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Abstract. This paper introduces four graph orientation problems
named MaximizeW -Light,Minimize W -Light,MaximizeW -Heavy,
and Minimize W -Heavy, where W can be any fixed non-negative inte-
ger. In each of these problems, the input is an undirected graph G and
the objective is to assign a direction to each edge in G so that the num-
ber of vertices with outdegree at most W or at least W in the resulting
directed graph is maximized or minimized. We derive a number of results
on the computational complexity and polynomial-time approximability
of these problems for different values of W and various special classes of
graphs. In particular, we show that Maximize 0-Light and Minimize

1-Heavy are equivalent to Maximum Independent Set and Minimum

Vertex Cover, respectively, so by allowing the value of W to vary, we
obtain a new, natural generalization of the two latter problems.

1 Introduction

Two well-studied computational problems in theoretical computer science are
Maximum Independent Set and Minimum Vertex Cover. Here, the input
is an undirected graph G = (V,E) and the objective is to find a largest possible
subset V ′ of V such that no two vertices in V ′ are adjacent in G (Maximum

Independent Set) and a smallest possible subset V ′ of V such that every edge
in E is incident to at least one vertex in V ′ (Minimum Vertex Cover). They
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were among the first problems ever to be shown to be NP-hard1, and have been
used to prove the NP-hardness of countless other problems during the 1970’s [10]
and onwards. In recent years, they have been central to the development of three
important subfields of computational complexity: polynomial-time approxima-
tion algorithms, hardness of approximation, and parameterized complexity.

A relatively less researched area is the computational complexity of graph
orientation problems.2 By an orientation of an undirected graph G, we mean
an assignment of a direction to each one of its edges. Graph orientation prob-
lems take an undirected graph G as input and ask for an orientation of G that
optimizes some well-defined criterion on the resulting directed graph, e.g., in-
volving connectivity between vertices, the diameter, acyclicity, or constraints on
the vertices’ indegrees and/or outdegrees. One typical application of graph ori-
entation problems is load balancing for parallel machine scheduling where some
“jobs” (corresponding to edges in G) have to be distributed among “machines”
(corresponding to vertices in G) in a fair way. For example, a graph orientation
of G that minimizes the maximum outdegree [2] can be used to support fast (in
the worst case) vertex adjacency queries in G when using adjacency lists [6]. As
another example, a graph orientation of G that maximizes the minimum out-
degree [1] solves a special case of the Santa Claus problem [4] in which Santa
Claus has a set of gifts (corresponding to edges in G) to distribute among a set
of children (corresponding to vertices in G), each gift is of value to exactly two
children, and the objective is to make the least lucky child as happy as possible.

In this paper, we connect the concepts of Maximum Independent Set /
Minimum Vertex Cover and graph orientation. We first introduce four new,
closely related graph orientation problems that we call Maximize W -Light,
Minimize W -Light, Maximize W -Heavy, and Minimize W -Heavy, where
W can be any fixed non-negative integer. We study their computational complex-
ity and polynomial-time approximability for different values of W and different
graph classes, and derive a number of simple results. Significantly, we demon-
strate that Maximum Independent Set and Minimum Vertex Cover can
be viewed as a special case of these graph orientation problems. Thus, by varying
the parameter W , we obtain a new, natural generalization of Maximum Inde-

pendent Set and Minimum Vertex Cover. We also investigate the connec-
tions to other graph theoretical concepts such as maximum flows, edge packings,
and bipartite matchings, which we exploit to obtain efficient algorithms.

1.1 Problem Definitions

Let G = (V,E) be an undirected graph with a vertex set V and an edge set E.
An orientation Λ of G is a function that maps each undirected edge {u, v} in E

1 Karp’s influential paper [17] established the NP-hardness of Maximum Clique

(which is computationally equivalent to Maximum Independent Set), Minimum

Vertex Cover, and several other fundamental problems.
2 Some other aspects of graph orientations not related to computational complexity
have been studied in graph theory and combinatorial optimization; see chapter 61
in [18] for a survey.
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to one of the two possible directed edges (u, v) and (v, u). Applying Λ to all
edges in E transforms G into a directed graph, which we denote by Λ(G). For
convenience, we write Λ(E) =

⋃
e∈E{Λ(e)} to represent the set of directed edges

in Λ(G). Next, for any vertex u ∈ V , define the outdegree of u under Λ as
d+Λ(u) = |{v : (u, v) ∈ Λ(E)}|, i.e., the number of outgoing edges from u in the
directed graph Λ(G). For any non-negative integer W , a vertex u ∈ V is said to
be W -light in Λ(G) if d+Λ (u) ≤ W , and W -heavy in Λ(G) if d+Λ (u) ≥ W .

