
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 19, no. 1, pp. 441–465 (2015)
DOI: 10.7155/jgaa.00371

Graph Orientations Optimizing the Number of

Light or Heavy Vertices

Yuichi Asahiro 1 Jesper Jansson 2 Eiji Miyano 3 Hirotaka Ono 4

1Department of Information Science, Kyushu Sangyo University, Matsukadai,
Higashi-ku, Fukuoka 813-8503, Japan

2Laboratory of Mathematical Bioinformatics, Institute for Chemical Research,
Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

3Department of Systems Design and Informatics, Kyushu Institute of
Technology, Iizuka, Fukuoka 820-8502, Japan

4Department of Economic Engineering, Kyushu University, Higashi-ku,
Fukuoka 812-8581, Japan

Abstract

This paper introduces four graph orientation problems named Max-

imize W -Light, Minimize W -Light, Maximize W -Heavy, and Min-

imize W -Heavy, where W can be any fixed non-negative integer. In

each problem, the input is an undirected, unweighted graph G and the

objective is to assign a direction to every edge in G so that the num-

ber of vertices with outdegree at most W or at least W in the resulting

directed graph is maximized or minimized. A number of results on the

computational complexity and polynomial-time approximability of these

problems for different values of W and various special classes of graphs are

derived. In particular, it is shown that Maximize 0-Light and Minimize

1-Heavy are identical to Maximum Independent Set and Minimum

Vertex Cover, respectively, so by allowing the value of W to vary, we

obtain a new generalization of the two latter problems.

Submitted:
May 2014

Reviewed:
July 2015

Revised:
August 2015

Accepted:
September

2015

Final:
September

2015
Published:

October 2015

Article type:
Regular paper

Communicated by:
K. Kawarabayashi

A preliminary version of this article appeared in Proceedings of the 2nd International Sympo-

sium on Combinatorial Optimization (ISCO 2012), volume 7422 of Lecture Notes in Computer

Science, pp. 332–343, Springer-Verlag Berlin Heidelberg, 2012.

This research was funded by KAKENHI grant numbers 23500020, 25330018, 26330017,

and 26540005 and The Hakubi Project at Kyoto University.

E-mail addresses: asahiro@is.kyusan-u.ac.jp (Yuichi Asahiro) jj@kuicr.kyoto-u.ac.jp (Jesper

Jansson) miyano@ces.kyutech.ac.jp (Eiji Miyano) hirotaka@econ.kyushu-u.ac.jp (Hirotaka Ono)

http://dx.doi.org/10.7155/jgaa.00371
mailto:asahiro@is.kyusan-u.ac.jp
mailto:jj@kuicr.kyoto-u.ac.jp
mailto:miyano@ces.kyutech.ac.jp
mailto:hirotaka@econ.kyushu-u.ac.jp

442 Asahiro et al. Graph Orientations Optimizing Light or Heavy Vertices

1 Introduction

Two well-studied computational problems in theoretical computer science are
Maximum Independent Set and Minimum Vertex Cover. In these two
problems, the input is an undirected graph G = (V,E), and the objectives are
to find a largest possible subset V ′ of V such that no two vertices in V ′ are ad-
jacent in G (Maximum Independent Set) and a smallest possible subset V ′

of V such that every edge in E is incident to at least one vertex in V ′ (Minimum

Vertex Cover). They were among the first problems ever to be shown to be
NP-hard 1, and were used as a starting point for proving the NP-hardness of
countless other problems during the 1970s [22] and onwards. In recent years,
they have been central to the development of three important subfields of com-
putational complexity: polynomial-time approximation algorithms, hardness of
approximation, and parameterized complexity.

A relatively less researched area is the computational complexity of graph
orientation problems. 2 By an orientation of an undirected graphG, we mean an
assignment of a direction to each one of its edges. A graph orientation problem
takes an undirected graph G as input and asks for an orientation of G that
optimizes some well-defined criterion on the resulting directed graph, typically
involving connectivity between vertices, the diameter, acyclicity, or constraints
on the vertices’ indegrees and/or outdegrees.

In this paper, we connect the concepts of Maximum Independent Set /
Minimum Vertex Cover and graph orientation. We introduce four closely
related graph orientation problems called Maximize W -Light, Minimize W -

Light, Maximize W -Heavy, and Minimize W -Heavy, where W can be
any fixed non-negative integer, and study their computational complexity and
polynomial-time approximability for different values of W and different graph
classes. Significantly, we demonstrate that Maximum Independent Set and
Minimum Vertex Cover can be viewed as special cases of these graph ori-
entation problems. Thus, by varying the parameter W , a new generalization of
Maximum Independent Set and Minimum Vertex Cover is obtained.

1.1 Definitions

Let G = (V,E) be an undirected, unweighted graph with a vertex set V and
an edge set E. An orientation Λ of G is a function that maps each undirected
edge {u, v} in E to one of the two possible directed edges (u, v) and (v, u).
Applying Λ to all edges in E transforms G into a directed graph, which we
denote by Λ(G). See Figure 1 for an example. For convenience, we write
Λ(E) =

⋃

e∈E{Λ(e)} to refer to the set of directed edges in Λ(G).

1In [30], Karp established the NP-hardness of several fundamental problems including
Minimum Vertex Cover and Maximum Clique, which is computationally equivalent to
Maximum Independent Set.

2Other aspects of graph orientations not directly related to computational complexity
have been studied in graph theory and combinatorial optimization; see chapter 61 in [37] for
a survey.

JGAA, 19(1) 441–465 (2015) 443

G Λ(G)

Figure 1: An example of an undirected graph G and an orientation Λ of G.
Four vertices are 2-light and three vertices are 2-heavy in Λ(G).

Next, for any vertex u ∈ V , define the outdegree of u under Λ as d+Λ(u) =
|{v : (u, v) ∈ Λ(E)}|, i.e., the number of outgoing edges from u in the directed
graph Λ(G). For any non-negative integer W , a vertex u ∈ V is said to be
W -light in Λ(G) if d+Λ(u) ≤ W , and W -heavy in Λ(G) if d+Λ(u) ≥ W .

