v ∈ Ui,2 and w ∈ Ui,2, resp.) are
oriented as (w, v) by Proposition 4, because the density of Hi,1 (Hi,2, resp.) is W

with 2W +1 vertices and W(2W +1) edges. Hence, if a vertex u ∈ Uj is W -light, i.e.,
has at most W outgoing arcs, at least 2(2W + 1) − W = 3W + 2 edges are oriented
outwards from Ui , since the number of edges between u and Ui is 2(2W + 1). For an
example with W = 1, see Fig. 4.

As mentioned above, H [Ui] has 4W + 2 vertices, W(4W + 2) edges, and at least
3W+2 outgoing arcs. The density of Ui is thus at least (W(4W+2)+3W+2)/(4W+
2) > W , so according to Proposition 4, we cannot make Ui W -light. Suppose we
make one vertex, say, ui,1,1 ∈ Ui,1, (W + 1)-heavy. Since d(ui,1,1) = 2W in H [Ui]
and only one of the 3W + 2 outgoing arcs is connected to ui,1,1, the density of the
rest of the vertices in Ui is at least (W(4W + 2) + 3W + 2 − 2W − 1)/(4W + 1) =
(W(4W + 2)+W + 1)/(4W + 1) > W ; still, it is greater than W and thus we cannot
make them W -light. Then at least two vertices in Ui must be (W + 1)-heavy, and
hence the number of W -light vertices in Ui ∪Uj is at most 4W +2−2+1 = 4W +1.

We can generalize the above discussion to the case where the number of W -light
vertices in Uj is larger than one. Assuming that there are k W -light vertices in Uj ,
and that (at least) 4W +2−k vertices in Ui are W -light for 1 ≤ k ≤ 2W +1 leads to a
contradiction as follows: The number of outgoing arcs from Ui is at least k(3W + 2).
Moreover, k of the k(3W + 2) outgoing arcs are connected to one vertex in Ui . The
average degree of the 4W +2−k vertices excluding k (W +1)-heavy vertices in Ui is:

W(4W + 2) + k(3W + 2) − k(2W + k)

4W + 2 − k
= W + k(2W + 2 − k)

4W + 2 − k
> W,

where the last inequality comes from the assumption that the number of W -light
vertices in Ui is at least as large as that in Uj , i.e., 1 ≤ k ≤ 2W + 1. Therefore, if
there are k W -light vertices in Uj , at least k+1 vertices in Ui must be (W +1)-heavy.
Consequently, the total number of W -light vertices in Ui ∪Uj is at most 4W +1.

Now we are ready to prove Lemma 9.
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Lemma 9 If OPT (G) < k/n1−ε
G , then OPT ′(H) < (4W + 2)k/n1−ε

G .

Proof We prove the contrapositive, i.e., if OPT ′(H) ≥ (4W + 2)k/n1−ε
G then

OPT (G) ≥ k/n1−ε
G . First, observe that a non-canonical orientation is worse than

a canonical one with respect to the number of W -light vertices from Proposition 5:
Consider a pair of Ui and Uj that are adjacent. If we orient all the edges of Hi,1 and
Hi,2 in H [Ui] according to Proposition 2 and orient the edges between Ui and Uj

towards Ui , then all the 4W + 2 vertices in Ui are W -light. Note that this orientation
makes Uj (W + 1)-heavy (more precisely, (4W + 2)-heavy) whatever orientation
inside H [Ui] is selected because each vertex in Uj is adjacent to 4W + 2 vertices
in Ui . Therefore, for two adjacent Ui and Uj , the way to maximize the number of
W -light vertices is by orienting the edges so that Ui (or Uj ) is W -light as described
above, and Uj (or Ui) is (W +1)-heavy. This implies that only canonical orientations
need to be considered as candidates of an optimal orientation.

Under a canonical orientation of H , if (4W + 2)k′ vertices are W -light, then there
exist k′ W -light Ui’s. One can see that this set of k′ Ui’s corresponds to an inde-
pendent set as in the proof of Lemma 8. Thus, if OPT ′(H) ≥ (4W + 2)k/n1−ε

G

then OPT (G) ≥ k/n1−ε
G ; equivalently, if OPT (G) < k/n1−ε

G then OPT ′(H) <

(4W + 2)k/n1−ε
G .

5.2 Inapproximability of MIN W -HEAVY

We now show that MIN W -HEAVY is hard to approximate.

Theorem 5 For every fixed W ≥ 1, if MIN W -HEAVY can be approximated within
a ratio of f in polynomial time, then so can MINIMUM VERTEX COVER.

Proof For the case W = 1, it was proved in [5] that MIN W -HEAVY and MINIMUM

VERTEX COVER are the same problem. We therefore assume W ≥ 2 and describe a
reduction from MINIMUM VERTEX COVER to MIN W -HEAVY for any fixed W ≥ 2.