We are now ready to define four graph orientation problems called Max-

imize W -Light, Minimize W -Light, Maximize W -Heavy, and Minimize

W -Heavy. In each problem, W is a fixed non-negative integer, the input is an
undirected graph G = (V,E) and the output is an orientation Λ of G such that:

• Maximize W -Light: the number of W -light vertices in Λ(G) is maximized.
• Minimize W -Light: the number of W -light vertices in Λ(G) is minimized.
• Maximize W -Heavy: the number of W -heavy vertices in Λ(G) is maxi-
mized.

• Minimize W -Heavy: the number ofW -heavy vertices in Λ(G) is minimized.

Throughout the paper, we define n = |V | and m = |E|. Without loss of gen-
erality, we assume that the input graph G is connected. For any instance of
Maximize W -Light or Minimize W -Light, let OPT (G) denote the number
ofW -light vertices in an optimal solution, and for any instance of Maximize W -

Heavy or Minimize W -Heavy, let OPT (G) denote the number of W -heavy
vertices in an optimal solution. Consider an algorithm A that takes as input
an undirected graph G and outputs an orientation of G. We say that A is a σ-
approximation algorithm forMaximize W -Light (resp.Maximize W -Heavy),

or that A’s approximation ratio is at most σ, if A(G) ≥ OPT (G)
σ holds for ev-

ery G, where A(G) is the number of W -light (resp. W -heavy) vertices in the
solution returned by A. Similarly, we say that A is a σ-approximation algorithm
forMinimize W -Light (resp.Minimize W -Heavy), or that A’s approximation
ratio is at most σ, if A(G) ≤ σ ·OPT (G) holds for every G, where A(G) is the
number of W -light (resp. W -heavy) vertices in the solution returned by A.

1.2 Preliminaries

For any given graph G = (V,E), any orientation Λ of G, and any fixed non-
negative integer W , the vertex set V is partitioned into two disjoint subsets: the
set of W -light vertices in Λ(G) and the set of (W + 1)-heavy vertices in Λ(G).
Therefore, if A is an algorithm that solves Maximize W -Light exactly then
A solves Minimize (W + 1)-Heavy exactly as well, and we say that Max-

imize W -Light and Minimize (W + 1)-Heavy are supplementary problems.
The relationship between the two problems Minimize W -Light and Maximize

(W + 1)-Heavy is analogous. In the same way, Maximum Independent Set

and Minimum Vertex Cover are supplementary problems. However, when
A is a good approximation algorithm for Maximize W -Light, it does not
automatically follow that A yields a good approximation algorithm for Min-

imize (W + 1)-Heavy. Indeed, many pairs of supplementary problems whose
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polynomial-time approximability properties differ greatly can be found in the lit-
erature; for example, Maximum Independent Set is NP-hard to approximate
within a ratio of nε for any constant 0 ≤ ε < 1 [19], while Minimum Vertex

Cover is easy to approximate within a ratio of 2 by finding a maximal matching
in the graph and outputting the set of matched vertices [10].

1.3 Related Work

We note that the algorithm in Section 4.2 of [3] computes an orientation Λ
of G that minimizes max{d+Λ(u) : u ∈ V }, taken over all possible orientations
of G, in O(m3/2 · logΔ) time, where Δ is the maximum (unweighted) degree
among all vertices in G. Using this algorithm, we can find an orientation of G
in which all vertices are W -light, for any W , when such an orientation exists.
However, when such an orientation does not exist, the algorithm does not help
us to find a suitable solution for Maximize W -Light.3 Similarly, Algorithm
Exact-1-MaxMinO in Section 3 of [1] computes an orientation Λ of G maximizing
min{d+Λ(u) : u ∈ V }, taken over all possible orientations of G, in O(m3/2 ·
logm · (logΔ)2) time. By running Exact-1-MaxMinO, it is trivial to construct an
orientation of G in which all vertices are W -heavy, for any W , when one exists.