We now define four graph orientation problems that we call Maximize W -

Light, Minimize W -Light, Maximize W -Heavy, and Minimize W -Heavy.
In each problem, W is a fixed non-negative integer, the input is an undirected
graph G = (V,E) and the output is an orientation Λ of G such that:

• Maximize W -Light:
the number of W -light vertices in Λ(G) is maximized.

• Minimize W -Light:
the number of W -light vertices in Λ(G) is minimized.

• Maximize W -Heavy:
the number of W -heavy vertices in Λ(G) is maximized.

• Minimize W -Heavy:
the number of W -heavy vertices in Λ(G) is minimized.

Throughout the paper, we define n = |V | and m = |E|. For any instance of
Maximize W -Light or Minimize W -Light, let OPT (G) denote the number
of W -light vertices in an optimal solution, and for any instance of Maximize

W -Heavy orMinimize W -Heavy, let OPT (G) denote the number ofW -heavy
vertices in an optimal solution. Without loss of generality, the input graph G
is assumed to be connected.

Let A be an algorithm that takes as input an undirected graph G and out-
puts an orientation of G. We say that A is a σ-approximation algorithm for
Maximize W -Light (resp. Maximize W -Heavy), or that A’s approximation

ratio is at most σ, if A(G) ≥ OPT (G)
σ holds for every input graph G, where

A(G) is the number ofW -light (resp. W -heavy) vertices in the solution returned
by A. Similarly, we say that A is a σ-approximation algorithm for Minimize

W -Light (resp. Minimize W -Heavy), or that A’s approximation ratio is at

444 Asahiro et al. Graph Orientations Optimizing Light or Heavy Vertices

most σ, if A(G) ≤ σ · OPT (G) holds for every input graph G, where A(G) is
the number of W -light (resp. W -heavy) vertices in the solution returned by A.

For any given graph G = (V,E), any orientation Λ of G, and any fixed non-
negative integer W , the vertex set V is partitioned into two disjoint subsets: the
set of W -light vertices in Λ(G) and the set of (W + 1)-heavy vertices in Λ(G).
Therefore, if A is an algorithm that solves Maximize W -Light exactly then A
solves Minimize (W +1)-Heavy exactly as well, and we say that for every fixed
W ≥ 0, Maximize W -Light and Minimize (W +1)-Heavy are supplementary
problems. However, if A is a good approximation algorithm for Maximize W -

Light, it does not automatically follow that A yields a good approximation
algorithm for Minimize (W + 1)-Heavy. The relationship between Minimize

W -Light and Maximize (W + 1)-Heavy is analogous. 3

1.2 New results and organization of the paper

We derive some basic results on the computational complexity of the new graph
orientation problems and investigate their relations to various computationally
easy and hard problems. See the tables in Figure 2 for a summary. The paper
is organized as follows:

• Section 2 considers Maximize W -Light and Minimize (W +1)-Heavy.
We prove that the two problems coincide with Maximum Independent

Set and Minimum Vertex Cover, respectively, when W = 0. More-
over, Section 2 shows that Maximize W -Light and Minimize (W + 1)-
Heavy are NP-hard for every fixed W ≥ 1, and explains how to approx-
imate the former for any W ≥ 1 and the latter for W = 1 in polynomial
time for any graph G and how to solve them exactly in linear time for any
W ≥ 1 when G is a tree.

• Section 3 is devoted to Minimize W -Light and Maximize (W + 1)-
Heavy. We show that when W = 0, the problems can be solved exactly
in linear time for all classes of graphs. For unbounded W , they can be
solved in quadratic time when restricted to outerplanar graphs and in
linear time when restricted to trees. On the other hand, the problems
become NP-hard for every fixedW ≥ 2, even if restricted to planar graphs.
In the general graph case, for any W ≥ 1, we can approximate Minimize

W -Light within a ratio of (W + 1) in polynomial time with a maximum
flow-based technique, and Maximize (W + 1)-Heavy within a ratio of
(W + 2) in linear time with a greedy algorithm.

• Section 4 discusses open problems.

3Pairs of supplementary problems whose polynomial-time approximability properties dif-
fer greatly can be found in the literature. For example, Maximum Independent Set and
Minimum Vertex Cover are supplementary problems, and it is known that Maximum Inde-

pendent Set is NP-hard to approximate within a ratio of nǫ for any constant 0 ≤ ǫ < 1 [39],
while Minimum Vertex Cover can be approximated within a ratio of 2−Θ(1

√

log n
) in poly-

nomial time [29].

JGAA, 19(1) 441–465 (2015) 445

Section 2 Maximize W -Light Minimize (W + 1)-Heavy

W = 0 Identical to Identical to
Maximum Independent Set Minimum Vertex Cover

(Theorem 1) (Theorem 1)
W ≥ 0 NP-hard (Theorem 3) NP-hard (Theorem 3)
W = 1 O(n2)-time (n

logn)-approx. Polynomial-time 2-approx.

(Corollary 3) (Theorem 5)
W ≥ 1 Solvable in O(n) time for Solvable in O(n) time for

trees (Theorem 2) trees (Theorem 2)

and Õ(n2)-time (n
logn)-approx.

(Theorem 4)
W ≥ 3 Solvable in O(n) time for Solvable in O(n) time for

planar graphs (Corollary 1) planar graphs (Corollary 1)

Section 3 Minimize W -Light Maximize (W + 1)-Heavy

W = 0 Solvable in O(m) time Solvable in O(m) time
(Theorem 6) (Theorem 6)

W ≥ 0 Solvable in O(n) time for Solvable in O(n) time for
trees (Theorem 7) trees (Theorem 7)
and in O(n2) time for and in O(n2) time for
outerplanar graphs outerplanar graphs
(Theorem 8) (Theorem 8)

W ≥ 1 Polynomial-time O(n2)-time 2-approx. for
(W + 1)-approx. planar graphs (Theorem 8)
(Theorem 11) and O(m)-time (W + 2)-approx.

for unrestricted graphs
(Theorem 10)

W ≥ 2 NP-hard even for planar NP-hard even for planar
graphs (Theorem 9) graphs (Theorem 9)

Figure 2: Summary of the results described in this paper. The omitted problem
variant Minimize 0-Heavy is trivial because all vertices have outdegree ≥ 0
under every orientation of G, i.e., OPT (G) = n always holds and any arbitrary
orientation of the edges gives an optimal solution. In the same way, Maximize

0-Heavy is trivial with OPT (G) = n.