Let G be any given instance of MINIMUM VERTEX COVER (i.e., an undirected
graph) with n vertices. Based on G, construct a graph H for MIN W -HEAVY

in polynomial time as follows. (See Fig. 5 for an illustration.) Write V (G) =
{v1, v2, . . . , vn}. The constructed graph H has n subgraphs denoted H1, H2, . . . , Hn.
Each subgraph Hi consists of one vertex ui,0 and a complete graph Ki

2W−1 of 2W −1
vertices, named ui,1 through ui,2W−1. The vertex ui,0 is connected to W − 1 vertices
ui,1 through ui,W−1. That is, the number of edges in Hi is (2W − 1)(2W − 2)/2 +
(W − 1) = 2W(W − 1). For every edge {vi, vj } in G, the subgraphs Hi and Hj are
connected by an edge {ui,0, uj,0} in H .

Let OPT (G) and OPT ′(H) denote the values of optimal solutions of MINIMUM

VERTEX COVER for G and MIN W -HEAVY for H . Lemma 10 below shows that
OPT (G) ≤ k if and only if OPT ′(H) ≤ k, which then yields the theorem.

Lemma 10 OPT (G) ≤ k if and only if OPT ′(H) ≤ k.
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Fig. 5 Reduction from MINIMUM VERTEX COVER to MIN W -HEAVY

Proof (Only-if part) Suppose that OPT (G) ≤ k. Let S ⊆ V (G) be a vertex cover
of G with size at most k, and construct an orientation � of H as follows. For each
i = 1, 2, . . . , n, the internal edges of Ki

2W−1 in the subgraph Hi are assigned any
orientation under which every vertex has outdegree W − 1 by Proposition 2. The
number of edges between ui,0 and the Ki

2W−1 in Hi is W − 1, and those edges are
oriented from ui,0 towards Ki

2W−1. So far, the outdegree of every vertex in H is
exactly W − 1. Next, for any edge {ui,0, uj,0} between two subgraphs Hi and Hj

such that vi ∈ S and vj ∈ V (G) \ S, orient it from ui,0 to uj,0; if both vi and
vj are in S, then the edge {ui,0, uj,0} is oriented arbitrarily. By the definition of a
vertex cover, at least one end vertex of each edge {vi, vj } belongs to S, so the above
determines the direction of all edges in H . In this orientation �, the outdegree of
any vertex ui,0 in H corresponding to a vertex vi in G that belongs to V (G) \ S is
W − 1. On the other hand, the outdegree of a vertex in H corresponding to a vertex
in S is at least W . Therefore, the number of W -heavy vertices in �(H) is at most
k, i.e., OPT ′(H) ≤ k.

(If part) Suppose OPT ′(H) ≤ k. Let � be an orientation such that the num-
ber of W -heavy vertices in �(H) is at most k. The following simple observation
plays a key role in the proof. Suppose that {vi, vj } ∈ E(G). Consider the sub-
graph H [V (Hi) ∪ V (Hj )] induced by V (Hi) and V (Hj ), which includes the edge
{ui,0, uj,0}. It consists of |V (Hi)|+|V (Hj )| = 4W vertices and |E(Hi)|+|E(Hj )|+
1 = 4W(W − 1) + 1 edges, so the density of H [V (Hi) ∪ V (Hj )] is strictly larger
than W − 1. By Proposition 1, at least one vertex in H [V (Hi) ∪ V (Hj )] must be
W -heavy in �(H).

Let S be a set of vertices from G, where for each i = 1, 2, . . . , n, if Hi contains
a W -heavy vertex then the vertex vi is included in S. As observed above, for each
edge {vi, vj } in E(G), at least one vertex in the two subgraphs Hi and Hj must be
W -heavy, so at least one endpoint of every edge in E(G) belongs to S. Thus, S is a
vertex cover of G. Finally, OPT (G) ≤ |S| ≤ k.

It is known that MINIMUM VERTEX COVER cannot be approximated within
a ratio of 1.3606 in polynomial time, unless P = NP [10]. Theorem 5 thus
implies:

Corollary 1 For every fixed W ≥ 1, MIN W -HEAVY cannot be approximated within
a ratio of 1.3606 in polynomial time, unless P = NP .
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Fig. 6 Reduction from (W + 1)-SET COVER to MIN W -LIGHT. For clarity, edges of the form {ui, vh}
are not shown

5.3 Inapproximability of MIN W -LIGHT

Let B-SET COVER be the SET COVER problem restricted to instances where every
subset contains at most B elements [7, 16, 27]. For MIN W -LIGHT, we derive the
following inapproximability result.

Theorem 6 For every fixed W ≥ 1, if MIN W -LIGHT can be approximated within
a ratio of f in polynomial time, then so can (W + 1)-SET COVER.