2 Maximize W -Light & Minimize (W + 1)-Heavy

This section investigates the supplementary problems Maximize W -Light and
Minimize (W +1)-Heavy for different values of W . (Minimize 0-Heavy is not
interesting because all vertices have outdegree ≥ 0 under every orientation of G,
i.e., OPT (G) = n and any orientation of the edges gives an optimal solution.)

2.1 W = 0

We first prove the following lemma:

Lemma 1. Let G = (V,E) be an undirected graph. For any orientation Λ of G,
the set of 0-light vertices in Λ(G) forms an independent set in G. Conversely,
given any independent set I in G, there exists an orientation of G in which the
vertices from I are 0-light.

Proof. =⇒) For any pair u, v of 0-light vertices in Λ(G), no edges in Λ(G) are
oriented away from u or v by the definition of 0-light, so G cannot contain the
edge {u, v}. Thus, the set of 0-light vertices forms an independent set in G.

⇐=) Define an orientation Λ of G as follows. First, for each u ∈ I, orient all edges
involving u towards u. Next, orient all remaining edges arbitrarily. Obviously,
every vertex from I will be 0-light in Λ(G). ��
3 Intuitively, in some instances of Maximize W -Light, it is better to “sacrifice” one
vertex by giving it a high outdegree. As an example, let G be a star graph andW = 0.
Orienting every edge towards the center vertex minimizes max{d+Λ(u) : u ∈ V }, but
gives a very poor solution for Maximize 0-Light.
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Recall that for any orientation Λ of G, the set of 0-light vertices in Λ(G) and
the set of 1-heavy vertices in Λ(G) form a partition of V . Also, any V ′ ⊆ V is
an independent set in G if and only if V \ V ′ is a vertex cover of G. Together
with Lemma 1, this yields:

Lemma 2. Let G = (V,E) be an undirected graph. For any orientation Λ of G,
the set of 1-heavy vertices in Λ(G) forms a vertex cover of G. Conversely, given
any vertex cover C of G, there exists an orientation of G in which the vertices
from C are 1-heavy.

Theorem 1. Maximize 0-Light and Maximum Independent Set are equiv-
alent, and Minimize 1-Heavy and Minimum Vertex Cover are equivalent.

Consequently, the known hardness results for Maximum Independent Set

[19] and Minimum Vertex Cover [8] immediately carry over to Maximize

0-Light and Minimize 1-Heavy. On the positive side, we can apply existing
approximation algorithms for Maximum Independent Set [9] and Minimum

Vertex Cover [16]. Furthermore, Maximum Independent Set and Min-

imum Vertex Cover can be solved in polynomial time for some classes of
graphs such as bipartite graphs [12], and even in linear time for certain impor-
tant special classes of graphs such as chordal graphs4 [11]. In summary, we have:

Corollary 1. • ([19]) Maximize 0-Light cannot be approximated within a
ratio of nε for any constant 0 ≤ ε < 1 in polynomial time, unless P = NP.

• ([9]) Maximize 0-Light can be approximated within a ratio of
O(n(log logn)2/(logn)3) in polynomial time.

• ([8]) Minimize 1-Heavy cannot be approximated within a ratio of 1.3606 in
polynomial time, unless P = NP.

• ([16]) Minimize 1-Heavy can be approximated within a ratio of 2−Θ( 1√
logn

)

in polynomial time.
• ([12]) Maximize 0-Light and Minimize 1-Heavy restricted to bipartite
graphs can be solved in polynomial time.

• ([11]) Maximize 0-Light and Minimize 1-Heavy restricted to chordal
graphs can be solved in linear time.

2.2 W ≥ 1, Restriction to Trees

When G is a tree, we apply an algorithm named Up-To-Roots in [2] that works
as follows: Select any node r in G, root G in r, and orient every edge towards r.
Clearly, Up-To-Roots produces an orientation with exactly n−1 vertices having
outdegree 1 and one vertex having outdegree 0, which means that for anyW ≥ 1,
trivially, all n vertices are W -light and none are (W + 1)-heavy. This gives:

Theorem 2. For any W ≥ 1, Maximize W -Light and Minimize (W + 1)-
Heavy restricted to trees can be solved in O(n) time.