1.3 Motivation

The main reason for introducing the above problems is that they provide a nat-
ural extension of the well-known Maximum Independent Set and Minimum

Vertex Cover problems. By studying the computational complexity of the
new problems as W varies, one may gain novel insights into the structure of
Maximum Independent Set and Minimum Vertex Cover. For example,

446 Asahiro et al. Graph Orientations Optimizing Light or Heavy Vertices

the originalMinimum Vertex Cover problem, i.e., Minimize (W+1)-Heavy

with W = 0 according to Theorem 1 below, is NP-hard even if restricted to pla-
nar graphs [22]. By Corollary 1, it becomes solvable in polynomial time for
planar graphs when W ≥ 3. In contrast, Theorem 3 shows that increasing W
does not decrease the computational complexity for unrestricted (non-planar)
graphs.

An application of graph orientation problems in general is load balancing for
parallel machine scheduling, where some “jobs” (corresponding to edges in G)
have to be distributed among “machines” (corresponding to vertices in G) in
a fair way [1, 3, 16], and each job must be handled by one of two specified
machines. As an example, the problem of computing an orientation of G that
minimizes the maximum outdegree was studied in [3, 4, 16, 38]; in the context
of efficient data structures, if G is a sparse graph then an orientation of G that
minimizes the maximum outdegree can be employed to support fast (in the
worst case) vertex adjacency queries in G when using adjacency lists [9, 11].
As another example, a graph orientation of G that maximizes the minimum
outdegree [1] solves a special case of the Santa Claus problem [7] in which Santa
Claus has to distribute a set of gifts (corresponding to edges in G) among a set
of children (corresponding to vertices in G), each gift is of value to exactly two
children, and the objective is to make the least lucky child as happy as possible.
The new problems Maximize W -Light and Minimize (W + 1)-Heavy intro-
duced in this paper can be regarded as load balancing problems where every
machine initially has a capacity of W and we wish to find a job assignment that
requires as few machines as possible to be upgraded to “supermachines” with
unlimited capacity. As forMinimize W -Light and Maximize (W+1)-Heavy,
these correspond to a version of the Santa Claus problem where each gift can
be given to one of two specified children, a child is “happy” if he / she receives
at least W + 1 gifts, and one wants to maximize the number of happy kids.

1.4 Related work

We note that the algorithm in Section 4.2 of [4] computes an orientation Λ of G
that minimizes max{d+Λ(u) : u ∈ V }, taken over all possible orientations of G,
in O(m3/2 · log∆) time, where ∆ is at most the maximum (unweighted) degree
among all vertices in G. Using this algorithm, we can find an orientation of G
under which all vertices are W -light, for any given W , when such an orientation
exists. However, when such an orientation does not exist, the algorithm does not
directly give a suitable solution for Maximize W -Light. Intuitively, in some
instances of Maximize W -Light, it is better to “sacrifice” one vertex by giving
it a high outdegree. As an example, let G be a star graph and W = 0. Orienting
every edge towards the center vertex minimizes max{d+Λ(u) : u ∈ V }, but gives
a very poor solution for Maximize 0-Light. Nevertheless, we will make use of
this algorithm in Section 2.4 below to approximate Maximize W -Light.

Similarly, Algorithm Exact-1-MaxMinO in Section 3 of [1] computes an ori-
entation Λ of G maximizing min{d+Λ(u) : u ∈ V }, taken over all orientations
of G, in O(m3/2 · logm · (log∆)2) time. By running Exact-1-MaxMinO, it is

JGAA, 19(1) 441–465 (2015) 447

trivial to construct an orientation of G in which all vertices are W -heavy, for
any given W , when one exists.

Every planar graph has an orientation in which all vertices are 3-light [11, 35],
and Chrobak and Eppstein [11] gave two different linear-time algorithms for
constructing such an orientation. Hence:

Corollary 1 ([11]) For any W ≥ 3, Maximize W -Light and Minimize (W+
1)-Heavy restricted to planar graphs can be solved in O(n) time.

Another pair of supplementary problems that generalize Maximum Inde-

pendent Set and Minimum Vertex Cover when their parameter is al-
lowed to vary are Maximum k-Dependent Set [14, 27] (sometimes called
Maximum co-(k+1)-Plex [6, 33]) and Bounded-Degree-k Vertex Dele-

tion [10, 18, 32, 34, 36], where k is a fixed non-negative integer. The former
problem is to find a largest possible subset V ′ of the vertices in the input graphG
such that each vertex in V ′ is adjacent to at most k vertices in V ′, and the latter
is to find a smallest possible subset of the vertices in G whose removal trans-
forms G into a graph of degree at most k. (Thus, Maximum Independent Set

and Minimum Vertex Cover correspond to the special case k = 0.) Figure 3

j

k+1

(a) (b) (c)

Figure 3: Let k ≥ 0 and j ≥ 1 be integers and let G be the tree in (a) obtained by
attaching k + 1 leaves to each node on a path of length j. Then n = (k + 2) · j.
For every W ≥ 1, the orientation in (b) has n vertices that are W -light and
0 vertices that are (W + 1)-heavy, so this is an optimal solution to Maximize

W -Light and Minimize (W + 1)-Heavy. On the other hand, the optimal
solutions to Maximum k-Dependent Set and Bounded-Degree-k Vertex

Deletion indicated by circles and crosses, respectively, in (c) have cardinalities
(k + 1) · j and j.

448 Asahiro et al. Graph Orientations Optimizing Light or Heavy Vertices

shows that these generalizations are different from Maximize W -Light and
Minimize (W + 1)-Heavy.

A previously studied optimization problem related to partial graph orien-
tation under degree constraints is: Given an undirected graph with specified
upper bounds on the indegree and the outdegree of each vertex, orient as many
edges as possible while complying with the degree constraints (i.e., some edges
might be left unoriented in the solution). Gabow [20] showed that this problem
is MAXSNP-hard and 4/3-approximable in polynomial time.

2 Maximize W -Light & Minimize (W +1)-Heavy

This section investigates the supplementary problems Maximize W -Light and
Minimize (W + 1)-Heavy for different values of W .