Proof We reduce (W + 1)-SET COVER to MIN W -LIGHT.
Given any instance I of the decision version of (W + 1)-SET COVER, consisting

of a universe set U = {1, 2, . . . , n}, a family F of subsets S1, S2, . . . , Sm ⊆ U each
of size at most W +1, and a positive integer k (and where the objective is to determine
whether there exists a subfamily F ′ of F with |F ′| ≤ k such that

⋃
Si∈F ′ Si = U ),

construct an instance G of the decision version of MIN W -LIGHT, asking if G can
be oriented so that at most k vertices become W -light, in polynomial time as fol-
lows. (See Fig. 6 for an illustration.) Create two sets of vertices {u1, u2, . . . , un} and
{s1, s2, . . . , sm}, the former corresponding to U and the latter to F , and a complete
graph K2W+3 whose vertices are named v1, v2, . . . , v2W+3. To connect these vertices
to each other, insert an edge {ui, sj } for every i ∈ U and every j with i ∈ Sj . Also,
for every i ∈ {1, 2, . . . , n}, insert W edges {ui, vh} where h ∈ {1, 2, . . . ,W }. Finally,
for every j ∈ {1, 2, . . . , m}, if |Sj | ≤ W then insert all edges of the form {sj , vh}
with h ∈ {1, . . . , W + 1 − |Sj |}. Let G be the resulting graph. Note that every vertex
sj has degree W + 1.

The correctness of the theorem then follows by Lemma 11 below.

Lemma 11 There exists an orientation of G with at most k W -light vertices if and
only if the answer to the instance I of (W + 1)-SET COVER is yes.
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Proof (Only-if part) Let � be an orientation of G in which the set of W -light ver-
tices is L and where |L| ≤ k. We can assume that L does not contain any vertex
from K2W+3 (otherwise, we can obtain an orientation where all vertices in K2W+3
have outdegree at least W + 1 by replacing the orientations of the internal edges
in K2W+3 with the one in Proposition 2). Without loss of generality, also assume
that every edge connected to a vertex in K2W+3 from the outside is oriented towards
K2W+3 in �.

Now suppose that {u1, u2, . . . , un} ∩ L = ∅. Then there exists some ui ∈
{u1, u2, . . . , un} ∩ L. Since all W edges between this ui and K2W+3 are oriented
towards K2W+3 and the outdegree of ui is W , every edge between ui and a vertex
in {s1, s2, . . . , sm} must be oriented towards ui in �. This means that by flipping the
direction of one edge for each such ui , we can force all vertices in {u1, u2, . . . , un}
to become (W + 1)-heavy. We therefore assume that {u1, u2, . . . , un} ∩ L = ∅ and
L ⊆ {s1, s2, . . . , sm}. One can see that, for every ui in {u1, u2, . . . , un}, there is at
least one edge of the form {ui, sj } oriented as (ui, sj ) in �, which implies that sj
cannot be (W + 1)-heavy and hence sj must belong to L; this corresponds the ele-
ment i ∈ U being covered by the subset Sj from F . In summary, L induces a set
cover of size at most k for the original (W + 1)-SET COVER instance I .

(If part) Suppose that the answer to the instance I is yes. Let F ′ be a subfamily of
F such that |F ′| ≤ k and

⋃
Si∈F ′ Si = U . From F ′, construct an orientation � of G

as follows. First, orient the internal edges of K2W+3 as in Proposition 2 so that the
outdegree of every vertex in K2W+3 is W + 1. This ensures that V (K2W+3) will be
(W + 1)-heavy. Then, for each i ∈ {1, 2, . . . , n}, orient all W edges between ui and
K2W+3 away from ui . Also, for each j ∈ {1, 2, . . . , m}, orient all W +1−|Sj | edges
between sj and K2W+3 away from sj . All remaining edges are between the ui- and
sj -vertices. For each such ui , select any one Sj ∈ F ′ such that i ∈ Sj (there must
exist at least one because

⋃
Si∈F ′ Si = U ) and orient the edge {ui, sj } as (ui, sj ).

Finally, any unoriented edge {ui, sj } is oriented as (sj , ui).
Under �, the outdegree of every vertex in K2W+3, in {u1, u2, . . . , un}, and in

{sj : Sj ∈ F ′} is W + 1. The outdegree of any vertex in {sj : Sj ∈ F ′} is at most
W . Thus, the number of W -light vertices is at most k in �(G).

For every fixed B ≥ 3, B-SET COVER is NP-hard to approximate [7, 27].
Plugging in the known inapproximability bounds for 3-SET COVER (100/99,
from [7]), for 4-SET COVER (53/52, also from [7]), and for B-SET COVER (ln B −
O(log log B), from [27]) into Theorem 6 yields:

Corollary 2 MIN 2-LIGHT and MIN 3-LIGHT cannot be approximated within a
ratio of 100/99 and 53/52, respectively, in polynomial time, unless P = NP . Fur-
thermore, for sufficiently large values of W , MIN W -LIGHT cannot be approximated
within a ratio of ln(W + 1) − O(log log W) in polynomial time, unless P = NP .

5.4 Inapproximability of MAX W -HEAVY

Lastly, we consider the polynomial-time inapproximability of MAX W -HEAVY.
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Fig. 7 Reduction from MAXIMUM INDEPENDENT SET to MAX W -HEAVY. The given graph G is on the
left and the constructed graph G′ is on the right

Theorem 7 For every fixed W = 
(n1/3), MAX W -HEAVY cannot be approxi-
mated within a ratio of (n/W)1/2−ε for any constant ε > 0 in polynomial time, unless
P = NP .