4 The class of chordal graphs includes many useful types of graphs such as interval
graphs, split graphs, threshold graphs, and trees [5].
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3 Minimize W -Light & Maximize (W + 1)-Heavy

We now consider the pair of supplementary problems Minimize W -Light and
Maximize (W + 1)-Heavy. (The variant Maximize 0-Heavy is trivial with
OPT (G) = n because every vertex has outdegree ≥ 0 in any orientation of G.)

3.1 W = 0

For W = 0, the following theorem holds.

Theorem 3. Minimize 0-Light and Maximize 1-Heavy can be solved in
O(m3/2) time.

Proof. Given G = (V,E), build a bipartite graph BG = (V ∪E,F ) whose vertices
correspond to the vertices and edges of G, and whose edge set F is defined as
F =

{{u, e}, {v, e} | e = {u, v} ∈ E
}
, i.e., every edge e = {u, v} in G is

represented by the two edges {u, e} and {v, e} in BG. Note that BG consists of
m+n = O(m) vertices (sinceG is connected) and 2m edges. Run the algorithm of
Hopcroft-Karp [15] to find a maximum cardinality matchingM in BG in O((|F |+
|V |+ |E|) ·√|V |+ |E|) = O(m3/2) time. For every edge {u, e} of BG belonging
to M , orient e away from u in G. Orient any remaining edges arbitrarily. This
gives an orientation of G in which exactly |M | vertices have outdegree at least 1,
and this is an optimal solution for Minimize 0-Light and Maximize 1-Heavy

on input G by the optimality of the maximum cardinality matching. ��

3.2 Linear Time Solutions for Special Graphs

In this subsection, we consider unbounded W but restrict the input graph G to
certain graph classes (planar and outerplanar graphs).

We first give a reduction from Maximize W -Heavy to a problem named
Maximum H ′

-Edge Packing, studied in, e.g., [14]. The latter is defined as
follows. Let H ′ be an undirected graph. The Maximum H ′

-Edge Packing

problem takes as input an undirected graphH and asks for the maximum number
of edge-disjoint isomorphic copies of H ′ in H . Now, given an instance G = (V,E)
of Maximize W -Heavy with n vertices, construct an instance of Maximum

K1,(W+n)-Edge Packing, where K1,(W+n) denotes the star graph consisting of
one center vertex with W + n neighboring leaves. To do this, let H be a copy
of G, and for each v ∈ V , create n new vertices and attach them to v in H .
Thus, H contains n+n2 vertices and O(n2) edges. Then, we have the following:

Lemma 3. For any positive integer x, the graph G has an orientation Λ such
that Λ(G) contains at least x W -heavy vertices if and only if the graph H contains
at least x edge-disjoint copies of K1,(W+n).

By transforming G to H as explained above and then applying the algorithms
from [14] forMaximum H ′

-Edge Packing, whereH ′ is a star graph, we obtain:
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Theorem 4. • For any W ≥ 0, Minimize W -Light and Maximize (W+1)-
Heavy restricted to outerplanar graphs can be solved in O(n) time.

• For any W ≥ 0, Maximize (W + 1)-Heavy restricted to planar graphs has
an O(n2)-time 2-approximation algorithm.

Proof. If the given instance G of Minimize W -Light / Maximize (W + 1)-
Heavy is an outerplanar graph then the constructed graphH is also outerplanar.
According to Theorem 4.2 in [14], Maximum H ′

-Edge Packing restricted to
outerplanar graphs can be solved in O(|VH |) time by dynamic programming,
where |VH | is the number of vertices in H , when H ′ is any star graph with at
least 3 leaves. By Lemma 3 above, setting H ′ = K1,(W+1+n) and running the
algorithm in Theorem 4.2 in [14] on H solves Minimize W -Light / Maximize

(W + 1)-Heavy in O(n2) time. The running time can be improved to O(n) by
bypassing the dynamic programming computations on the n2 dummy vertices.