2.1 W = 0

We first prove the following lemma:

Lemma 1 Let G = (V,E) be an undirected graph. For any orientation Λ of G,
the set of 0-light vertices in Λ(G) forms an independent set in G. Conversely,
given any independent set I in G, there exists an orientation of G in which the
vertices from I are 0-light.

Proof: =⇒) For any pair u, v of 0-light vertices in Λ(G), no edges in Λ(G) are
oriented away from u or v by the definition of 0-light, so G cannot contain the
edge {u, v}. Thus, the set of 0-light vertices forms an independent set in G.

⇐=) Define an orientation Λ of G as follows. First, for each u ∈ I, orient
all edges involving u towards u. Next, orient all remaining edges arbitrarily.
Obviously, every vertex from I will be 0-light in Λ(G). �

As mentioned in Section 1.1, for any orientation Λ of G, the set of 0-light
vertices in Λ(G) and the set of 1-heavy vertices in Λ(G) form a partition of V .
Also, any subset V ′ ⊆ V is an independent set in G if and only if V \ V ′ is a
vertex cover of G. Together with Lemma 1, this yields:

Lemma 2 Let G = (V,E) be an undirected graph. For any orientation Λ of G,
the set of 1-heavy vertices in Λ(G) forms a vertex cover of G. Conversely, given
any vertex cover C of G, there exists an orientation of G in which the vertices
from C are 1-heavy.

Hence:

Theorem 1 Maximize 0-Light and Maximum Independent Set are iden-
tical, and Minimize 1-Heavy and Minimum Vertex Cover are identical.

JGAA, 19(1) 441–465 (2015) 449

Consequently, the known hardness results for Maximum Independent Set

[39] and Minimum Vertex Cover [15] immediately carry over to Maximize

0-Light and Minimize 1-Heavy. On the positive side, we can apply existing
approximation algorithms for Maximum Independent Set [17] and Minimum

Vertex Cover [29]. Furthermore, Maximum Independent Set and Min-

imum Vertex Cover can be solved in polynomial time for some classes of
graphs such as bipartite graphs [24], and even in linear time for certain useful
special classes of graphs such as chordal graphs4 [23]. In summary, we have:

Corollary 2 • ([39]) Maximize 0-Light cannot be approximated within a
ratio of nǫ for any constant 0 ≤ ǫ < 1 in polynomial time, unless P = NP.

• ([17]) Maximize 0-Light can be approximated within a ratio of
O(n(log logn)2/(logn)3) in polynomial time.

• ([15]) Minimize 1-Heavy cannot be approximated within a ratio of 1.3606
in polynomial time, unless P = NP.

• ([29]) Minimize 1-Heavy can be approximated within a ratio of 2 −
Θ(1√

logn
) in polynomial time.

• ([24]) Maximize 0-Light and Minimize 1-Heavy restricted to bipartite
graphs can be solved in polynomial time.

• ([23]) Maximize 0-Light and Minimize 1-Heavy restricted to chordal
graphs can be solved in linear time.

2.2 W ≥ 1, restriction to trees

When G is a tree, optimal solutions to the problems can be computed easily by
applying an algorithm named Up-To-Roots in [3] that works as follows:

Select any node r in G, root G in r, and orient every edge towards r.

Clearly, Up-To-Roots produces an orientation with exactly n − 1 vertices
having outdegree 1 and one vertex having outdegree 0, which means that for
any W ≥ 1, trivially, all n vertices are W -light and none are (W + 1)-heavy.
This gives:

Theorem 2 For any W ≥ 1, Maximize W -Light and Minimize (W + 1)-
Heavy restricted to trees can be solved in O(n) time.

4The class of chordal graphs includes many famous classes such as interval graphs, split
graphs, threshold graphs, and trees [8].

450 Asahiro et al. Graph Orientations Optimizing Light or Heavy Vertices

2.3 W ≥ 1, NP-hardness

By Corollary 2 above, Maximize W -Light and Minimize (W +1)-Heavy are
NP-hard when W = 0. We now show that the problems are also NP-hard for
other values of W .

Theorem 3 For every fixed W ≥ 0, Maximize W -Light and Minimize (W+
1)-Heavy are NP-hard.

Proof: We give a polynomial-time reduction from Maximize W -Light to
Maximize (W + 1)-Light for any W ≥ 0. The theorem then follows from
the NP-hardness of Maximize 0-Light, induction, and Maximize W -Light

and Minimize (W + 1)-Heavy being supplementary. Let G = (V,E) be a
given instance of Maximize W -Light. Construct an instance G′ = (V ′, E′) of
Maximize (W + 1)-Light by taking |V | copies of the complete graph K2W+3

with 2W +3 vertices and attaching one such copy Ki to each vi ∈ V by adding
an edge between vi and any one vertex wi in Ki. We claim that G has an
orientation in which at least k vertices are W -light if and only if G′ has an
orientation in which at least k + (2W + 3) · |V | vertices are (W + 1)-light.

To prove the claim, first note that if G has an orientation with at least k
vertices that are W -light, it is straightforward to extend it to an orientation
of G′ that makes at least k+ (2W +3) · |V | vertices (W + 1)-light by orienting,
for every vi ∈ V : (i) the edge {vi, wi} as (vi, wi); and (ii) the edges inside Ki so
that all of its 2W + 3 vertices get outdegree (W + 1) (for example, denote the
vertices of Ki by {u0, u1, . . . , u2W+2} and orient each edge {uj, uk} as (uj, uk)
if k − j (mod 2W + 3) ∈ {1, 2, . . . ,W + 1} and as (uk, uj) otherwise). Next,
suppose that G′ has an orientation in which at least k + (2W + 3) · |V | vertices
are (W + 1)-light. For every vi ∈ V , if some vertex belonging to Ki is not
(W +1)-light then orienting {vi, wi} and the edges of Ki as in (i) and (ii) above
yields an orientation Λ′ of G′ in which all vertices in V ′ \ V are (W + 1)-light
while not decreasing the total number of (W + 1)-light vertices. At least k
vertices in V are (W + 1)-light in Λ′ and for each such vi, the edge {vi, wi} is
oriented as (vi, wi). Thus, taking the restriction of Λ′ to the original G gives an
orientation of G in which at least k vertices are W -light. �

2.4 W ≥ 1, approximation algorithms

To approximate Maximize W -Light for any fixed W ≥ 1 as well as Mini-

mize 2-Heavy in polynomial time, we will apply some known results from the
literature.