Proof We give a reduction from MAXIMUM INDEPENDENT SET (different from the
one in Section 5.1) to MAX W -HEAVY.

Let G = (V , E) be any given instance of MAXIMUM INDEPENDENT SET such
that � ≤ W . To guarantee that this condition � ≤ W always holds, we assume
that W ≥ |V | in the following. Construct an instance G′ = (V ′, E′) of MAX W-
HEAVY as follows. (See Fig. 7 for a sketch of the construction.) For some positive
integer h, prepare h copies Gi = (Vi, Ei) of the graph G, where i = 1, 2, . . . , h.
The value of h will be determined later. For each vertex v ∈ V , denote the copy
of v in Vi by v(i). Also, create a complete graph K2W+1 whose vertices are named
{u1, u2, . . . , u2W+1}. Let the set V ′ of vertices in G′ be {u1, . . . , u2W+1} ∪ ⋃h

i=1 Vi .
Thus, the total number of vertices in V ′ is |V ′| = h · |V | + 2W + 1. Next, for
each i ∈ {1, . . . , h} and v ∈ V , define E(i,v) to be a set of W − d(v) edges
between v(i) and uj for j = 1, 2, . . . , W − d(v). Let the edge set E(G′) be
the union of

⋃
1≤i≤h Ei , E(K2W+1), and

⋃
1≤i≤h,v∈V E(i,v). Thus, every vertex in

G1, G2, . . . , Gh has degree W . If h is bounded by a polynomial in the size of G then
the time needed to construct G′ is also polynomially bounded.

Denote the value of an optimal solution of MAXIMUM INDEPENDENT SET for
G by OPT (G), and the value of an optimal solution of MAX W -HEAVY for G′ by
OPT ′(G′). Let n = |V (G)|. It is known that MAXIMUM INDEPENDENT SET is
NP-hard to approximate within a ratio of n1−ε for any ε > 0 [30]. From Lemma 12
below, we obtain:

(i) If OPT (G) ≥ k then OPT ′(G′) ≥ hk + 2W + 1; and
(ii) If OPT (G) < k/n1−ε then OPT ′(G′) < hk/n1−ε + 2W + 1 for any positive

constant ε.
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Note that in (ii),

OPT ′(G′) <
hk

n1−ε
+ 2W + 1 = hk + 2W + 1

n1−ε

(

1 + (n1−ε − 1)(2W + 1)

hk + 2W + 1

)

.

We select h = Wn, which means that

(n1−ε − 1)(2W + 1)

hk + 2W + 1
<

3Wn1−ε

Wnk
< 3.

Hence OPT ′(G′) < (hk+2W+1)/(n1−ε/4). Since the number |V ′| of vertices in G′
is hn+2W+1 = Wn2+2W+1, we have n1−ε/4 = (|V ′|/W)1/2−ε′

by an appropriate
choice of ε′, that is, we obtain the inapproximability bound (|V ′|/W)1/2−ε′

.

Based on the above theorem, we have the following corollary which gives an
almost tight inapproximability bound since a (W + 1)-approximation algorithm is
known [5].

Corollary 3 For W = �(n1/3), MAX W -HEAVY cannot be approximated within a
ratio of W 1−ε for any constant ε > 0 in polynomial time, unless P = NP .

Proof By taking W = cn for some constant c ≥ 1 in the reduction in the proof
of Theorem 7, the number |V ′| of the vertices in G′ becomes cn3 + 2cn + 1 , by
which W = �(|V ′|1/3). Then, the approximation gap becomes n1−ε/4 = W 1−ε′

by
choosing an appropriate ε′.

Lemma 12 OPT (G) ≥ k if and only if OPT ′(G′) ≥ hk + 2W + 1.

Proof (Only-if part) Suppose G has an independent set I ⊆ V of size at least k.
Construct an orientation � of G′ by orienting the internal edges of K2W+1 accord-
ing to Proposition 2 so that all vertices in K2W+1 have outdegree W . Furthermore,
for i = 1, 2, . . . , h, any internal edge {v(i), v′(i)} in Gi such that v ∈ I and
v′ ∈ I is oriented from v(i) to v′(i) (this is always possible due to the indepen-
dence of I ), and all other internal edges in Gi are oriented arbitrarily. Finally,
every edge between Gi (for i = 1, 2, . . . , h) and K2W+1 is oriented outwards
from Gi .

Now, if v ∈ I then v(i) for all i = 1, 2, . . . , h have outdegree W in �(G′). Every
vertex of K2W+1 has outdegree W , so the total number of W -heavy vertices in G′
under � is at least |I | · h + (2W + 1) ≥ hk + (2W + 1), which gives OPT (G′) ≥
hk + (2W + 1).