In the slightly more general case whereG is a planar graph,H becomes planar,
and we apply Theorem 5.3 in [14] instead, which says that Maximum H ′

-Edge

Packing restricted to planar graphs admits an O(|EH |)-time 2-approximation
algorithm when H ′ is a star graph with at least 3 leaves and where |EH | is the
number of edges in H . ��

3.3 W ≥ 2, NP-Hardness

Theorem 3.1 in [14] proves that for any fixed W ≥ 2, Maximum K1,(W+1)-Edge

Packing is NP-hard, even if restricted to planar graphs. (Recall that K1,(W+1)

denotes the star graph with one center vertex and W +1 leaves.) The reduction
is from Planar 3-SAT. We observe that in the reduction, every vertex in the
constructed graph H has degree strictly less than 2(W +1). Therefore, any two
copies of K1,W+1 in H must use different center vertices, and it follows that
any set of x edge-disjoint copies of the star graph K1,(W+1) in H induces an
orientation of H in which x vertices are (W+1)-heavy, and vice versa. Therefore,
optimal solutions to the two problemsMaximize (W+1)-Heavy andMaximum

K1,(W+1)-Edge Packing for the constructed graph H are equivalent.

Theorem 5. For any fixed W ≥ 2, Minimize W -Light and Maximize (W +
1)-Heavy are NP-hard, even if restricted to planar graphs.

3.4 W ≥ 1, An Approximation Algorithm for Maximize

(W + 1)-Heavy

The following is a greedy approximation algorithm forMaximize (W+1)-Heavy

for general graphs which we call Greedy Graph Orientation:

1. Repeat until all vertices have been considered exactly once:
1.1 Select any previously unconsidered vertex u.
1.2 If u has ≥ W + 1 incident unoriented edges then orient any W + 1 of
them away from u.

2. Orient any remaining unoriented edges arbitrarily.
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(G) = 1G OPT(G) = W+2

u

Greedy

W+1

Fig. 1. A bad example for Greedy Graph Orientation. (In the figure, W = 3.)
OPT (G) = W + 2, but if the algorithm first selects u and orients (W + 1) edges away
from u as on the right, then only u can be (W +1)-heavy in any resulting orientation.

Theorem 6. For any W ≥ 1, Greedy Graph Orientation is a (W+2)-approx-
imation algorithm for Maximize (W + 1)-Heavy and runs in linear time.

Proof. Let Λ be the partial orientation on E defined after Step 1 of the algorithm,
where “partial” means that we allow some edges in E to remain unoriented. Let
Λ∗ be any optimal solution. Denote the set of (W + 1)-heavy vertices in Λ(G)
by S and the set of (W + 1)-heavy vertices in Λ∗(G) by S∗. For any u in S,
u takes an edge from at most (W + 1) vertices that belong to S∗ and therefore
prevents at most (W+1) of the vertices in S∗ from being (W+1)-heavy in Λ(G).
Denote the set of these vertices by S∗

u. Then, S
∗ can be partitioned into

⋃
u∈S S∗

u

and S ∩ S∗ (this is because if there is a vertex in S∗ \ (⋃u∈S S∗
u ∪ (S ∩ S∗)), it

must be selected in Step 1.2 and thus be included in S ∩ S∗, which would give
a contradiction). Hence, the approximation ratio is:

|S∗|
|S| =

|⋃u∈SS
∗
u|+ |S∩S∗|
|S| ≤

∑
u∈S |S∗

u|+ |S|
|S| ≤

∑
u∈S(W + 1) + |S|

|S| = W +2

Step 1 is performed exactly n times, and each edge is considered at most two
times in total, so the algorithm can be implemented to run in O(n+m) time. ��
The approximation ratio (W+2) in Theorem 6 is tight. See Fig. 1 for an example.

We remark that Theorem 5.1 in [14] describes an approximation algorithm
for Maximum H ′

-Edge Packing which is based on a similar idea. However, we
cannot apply it here directly because it assumes that H ′ is fixed; it identifies all
copies of H ′ in H , so its running time depends exponentially on the size of H ′.

3.5 W ≥ 1, An Approximation Algorithm for Minimize W -Light

Finally, we give a polynomial-time approximation algorithm for Minimize W -

Light for any fixed W ≥ 1. It is based on computing maximum flows in a family
of flow networks {NG(0),NG(1), . . . ,NG(n)} with positive edge capacities.