We first consider Maximize W -Light. To approximate it, we use the
simple partitioning technique from Proposition 2.2 in [26] to get an (n

logn)-
approximation. It will be referred to as Algorithm Partition into subsets

below. For clarity, the algorithm is shown explicitly in Figure 4.

Theorem 4 For any W ≥ 1, Algorithm Partition into subsets is an (n
log n)-

approximation algorithm for Maximize W -Light and runs in Õ(n2) time.

JGAA, 19(1) 441–465 (2015) 451

1. Arbitrarily partition V into ⌊n/ logn⌋ sets V1, V2, ..., V⌊n/ logn⌋, each of
size at most ⌈logn⌉+ 1.

2. For every subset V ′
i of every set Vi, check if the subgraph of G induced

by V ′
i has an orientation in which all vertices are W -light. Let Z be

any such subset of maximum cardinality, and let Λ be the corresponding
orientation of the subgraph of G induced by Z.

3. Extend Λ to all of G by orienting all edges with exactly one endpoint
in Z towards Z and orient all remaining edges of G arbitrarily.

Figure 4: Algorithm Partition into subsets.

Proof: According to Steps 2 and 3, all vertices belonging to Z are guaranteed
to be W -light in the resulting orientation of G.

To analyze the approximation ratio, we use the same argument as in the
analysis of Proposition 2.2 in [26]. Let Λ∗ be any optimal orientation of G and
let Z∗ be the set of W -light vertices in Λ∗. By the pigeonhole principle, at least
one of the subsets V1, V2, ..., V⌊n/ logn⌋ contains a fraction of 1

⌊n/ logn⌋ or more of

the elements in Z∗. For any V ′
i ⊆ V , every vertex in V ′

i that is W -light in Λ∗

will still be W -light in the subgraph of G induced by V ′
i because its outdegree

will not increase. Thus, the discovered Z satisfies |Z| ≥ |Z∗|
⌊n/ log n⌋ ≥ |Z∗|

n/ log n .

The running time is O(n
logn · n · log3 n log logn) = O(n2 log2 n log logn) =

Õ(n2) because every Vi has at most 2logn+2 = O(n) subsets, and each such
V ′
i can be tested in Step 2 to see if the subgraph of G induced by V ′

i admits
an orientation that makes all vertices W -light in O(log3 n log logn) time by
the algorithm in Section 4.2 of [4], which computes an orientation Λ′ of a given
graph G′ = (V ′, E′) that minimizes max{d+Λ′(u) : u ∈ V ′} taken over all possible
orientations of G′ in O(|E′|3/2 · log∆′) time, where ∆′ is at most the maximum
(unweighted) degree among all vertices in V ′ (here, |V ′| = |V ′

i | = O(log n)). �

Next, we focus on the case W = 1. Recall the following definitions from
the literature (see, e.g., [21]): A pseudotree is a connected, undirected graph
containing exactly one cycle, and a pseudoforest is a union of vertex-disjoint
trees and pseudotrees. Thus, every connected component of a pseudoforest has
at most one cycle. For any subset V ′ ⊆ V of the vertices in a graph G = (V,E),
V ′ induces the subgraph of G consisting of V ′ and all edges in E whose two
endpoints belong to V ′. An induced subgraph of G that is a pseudoforest and
has the largest possible number of vertices is a maximum induced pseudoforest
in G. The next lemma is analogous to Lemma 1:

Lemma 3 Let G = (V,E) be an undirected graph. For any orientation Λ of G,
the subgraph of G induced by the set of 1-light vertices in Λ(G) is a pseudoforest.
Conversely, for any subset V ′ ⊆ V , if V ′ induces a pseudoforest in G then there
exists an orientation of G in which the vertices from V ′ are 1-light.

Proof: =⇒) Let G′ be the subgraph of G induced by the set of 1-light vertices

452 Asahiro et al. Graph Orientations Optimizing Light or Heavy Vertices

in Λ(G). In every connected component X in G′, the number of edges is less
than or equal to the number of vertices by the definition of a 1-light vertex, so if
X is not a tree then X contains precisely one cycle. Therefore, each connected
component in G′ is either a tree or a pseudotree, and it follows that G′ is a
pseudoforest.

⇐=) Define an orientation Λ of G as follows. For each connected component X
in the induced pseudoforest, if X is a tree then apply Up-To-Roots from Sec-
tion 2.2 to X ; otherwise, let C be the cycle in X , orient all edges of X not
belonging to C towards C, and traverse C in either direction while orienting
all its edges forward. Finally, orient every edge in G with exactly one endpoint
in V ′ towards V ′ and orient all remaining edges of G arbitrarily. This way, every
vertex in V ′ will be 1-light in Λ(G). �

Lemma 3 implies that the running time of Algorithm Partition into subsets

can be improved slightly for the special case W = 1:

Corollary 3 Maximize 1-Light can be approximated within a ratio of (n
log n)

in O(n2) time.

Proof: Proceed as in the proof of Theorem 4, but implement Step 2 as follows.
To check if the subgraph of G induced by V ′

i has an orientation in which all
vertices are W -light, check if V ′

i induces a pseudoforest in G in O(|V ′
i |) =

O(log n) time by depth-first search instead of using the algorithm from [4]. The
total running time will be O(n

logn · n · logn) = O(n2). �

More importantly, it also follows from Lemma 3, together with the fact that
any given orientation of G partitions V into 1-light and 2-heavy vertices, that
Minimize 2-Heavy is identical to the problem of finding a smallest cardinality
subset of V whose removal leaves a pseudoforest. This is a special case of the
more general “node-deletion problem for a graph property π” in [19], which asks
for a minimum set of vertices whose deletion leaves a subgraph satisfying π; more
precisely, it is the special case where π is the property “every connected compo-
nent of a graph contains at most one cycle”. By point (4) of Theorem 9 in [19],
when restricted to this particular property, the output of the polynomial-time
approximation algorithm in [19] is at most twice the cardinality of a minimum
solution. Therefore:

Theorem 5 Minimize 2-Heavy has a polynomial-time 2-approximation algo-
rithm.