(If part) Let � be an orientation of G′ in which the set S of W -heavy vertices is of
size at least hk + 2W + 1. We may assume that V (K2W+1) ⊆ S, because otherwise
we can replace the orientation of the internal edges in K2W+1 with the one in Propo-
sition 2 without decreasing the number of W -heavy vertices. By this assumption,
|S \ V (K2W+1)| ≥ hk holds, and thus at least one Gi contains at least k W -heavy
vertices, i.e., |Vi ∩ S| ≥ k. By the construction of G′, each vertex in Vi is incident
to exactly W edges, so all edges incident to a vertex v belonging to Vi ∩ S must be
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oriented away from v in �. This implies that no two vertices in Vi ∩ S are adjacent,
so Vi ∩ S forms an independent set in Gi . The set of vertices in G corresponding to
Vi ∩ S is also an independent set, and we have OPT (G) ≥ |Vi ∩ S| ≥ k.

Remark 2 The proof of Theorem 7 depends on the hardness of MAXIMUM INDE-
PENDENT SET. A crucial condition in the proof is that W is at least �, the maximum
degree in the given instance G of MAXIMUM INDEPENDENT SET. Since MAXIMUM

INDEPENDENT SET is NP-hard when � ≥ 3, the above reduction also gives an
alternative proof that MAX W -HEAVY is NP-hard for any fixed W ≥ 3, different
from the one in [5]. However, for the case W = 2, the reduction does not provide any
new insights and the computational complexity of MAX 2-HEAVY is still unknown.

6 Degree-bounded graphs

In this section, we obtain several small positive results for graphs whose degrees
satisfy certain bounds. Corollaries 8 and 9 below are a first step towards determin-
ing the unknown computational complexity of MIN 1-LIGHT and its supplementary
problem MAX 2-HEAVY.

6.1 Exact solutions in special cases

This subsection investigates under what circumstances (in terms of W and given
bounds on the input graph’s degree) some known graph orientation algorithms
solve MAX W -LIGHT, MIN W -HEAVY, MIN W -LIGHT, and MAX W -HEAVY

exactly.
Lemma 1 in Section 3 above showed that Algorithm EulerO (described in

Section 3) outputs an orientation in which every vertex has outdegree at most ��/2	,
where � is the maximum degree of G. A simple corollary is:

Corollary 4 If the input graph G satisfies W ≥ ��/2	 then Algorithm EulerO finds
an optimal orientation for MAX W -LIGHT and MIN (W + 1)-HEAVY in which all
vertices are W -light.

A polynomial-time algorithm named Reverse [6] computes an orientation of G

that minimizes the maximum outdegree of the input graph (or, equivalently, min-
imizes the maximum indegree [28]).5 Write γ = min� maxv d+

�(v). Then every
vertex has outdegree at most γ in the orientation output by Algorithm Reverse, and if
γ ≤ W then all vertices are W -light. Since Algorithm EulerO outputs an orientation
in which the maximum outdegree is at most ��/2	, it always holds that γ ≤ ��/2	.
It follows that:

5Algorithm Reverse works as follows: Start with any orientation � of G. Select a vertex v0 with the
highest outdegree in �(G), find a directed path P = (v0, v1, . . . , vk) satisfying d+

�(vi) ≤ d+
�(v0) for

1 ≤ i ≤ k − 1 and d+
�(vk) ≤ d+

�(v0) − 2, flip the direction of every edge along P , and repeat the above
process (select a v0, etc.) until no such path P exists. Output �.



Theory Comput Syst (2016) 58:60–93 85

Corollary 5 If the input graph G satisfies W ≥ ��/2	 then Algorithm Reverse finds
an optimal orientation for MAX W -LIGHT and MIN (W + 1)-HEAVY.

Next, using arguments analogous to those in the proof of Lemma 1, we deduce the
following lower bound for EulerO:

Lemma 13 In the orientation output by Algorithm EulerO, every vertex has outde-
gree at least �δ/2�, where δ is the minimum degree of G.

Proof By the same reasoning as in the proof of Lemma 1, the outdegree
of any vertex v in �+(G+) is at least �δ/2	. Now, however, we note that
removing E+ in Step 4 decreases the outdegree of v in the resulting �(G)

by one in case the degree of v in G is odd, and has no effect in case
the degree of v in G is even. Thus, the outdegree of v in �(G) is at
least �δ/2�.

Corollary 6 If the input graph G satisfies W + 1 ≤ �δ/2� then Algorithm EulerO
finds an optimal orientation for MIN W -LIGHT and MAX (W +1)-HEAVY in which
all vertices are (W + 1)-heavy.

Define ψ = max� minv d+
�(v). Algorithm EulerO outputs an orientation in which

the minimum outdegree is at least �δ/2�, so ψ ≥ �δ/2� always holds. The existence
of such an orientation has previously been discussed in [18]; see also [25, Theo-
rem 61.1] and [13, Theorem 2.3.5]. These are essentially the same theorem, with the
last one containing a constructive proof showing how to find an optimal orientation
in polynomial time. An algorithm named Exact-1-MaxMinO, based on similar ideas
but using a maximum-flow technique, was presented in [2] by the authors of the cur-
rent paper. In summary, Exact-1-MaxMinO runs in polynomial time and outputs an
orientation in which every vertex has outdegree at least ψ . Similar to the above, this
gives the following corollary:

Corollary 7 If the input graph G satisfies W + 1 ≤ �δ/2� then Algorithm Exact-
1-MaxMinO finds an optimal orientation for MIN W -LIGHT and MAX (W + 1)-
HEAVY.