Let G = (V,E) be any input undirected graph to Minimize W -Light. Define
a directed graph NG = (VG, EG) as illustrated in Fig. 2 by setting:



340 Y. Asahiro et al.

x2

3x

1x

tz

r

s

V
E

(vertices of G)
(edges of G)

xW+1

Fig. 2. The directed graph NG. All edges are directed from left to right.

VG = V ∪ E ∪ {r, s, t, z} ∪ {x1, x2, . . . , xW , xW+1},
EG =

{
(s, v) | v ∈ V

} ∪ {
(vi, e), (vj , e) | e = {vi, vj} ∈ E

} ∪ {
(e, z) | e ∈ E

}∪{
(v, xi) | v ∈ V, 1 ≤ i ≤ W + 1

} ∪ {
(xi, r) | 1 ≤ i ≤ W + 1

} ∪ {
(r, z), (z, t)

}

(Each vertex in NG that corresponds to a vertex v in G has outdegree deg(v) +
W +1, and each vertex in NG that corresponds to an edge in G has indegree 2.)

Next, for any integer q ∈ {0, 1, . . . , n}, let NG(q) = (VG, EG, capq) be the flow
network obtained by augmenting NG with edge capacities capq, where:

capq(a) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

W + 1, if a = (s, v) with v ∈ V ;
1, if a = (v, e) with v ∈ V, e ∈ E;
1, if a = (v, xi) with v ∈ V, 1 ≤ i ≤ W + 1;
1, if a = (e, z) with e ∈ E;
q, if a = (xi, r) with 1 ≤ i ≤ W + 1;
(W + 1) · n, if a = (r, z) or a = (z, t).

Lemma 4. For any q ∈ {0, 1, . . . , n}, if the maximum directed flow from vertex s
to vertex t in NG(q) equals (W + 1) · n then there exists an orientation of G in
which the number of W -light vertices is at most (W + 1) · q.
Proof. Fix q and let F be any maximum directed flow from s to t in NG(q) with
integer values. Suppose F has value (W +1) ·n. Construct an orientation Λ of G
as follows. Every vertex in NG that corresponds to an edge e = {u, v} can receive
at most one unit of flow in F , and this will arrive at e either along (u, e), in which
case we orient e in Λ as (u, v), or along (v, e), in which case we orient e in Λ
as (v, u). Next, orient all remaining unoriented edges of G arbitrarily. Observe
that for any v ∈ V , if the corresponding vertex in NG does not send any of its
(W +1) units of flow to {x1, x2, . . . , xW , xW+1} then v is (W +1)-heavy in Λ(G).

By the construction of NG(q), at most (W + 1) · q units of flow can pass
through r. Each of the n vertices in NG corresponding to a vertex in V receives
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precisely W +1 units of flow from s in F , and at most (W +1) ·q of them send at
least one unit of flow to {x1, x2, . . . , xW , xW+1} and may not be (W + 1)-heavy
in Λ(G). In other words, at most (W + 1) · q vertices are W -light in Λ(G). ��
Lemma 5. For any q ∈ {0, 1, . . . , n}, if the maximum directed flow from vertex s
to vertex t in NG(q) is strictly less than (W + 1) · n then the number of W -light
vertices in every orientation of G is strictly larger than q.

Proof. We prove the contrapositive. Suppose Λ is an orientation of G with at
most q W -light vertices. Construct a flow from s to t inNG(q) with value (W+1)·
n as follows. Use all of the capacity of edges of the form (s, v), (e, z), (z, t), where
v ∈ V and e ∈ E. For each e = {u, v} ∈ E, if Λ(e) = (u, v) then send one unit
of flow along (u, e), and if Λ(e) = (v, u) then send one unit of flow along (v, e).
Since at most q vertices are W -light, the total flow between vertices in NG

corresponding to vertices in V and vertices in NG corresponding to edges in E is
at least (W+1)·n−(W+1)·q. Next, for eachW -light vertex v, distribute whatever
remains of its at most (W +1) units of flow among {x1, x2, . . . , xW , xW+1} arbi-
trarily by capacity-1 edges of the form (v, xi). Finally, let the flow along each
edge (xi, r) be the sum of all incoming flows to xi and let the flow along (r, z) be
the sum of all incoming flows to r. In total, the flow from s to t is (W +1) ·n. ��
We now describe the algorithm. For any q ∈ {0, 1, . . . , n}, let F (q) be an integral
maximum directed flow from vertex s to vertex t in NG(q), as computed by the
algorithm of Goldberg and Rao [13].5

1. Construct NG.

2. Let q = 0.

3. Repeat until the value of the flow F (q) equals (W + 1) · n:
q = q + 1.

4. For every e ∈ E, if an edge of the form (vi, e) in NG(q) has one unit of
flow in F (q) then orient e away from vi in G. Orient all remaining unoriented
edges of G arbitrarily.