3 Minimize W -Light & Maximize (W +1)-Heavy

We now consider the pair of supplementary problems Minimize W -Light and
Maximize (W + 1)-Heavy.

JGAA, 19(1) 441–465 (2015) 453

3.1 W = 0

For W = 0, the following theorem holds.

Theorem 6 Minimize 0-Light and Maximize 1-Heavy can be solved in
O(m) time.

Proof: Let G = (V,E) be the input undirected graph. There are two cases:

1. If G is a tree then G has n vertices and n−1 edges, so at most n−1 vertices
can be 1-heavy in any orientation of G. Run the algorithm Up-To-Roots

mentioned in Section 2.2 to obtain an orientation of G with n− 1 1-heavy
vertices, which is optimal, in O(n) = O(m) time.

2. If G is not a tree then first find a cycle C in G by depth-first search in
O(m) time. Then, select an arbitrary edge e on C and orient it away
from u, where u is either one of its endpoints. Compute any spanning
tree T of G \ {e} in O(m) time, root T at the vertex u, and orient every
edge of T towards the root. This ensures that every vertex of G gets
outdegree at least 1, i.e., no vertex is 0-light and all vertices are 1-heavy
in the resulting orientation of G. Finally, orient any remaining edges
arbitrarily.

�

3.2 Polynomial-time solutions for special graphs

In this subsection, we allow W to be unbounded but restrict the input to certain
graph classes.

We first present a linear-time solution for the case where the input G is a tree.
The algorithm is listed in Figure 5. It is named Extended Up-To-Roots because
when W = 0, it is the same as the algorithm Up-To-Roots of [3] described in
Section 2.2 if we always select a leaf as the node r.

1. Root the tree G in any leaf r, and for every u ∈ V , initialize s(u) = 0.

2. For every non-root node u in bottom-up order, do:

2.1 Let p be the parent of u.

2.2 If s(u) = W then orient the edge {u, p} from u to p.

2.3 Else, orient the edge {u, p} from p to u and let s(p) = s(p) + 1.

Figure 5: Algorithm Extended Up-To-Roots for solving Minimize W -Light

and Maximize (W + 1)-Heavy restricted to trees.

Theorem 7 For any W ≥ 0, Algorithm Extended Up-To-Roots solves Min-

imize W -Light and Maximize (W + 1)-Heavy restricted to trees in O(n)
time.

454 Asahiro et al. Graph Orientations Optimizing Light or Heavy Vertices

Proof: For any non-root node u ∈ V , denote the subtree of G rooted at u
by G[u]. Furthermore, denote the subtree of G consisting of the parent p of u,
the undirected edge {u, p}, and G[u] by G∧[u]. We shall prove that after u has
been treated in Step 2 of the algorithm, the orientation obtained so far gives an
optimal solution for Maximize (W + 1)-Heavy for G∧[u]. By the bottom-up
ordering of the nodes, we may assume inductively that this property holds for
all children of u (if any). Two cases are possible:

• u is a leaf: Then OPT (G∧[u]) is either 1 (if W = 0) or 0 (if W ≥ 1).
When W = 0, Step 2.2 makes u one of the (W + 1)-heavy vertices in the
resulting orientation.

• u is an internal node: Let Λ be the orientation of G∧[u] constructed in
Steps 2.2 and 2.3, and let C(u) be the set of children of u. By the induction
hypothesis, it holds that for each ui ∈ C(u), Λ restricted to G∧[ui] gives an
optimal orientation forG∧[ui]. Thus, the number of (W+1)-heavy vertices
in an optimal solution for G∧[u] equals either 1 +

∑

ui∈C(u)OPT (G∧[ui])

(if u can be made (W + 1)-heavy) or
∑

ui∈C(u) OPT (G∧[ui]) (otherwise).

(It is impossible for G∧[u] to have 2 +
∑

ui∈C(u) OPT (G∧[ui]) or more

(W + 1)-heavy vertices since it is a tree.) If s(u) = W in Step 2.2, there
are exactly W edges oriented from u to the children of u, and we make
u a (W + 1)-heavy vertex by orienting the edge {u, p} towards p, so the
obtained orientation of G∧[u] has 1+

∑

ui∈C(u) OPT (G∧[ui]) vertices that

are (W+1)-heavy. On the other hand, if s(u) < W then u can not become
(W + 1)-heavy and if s(u) > W then u is already (W + 1)-heavy; in both
of these cases, G∧[u] is already optimally oriented, and we orient {u, p}
away from p and increment s(p) in Step 2.3.

The running time is O(n + m) = O(n) because every node and every edge is
considered once in the loop in Step 2 and because G is a tree. �

Next, we turn to the case where G is an outerplanar or planar graph. We re-
duce Maximize W -Heavy to a problem named Maximum Q-Edge Packing,
studied in, e.g., [28]. The latter is defined as follows. Let Q be an undirected
graph. The Maximum Q-Edge Packing problem takes as input an undi-
rected graph H (called a “host graph”) and asks for the maximum number of
edge-disjoint isomorphic copies of Q in H . Now, given an instance G = (V,E)
of Maximize W -Heavy with n vertices, construct an instance of Maximum

K1,(W+n)-Edge Packing, where K1,(W+n) denotes the star graph consisting
of one center vertex with W +n neighboring leaves. To do this, let H be a copy
of the graph G, and for each v ∈ V , create n new vertices and attach them to v
in H . See Figure 6 for an illustration. Thus, H contains n + n2 vertices and
O(n2) edges. Then, we have the following:

Lemma 4 For any positive integer x, the graph G has an orientation Λ such
that Λ(G) contains at least x W -heavy vertices if and only if the graph H con-
tains at least x edge-disjoint copies of K1,(W+n).

JGAA, 19(1) 441–465 (2015) 455

G: H:

Figure 6: In the reduction from Maximize W -Heavy to Maximum K1,(W+n)-

Edge Packing, n new vertices are attached to each vertex in a copy of G to
obtain the host graph H .

By transformingG toH as explained above and then applying the algorithms
from [28] for Maximum Q-Edge Packing, where Q is a star graph, we obtain:

Theorem 8 • For any W ≥ 0, Minimize W -Light and Maximize (W +
1)-Heavy restricted to outerplanar graphs can be solved in O(n2) time.