Also note that Corollary 6 directly implies the following:

Corollary 8 MIN 1-LIGHT and MAX 2-HEAVY can be solved in linear time for
δ ≥ 4.

6.2 A polynomial-time ��/2�-approximation algorithm for MAX 2-HEAVY

The goal of this subsection is to develop a polynomial-time approximation algorithm
for MAX 2-HEAVY whose approximation ratio depends on the maximum degree �

of the input graph, and to determine if it yields an exact algorithm for MAX 2-HEAVY

when � is small.
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Before presenting the algorithm, we need some additional tools. The line
graph L(G) (see, e.g., [25]) of an undirected graph G = (V , E) is defined as
L(G) = (E, E′), where {e1, e2} ∈ E′ if and only if e1 ∩ e2 = ∅ for any e1, e2 ∈ E.
Note that each vertex v in G corresponds to a clique of size d(v) in L(G). We intro-
duce two procedures that convert a given orientation of G to a matching in L(G), and
vice versa.

The next two lemmas relate the size of a matching in the line graph to the number
of 2-heavy vertices:

Lemma 14 Let M be any matching in L(G) and let �M be the orientation out-
put by Procedure MtoO. The number of 2-heavy vertices in �M(G) is at least
|M|/��/2�.

Proof For any vertex v in G, let Cv be its corresponding clique in L(G).
Procedure MtoO makes v a 2-heavy vertex in Step 1 if and only if M con-
tains one or more edges belonging to Cv . By definition, the number of ver-
tices in Cv is d(v) ≤ �, so M contains at most ��/2� edges from Cv .
This means that M must contain an edge from at least |M|/��/2� differ-
ent cliques in L(G), so the number of 2-heavy vertices in �M(G) is at least
|M|/��/2�.
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Lemma 15 Let � be any orientation of G and let M� be the matching in L(G)

output by Procedure OtoM. The number of 2-heavy vertices in �(G) is at most
|M�|.

Proof Let U be the set of 2-heavy vertices in �(G). Consider any v ∈ U . After it is
selected in Step 2 of OtoM, Step 3 inserts at least one edge {{v, x}, {v, y}} into M�

since d+
�(v) ≥ 2. Furthermore, the same edge {{v, x}, {v, y}} will never be inserted

again for some x ∈ U or y ∈ U . Therefore, |U | ≤ |M�|.

We now describe the approximation algorithm for MAX 2-HEAVY:

Theorem 8 Algorithm Max-2-H is a polynomial-time ��/2�-approximation algo-
rithm for MAX 2-HEAVY.

Proof To analyze the approximation ratio, let �∗ be an optimal orientation of G

for MAX 2-HEAVY, let OPT (G) be the number of 2-heavy vertices in �∗(G),
and let ALG(G) be the number of 2-heavy vertices in the solution returned
by Max-2-H. Also, let M�∗ denote the matching in L(G) obtained by apply-
ing Procedure OtoM to (G, �∗). By Lemma 14, we know that ALG(G) ≥
|M∗|/��/2�. Moreover, OPT (G) ≤ |M�∗ | according to Lemma 15. Since
the matching M∗ computed in Step 2 of Algorithm Max-2-H is a maximum
matching, |M�∗ | ≤ |M∗| always holds. By combining the three inequalities,
we get:

OPT (G) ≤ |M�∗ | ≤ |M∗| ≤ ��/2� · ALG(G).

We conclude that the approximation ratio of Max-2-H is ��/2�.
In Step 1, the line graph can be constructed in polynomial time, and a max-

imum matching can be found in polynomial time (see, e.g., [1]) in Step 2.
Step 3 also takes polynomial time, so the total running time of Max-2-H is clearly
polynomial.

The following example shows that the approximation ratio ��/2� for Algo-
rithm Max-2-H stated in Theorem 8 is tight. (See Fig. 8 for an illustration of the
case � = 4.)

First, suppose that � is even. Consider the graph G = (V , E) with V =
{v1, v2, u1, . . . , u�} and E = {{v1, ui}, {v2, ui} : 1 ≤ i ≤ �}. The line graph L(G)
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Fig. 8 A tight example for Max-2-H when � = 4. (Left) A graph G and an optimal orientation of G;
(Middle) The line graph L(G) and one possible maximum matching M∗ in L(G); (Right) The non-optimal
orientation of G output by Max-2-H if this M∗ is used

consists of two complete graphs of size �, corresponding to v1 and v2 in G, with
� disjoint edges between them, corresponding to paths of length two of the form
(v1, ui, v2) in G. Step 2 of Algorithm Max-2-H may select a matching M∗ in L(G)

containing �/2 edges from each of the two complete graphs (each vertex of L(G)

is included in some edge in M∗, so M∗ is a matching of maximum size). In Step 3,
Max-2-H makes the two vertices v1 and v2 2-heavy (in fact, �-heavy) in �(G).
No other vertices are 2-heavy in �(G). In contrast, an optimal solution has � ver-
tices that are 2-heavy, namely {u1, . . . , u�}, as can be seen by orienting the edges
in E as {(ui, v1), (ui, v2) : 1 ≤ i ≤ �}. Here, the optimal number of 2-heavy
vertices is �/2 times greater than the number of 2-heavy vertices obtained by
Max-2-H.