Let A(G) be the number of W -light vertices in the orientation constructed by
the algorithm. During the execution of the algorithm, at some point p, the fol-
lowing situation occurs: (a) q = p−1 implies that the maximum flow in NG(q) <
(W +1) ·n, and (b) q = p implies that the maximum flow in NG(q) = (W +1) ·n.
By Lemma 5, (a) means that OPT (G) > p− 1, i.e., OPT (G) ≥ p. By Lemma 4,
(b) gives A(G) ≤ (W + 1) · p. It follows that the approximation ratio is at

most (W+1)·p
p = W + 1. We have just shown:

Theorem 7. For any W ≥ 1, Minimize W -Light can be approximated within
a ratio of (W + 1) in polynomial time.

For greater efficiency, use a binary search on q in Step 3 instead of checking all
candidate values of q incrementally. This gives an O(n3 log3 n)-time algorithm.

5 Since all edge capacities are integers, we may assume by the integrality theorem (see
[7]) that the flow along each edge in F (q) found by the algorithm in [13] is an integer.
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4 Concluding Remarks

Our results are summarized in the following two tables:

Sect. 2 Maximize W -Light Minimize (W + 1)-Heavy

W = 0 Equivalent to Equivalent to
Maximum Independent Set Minimum Vertex Cover

(Theorem 1) (Theorem 1)
W ≥ 1 Solvable in O(n) time for trees Solvable in O(n) time for trees

(Theorem 2) (Theorem 2)

Sect. 3 Minimize W -Light Maximize (W + 1)-Heavy

W = 0 Solvable in O(m3/2) time Solvable in O(m3/2) time
(Theorem 3) (Theorem 3)

W ≥ 0 Solvable in O(n) time for Solvable in O(n) time for
outerplanar graphs (Theorem 4) outerplanar graphs (Theorem 4)

W ≥ 1 Polynomial-time (W + 1)-approx. Polynomial-time (W + 2)-approx.
(Theorem 7) (Theorem 6) and

O(n2)-time 2-approx. for
planar graphs (Theorem 4)

W ≥ 2 NP-hard even for planar graphs NP-hard even for planar graphs
(Theorem 5) (Theorem 5)

Letting the parameterW vary yields a new generalization of Maximum Inde-

pendent Set and Minimum Vertex Cover. One interpretation of Minimize

(W + 1)-Heavy as a Minimum Vertex Cover problem is that every vertex
in V is allowed to cover W or less of its incident edges in G “for free”, without
having to be placed in the output vertex cover V ′.

The results derived in this paper did not rely on any advanced techniques.
The main contribution of this paper has been to introduce the four new graph
orientation problems and to show how they extend the fundamental problems
Maximum Independent Set and Minimum Vertex Cover in a novel way.
We hope that this paper will inspire more sophisticated approximation algo-
rithms and hardness results in the near future. Indeed, the two tables above
expose several open problems:

• What is the computational complexity of Maximize W -Light and Mini-

mize (W + 1)-heavy when W ≥ 1?
• In particular, Maximize 0-Light is equivalent to Maximum Independent

Set and therefore already extremely hard, so does Maximize W -Light

become easier when W gets larger?
• What is the computational complexity of Minimize W -Light and Maxi-

mize (W + 1)-Heavy for the special case W = 1?
• Can Theorem 5 be strengthened to give non-trivial polynomial-time inap-
proximability bounds for Minimize W -Light and Maximize (W + 1)-
Heavy?
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• Is it possible to refine our polynomial-time approximation algorithms for
Minimize W -Light and Maximize (W + 1)-Heavy to improve the ap-
proximation ratios in Theorems 6 and 7?
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