• For any W ≥ 0, Maximize (W + 1)-Heavy restricted to planar graphs
has an O(n2)-time 2-approximation algorithm.

Proof: If the given instance G of Minimize W -Light / Maximize (W + 1)-
Heavy is an outerplanar graph then the constructed graph H is also outerpla-
nar. According to Theorem 4.2 in [28], Maximum Q-Edge Packing restricted
to outerplanar graphs can be solved in O(|VH |) time by dynamic programming,
where |VH | is the number of vertices in H , when Q is any star graph with at
least 3 leaves. By Lemma 4 above, setting Q = K1,(W+1+n) and running the
algorithm in Theorem 4.2 in [28] on H solves Minimize W -Light / Maximize

(W + 1)-Heavy in O(n2) time.
In the more general case where G is a planar graph, H becomes planar,

and we apply Theorem 5.3 in [28] instead, which says that Maximum Q-Edge

Packing restricted to planar graphs admits an O(|EH |)-time 2-approximation
algorithm when Q is a star graph with at least 3 leaves and where |EH | is the
number of edges in H . �

3.3 W ≥ 2, NP-hardness

Theorem 3.1 in [28] proves that for every fixed W ≥ 2, Maximum K1,(W+1)-

Edge Packing is NP-hard, even if restricted to planar graphs. (Recall that
K1,(W+1) denotes the star graph with one center vertex and W + 1 leaves.)
The reduction is from Planar 3-SAT. We observe that in the reduction, ev-
ery vertex in the constructed graph H has degree strictly less than 2(W + 1).
Therefore, any two copies of K1,W+1 in H must use different center vertices,
and it follows that any set of x edge-disjoint copies of the star graph K1,(W+1)

456 Asahiro et al. Graph Orientations Optimizing Light or Heavy Vertices

in H induces an orientation of H in which x vertices are (W + 1)-heavy, and
vice versa. Hence, optimal solutions to the two problems Maximize (W + 1)-
Heavy and Maximum K1,(W+1)-Edge Packing for the constructed graph H
are equivalent. We obtain:

Theorem 9 For every fixed W ≥ 2, Minimize W -Light and Maximize (W+
1)-Heavy are NP-hard, even if restricted to planar graphs.

3.4 W ≥ 1, a greedy approximation algorithm for Maxi-

mize (W + 1)-Heavy

Figure 7 presents an approximation algorithm named Greedy Graph Orientation

for Maximize (W + 1)-Heavy for general graphs. It runs in linear time.

1. Repeat until all vertices have been considered exactly once:

1.1 Select any previously unconsidered vertex u.

1.2 If u has at leastW+1 incident unoriented edges then orient anyW+1
of them away from u.

2. Orient any remaining unoriented edges arbitrarily.

Figure 7: Algorithm Greedy Graph Orientation.

Theorem 10 For any W ≥ 1, Algorithm Greedy Graph Orientation is a
(W + 2)-approximation algorithm for Maximize (W + 1)-Heavy and runs in
O(m) time.

Proof: Let Λ be the partial orientation on E defined after Step 1 of the al-
gorithm, where “partial” means that we allow some edges in E to remain un-
oriented. Let Λ∗ be any optimal solution. Denote the set of (W + 1)-heavy
vertices in Λ(G) by S and the set of (W + 1)-heavy vertices in Λ∗(G) by S∗.
For any u in S, u takes an edge from at most (W + 1) vertices that belong
to S∗ and therefore prevents at most (W + 1) of the vertices in S∗ from being
(W + 1)-heavy in Λ(G). Denote the set of these vertices by S∗

u. Then, S∗ can
be partitioned into

⋃

u∈S S∗
u and S ∩ S∗ (this is because if there is a vertex in

S∗ \ (
⋃

u∈S S∗
u ∪ (S ∩ S∗)), it must be selected in Step 1.2 and thus be included

in S ∩ S∗, which would give a contradiction). Hence, the approximation ratio
is:

|S∗|

|S|
=

|
⋃

u∈SS
∗
u|+ |S∩S∗|

|S|
≤

∑

u∈S |S
∗
u|+ |S|

|S|
≤

∑

u∈S(W+1) + |S|

|S|
= W + 2

Step 1 is performed exactly n times, and each edge is considered at most two
times in total, so the algorithm can be implemented to run in O(n+m) = O(m)
time. �

The approximation ratio (W + 2) in Theorem 10 is tight. See Figure 8.

JGAA, 19(1) 441–465 (2015) 457

(G) = 1G OPT(G) = W+2

u

Greedy

W+1

Figure 8: A bad example for Algorithm Greedy Graph Orientation. (In the
figure, W = 3.) Here OPT (G) = W + 2, but if the algorithm first selects
vertex u and orients (W + 1) edges away from u as shown on the right, then
only u can be (W + 1)-heavy in any resulting orientation.

We remark that Theorem 5.1 in [28] describes an approximation algorithm
for Maximum Q-Edge Packing which is based on a similar idea. However,
we cannot apply it here directly because it assumes that Q is fixed; it identifies
all copies of Q in H , so its running time depends exponentially on the size of Q.

3.5 W ≥ 1, an approximation algorithm for Minimize W -

Light

Finally, we give a polynomial-time approximation algorithm for Minimize W -

Light for any fixedW ≥ 1. It is based on computing maximum flows in a family
of flow networks {NG(0),NG(1), . . . , NG(n)} with positive edge capacities.

Let G = (V,E) be any input undirected graph to Minimize W -Light.
Define a directed graph NG = (VG, EG) with vertex set VG and edge set EG as
shown in Figure 9 by setting:

VG = V ∪ E ∪ {r, s, t, z} ∪ {x1, x2, . . . , xW , xW+1},

EG =
{

(s, v) | v ∈ V
}

∪
{

(vi, e), (vj , e) | e = {vi, vj} ∈ E
}

∪
{

(e, z) | e ∈ E
}

∪
{

(v, xi) | v ∈ V, 1 ≤ i ≤ W + 1
}

∪
{

(xi, r) | 1 ≤ i ≤ W + 1
}

∪
{

(r, z), (z, t)
}

(Each vertex in NG that corresponds to a vertex v in G has outdegree deg(v)+
W +1, and each vertex in NG that corresponds to an edge in G has indegree 2.)