Next, suppose that � is odd. Use the same example as for even �, but remove
the vertex u� from V and replace the two edges {v1, u�} and {v2, u�} in E by a
single edge {v1, v2}. After this modification, the maximum degree in G is still �, and
a matching in L(G) consisting of (� − 1)/2 edges from each of the two complete
graphs is a maximum matching which yields two 2-heavy vertices. The number of 2-
heavy vertices in an optimal solution is �−1, so the approximation ratio is (�−1)/2
when � is odd.

From Theorem 8, we also have the following corollary, which reveals ano-
ther side of the computational complexity of MIN 1-LIGHT and MAX 2-HEAVY:

Corollary 9 MIN 1-LIGHT and MAX 2-HEAVY can be solved in polynomial time
for � ≤ 3.

6.3 A linear-time 2-approximation algorithm for MAX W -LIGHT when � = 2W +1

In this subsection, we develop a linear-time 2-approximation algorithm for MAX

W -LIGHT when � = 2W + 1 by modifying Algorithm EulerO in Section 3.
(Recall that if � = 2W , MAX W -LIGHT can be solved in linear time by
Corollary 4.)

We change the way that Algorithm EulerO chooses pairs of vertices hav-
ing odd degrees when inserting edges to make all degrees even. The new
algorithm is:
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Theorem 9 If � = 2W +1 then Algorithm EulerO+ is a linear-time 2-approximation
algorithm for MAX W -LIGHT.

Proof As in the proof of Lemma 1, all vertices having degree at most 2W in
the original input graph G have outdegree at most W in �(G), i.e., are W -
light in �(G). Let V ′ ⊆ V be the set of vertices having degree exactly equal
to 2W + 1 in G, and let n′ = |V ′|. By the construction of G+ and the def-
inition of an Eulerian orientation, every vertex in V ′ has indegree W + 1 and
outdegree W + 1 in �+(G+). Furthermore, for any pair of vertices u, v ∈ V ′
that are connected by an edge in E+, one of u and v will have indegree W and
outdegree W + 1 in �(G), and the other one will have indegree W + 1 and
outdegree W .

If n′ is even, the number of W -light vertices in �(G) is at least (n − n′) + n′/2 =
n − n′/2 ≥ n/2 since n′ ≤ n. If n′ is odd, one vertex v ∈ V ′ may be connected to a
vertex u ∈ V ′ by an edge e = {u, v} ∈ E+ in Step 3. In Step 6, this edge is oriented
as (v, u) in �+, which makes the outdegree of v in �(G) equal to W while u is still
W -light in �(G). Thus, in case n′ is odd, the number of W -light vertices in �(G) is
also (n−n′)+ ((n′ − 1)/2)+ 1 ≥ n/2. Finally, since the number of W -light vertices
in any optimal orientation of G is at most n, the approximation ratio of EulerO+ is 2.

To achieve a time complexity of O(m), apply the algorithm from Proposition 3
to implement Step 6; all other steps are straightforward to implement in linear
time.

To demonstrate that the approximation ratio 2 for Algorithm EulerO+ mentioned
in Theorem 9 is asymptotically tight, consider the complete graph K2W+2, which has
� = 2W + 1. As shown in Fig. 9 (for the case W = 2), Algorithm EulerO+ out-
puts an orientation of K2W+2 with W + 1 vertices that are W -light (outdegree W ,
indegree W + 1) and W + 1 vertices that are (W + 1)-heavy (outdegree W + 1,
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(i) (ii) (iii) (iv)

Fig. 9 A tight example for EulerO+ when W = 2. (i) The complete graph K6; (ii) The graph K+
6 and an

Eulerian orientation of K+
6 ; (iii) The orientation of K6 produced by EulerO+; (iv) An optimal orientation

of K6. White vertices in (iii) and (iv) are 2-light

indegree W ). On the other hand, an optimal solution has 2W + 1 vertices that
are W -light (outdegree W , indegree W + 1) and only one (W + 1)-heavy ver-
tex (outdegree 2W + 1, indegree 0), obtained by selecting any vertex v in K2W+2,
orienting all its incident edges outwards, and taking an Eulerian orientation as
in Proposition 2 of K2W+2 \ {v}. Here, the optimal number of W -light vertices
is 2 − O(1/W) times larger than the number of W -light vertices obtained by
EulerO+.

7 Concluding remarks

In this paper, we have derived several new results on the complexity of the graph
orientation problems MAX W -LIGHT, MIN W -LIGHT, MAX W -HEAVY, and MIN

W -HEAVY. See Table 1 in Section 1 for a summary.
A simple (n/(2W + 1))-approximation algorithm for MAX W -LIGHT was given

in Theorem 1, which almost matches the (n/W)1−ε-inapproximability bound in
Theorem 4. By combining it with Reverse from [6] (see Section 6.1 above), a
slightly better approximation ratio can be achieved: (i) Apply the (n/(2W + 1))-
approximation algorithm to G; (ii) Apply Reverse to each induced subgraph of G

of size n − i, where i ∈ {0, 1, . . . , c} for some constant c, and orient any remaining
edges of G appropriately; and (iii) Output the best orientation found. If an optimal
solution has at least n − c vertices that are W -light, it will be found in Step (ii). By
an argument similar to the one in Theorem 1, the approximation ratio is decreased
to (n − c)/(2W + 1). The running time will increase, but is still polynomial if c is
constant.

The problems were defined for unweighted graphs. A natural generalization
is to allow the vertices to be weighted and try to minimize (or maximize) the
total weight of the heavy (or light) vertices in the output orientation. Under
this generalization, designing algorithms becomes harder in general, but some of
the presented approximation algorithms (e.g., the ones in Section 4) can easily
be adjusted while keeping the same approximation guarantees. Alternatively, the
problems can be generalized by allowing the edges to be weighted, in which
case the outdegree of a vertex is defined as the total weight of its outgoing
edges.



Theory Comput Syst (2016) 58:60–93 91

An interesting open question is whether or not MIN 1-LIGHT and MAX 2-
HEAVY are NP-hard for general graphs. Currently, all we know is that they
can be solved in polynomial time in case � ≤ 3 (Corollary 9) or δ ≥ 4
(Corollary 8). In comparison, MIN 0-LIGHT and MAX 1-HEAVY are in P ,
while MIN W -LIGHT and MAX (W + 1)-HEAVY are NP-hard for every fixed
W ≥ 2 (see [5]). Another topic for future research is to close the gaps between
the known polynomial-time approximability and inapproximability bounds of the
problems.

A Appendix: An alternative proof of the submodularity of g1

Suppose E = {e1, e2, . . . , em}. Let U = ⋃W+1
i=1 {v(i) : v ∈ V } be a set of W + 1

copies of the vertices of V . To represent adjacency between the endpoints of ei in
G, define Ei,j = {{ei, u

(j)}, {ei, v
(j)} : ei = {u, v} ∈ E}. For each edge ei , let Ei

denote
⋃W+1

j=1 Ei,j .
Consider a bipartite graph H = (E ∪ U, E′) with (W + 1)n + m vertices and

2(W + 1)m edges, where E′ = ⋃m
i=1 Ei . Every matching M in H can be defined

as a subset of E′. Then, the family of matchings is denoted by M = {M :
M is a matching in H }. Here it is easy to see that a pair (E′,M) is a transversal
matroid induced by E = {E1, E2, . . . , Em}.

We now show the correspondence between the matroid (E′,M) and the objec-
tive value of P1(G, W, S). The key observation is that a matching edge {e, u} in H

corresponds to orienting the edge e away from the vertex u in G. We can make an
orientation of G based on a matching in H : If an edge e is an endpoint of the match-
ing edge {e, u} (called type I), then orient e away from u in G. After that, orient the
remaining edges (type II) arbitrarily in G.

For each v, let Cv denote
⋃W+1

i=1 {v(i)}. Consider the induced subgraph H ′ =
H [E ∪ ⋃

v∈V \S Cv] of H and a maximum matching M∗ in H ′. For each v ∈
⋃

u∈V \S Cu in H ′, the number nv of vertices in Cv covered by M∗ is equal

to min{W + 1, d+
�(v)} under the above constructed orientation � of G: Since

H has only W + 1 copies of each vertex u, nv is clearly at most W + 1. To
obtain a contradiction, assume d+

�(v) < W + 1 and nv = d+
�(v). If nv <

d+
�(v), there is an edge e = {v, u} of type II for some u in G. The exis-

tence of such an edge in G implies that the edges of the form {e, v(i)} and
{e, u(i)} exist in H but none of them are included in M∗, which contradicts
the optimality of M∗. In addition, the above procedure to construct an orienta-
tion guarantees that nv ≤ d+

�(v). Hence, the optimal value of P1(G, W, S), i.e.,
max�∈O(G)

∑
v∈V \S min{W + 1, d+

�(v)} equals the size of a maximum matching
in H ′.

Finally, we verify the submodularity of g1. For T ⊆ E′, consider the subgraph
H [T ] of H . The size of a maximum matching in H [T ] is equal to the rank function
of the matroid (E′,M):

rM(T ) = max{|Z| : Z ⊆ T , Z ∈ M}
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For a subset S ⊆ V of G, we can define TS ⊆ E′ as {{e, v} : {e, v} ∈ E′, v ∈
S}. Hence, the optimal value of P1(G, W, S) can be rewritten as rM(TS). It is well
known that the rank function of a (transversal) matroid is submodular and that the
sum of two submodular functions is submodular (e.g., [25]). It follows that g1(S) =
r(TS) + |S|(W + 1) is submodular since |S|(W + 1) is also submodular.
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