Next, for any integer q ∈ {0, 1, . . . , n}, let NG(q) = (VG, EG, capq) be the

458 Asahiro et al. Graph Orientations Optimizing Light or Heavy Vertices

x2

3x

1x

tz

xW+1

s

r

(vertices of G)
(edges of G)V

E

Figure 9: The directed graph NG. All edges are directed from left to right.

flow network obtained by augmenting NG with edge capacities capq, where:

capq(a) =

W + 1, if a = (s, v) with v ∈ V ;
1, if a = (v, e) with v ∈ V, e ∈ E;
1, if a = (v, xi) with v ∈ V, 1 ≤ i ≤ W + 1;
1, if a = (e, z) with e ∈ E;
q, if a = (xi, r) with 1 ≤ i ≤ W + 1;
(W + 1) · n, if a = (r, z) or a = (z, t).

Lemma 5 For any q ∈ {0, 1, . . . , n}, if the maximum directed flow from vertex s
to vertex t in NG(q) equals (W + 1) · n then there exists an orientation of G in
which the number of W -light vertices is at most (W + 1) · q.

Proof: Fix q and let F be any maximum directed flow from s to t in NG(q) with
integer values. Suppose F has value (W + 1) · n. Construct an orientation Λ
of G as follows. Every vertex in NG that corresponds to an edge e = {u, v}
in E can receive at most one unit of flow in F , and this will arrive at e either
along (u, e), in which case we orient e in Λ as (u, v), or along (v, e), in which
case we orient e in Λ as (v, u). Next, orient all remaining unoriented edges of G
arbitrarily. Observe that for any v ∈ V , if the corresponding vertex in NG does
not send any of its (W +1) units of flow to the vertices {x1, x2, . . . , xW , xW+1}
then v is (W + 1)-heavy in Λ(G).

By the construction of NG(q), at most (W + 1) · q units of flow can pass
through vertex r. Each of the n vertices in NG that corresponds to a vertex
in V receives precisely W +1 units of flow from s in F , and at most (W +1) ·q of
them send at least one unit of flow to {x1, x2, . . . , xW , xW+1} and may therefore

JGAA, 19(1) 441–465 (2015) 459

not be (W + 1)-heavy in Λ(G). In other words, at most (W + 1) · q vertices are
W -light in Λ(G). �

Lemma 6 For any q ∈ {0, 1, . . . , n}, if the maximum directed flow from vertex s
to vertex t in NG(q) is strictly less than (W +1) ·n then the number of W -light
vertices in every orientation of G is strictly larger than q.

Proof: We prove the contrapositive. Suppose there exists an orientation Λ of G
with at most q W -light vertices. Construct a flow from s to t in NG(q) with
value (W + 1) · n as follows.

First, use all of the capacity of the edges of the form (s, v), (e, z), (z, t),
where v ∈ V and e ∈ E. Then, for each e = {u, v} ∈ E, do the following: if
Λ(e) = (u, v) and the amount of already determined outgoing flow from u is
less than W +1 then send one unit of flow along (u, e), and if Λ(e) = (v, u) and
the amount of already determined outgoing flow from v is less than W +1 then
send one unit of flow along (v, e). Since at most q vertices are W -light, the total
flow between vertices in NG that correspond to vertices in V and vertices in NG

that correspond to edges in E is at least (W + 1) · n − (W + 1) · q. Next, for
each W -light vertex v, distribute whatever remains of its at most (W +1) units
of flow among {x1, x2, . . . , xW , xW+1} arbitrarily by using capacity-1 edges of
the form (v, xi). Finally, let the flow along each edge (xi, r) be the sum of all
incoming flows to xi and let the flow along (r, z) be the sum of all incoming
flows to r. Thus, in total, the flow from s to t is (W + 1) · n. �

We now describe the algorithm. For any q ∈ {0, 1, . . . , n}, let F (q) be an
integral maximum directed flow from vertex s to vertex t in NG(q), as computed
by the algorithm of Goldberg and Rao [25]. 5

1. Construct NG.

2. Let q = 0.

3. Repeat until the value of the flow F (q) equals (W + 1) · n:
q = q + 1.

4. For every e ∈ E, if an edge of the form (vi, e) in NG(q) has one unit
of flow in F (q) then orient e away from vi in G. Orient all remaining
unoriented edges of G arbitrarily.

Let A(G) be the number of W -light vertices in the orientation constructed
by the algorithm. During the execution of the algorithm, at some point p, the
following situation occurs:

(a) q = p− 1 implies that the maximum flow in NG(q) < (W + 1) · n,
and

(b) q = p implies that the maximum flow in NG(q) = (W + 1) · n.

5Since all edge capacities are integers, we may assume by the integrality theorem (see,
e.g., [12]) that the flow along each edge in F (q) found by the algorithm in [25] is an integer.

460 Asahiro et al. Graph Orientations Optimizing Light or Heavy Vertices

By Lemma 6, (a) means that OPT (G) > p − 1, i.e., OPT (G) ≥ p. By
Lemma 5, (b) gives A(G) ≤ (W +1) · p. It follows that the approximation ratio

is at most (W+1)·p
p = W + 1. We have just shown:

Theorem 11 For any W ≥ 1, Minimize W -Light can be approximated within
a ratio of (W + 1) in polynomial time.

Remark: For greater efficiency, do a binary search on q in Step 3 instead of
checking all candidate values of q incrementally. This gives an O(n3 log3 n)-time
algorithm.

4 Concluding remarks

We have introduced four new graph orientation problems and shown how they
generalize the fundamental problems Maximum Independent Set and Min-

imum Vertex Cover in a natural way. For example, one interpretation of
Minimize (W +1)-Heavy as a relaxed variant of Minimum Vertex Cover is
that every vertex in the input graph is allowed to cover W or less of its incident
edges “for free”, without having to be placed in the output vertex cover.

The two tables in Figure 2 in Section 1.2 expose several open problems:

• What are the best possible polynomial-time approximation ratios forMax-

imize W -Light and Minimize (W + 1)-Heavy with W ≥ 1? In partic-
ular, Maximize 0-Light is identical to Maximum Independent Set

and therefore already extremely hard to approximate, so does Maximize

W -Light become easier when W gets larger?

• What is the computational complexity of Maximize W -Light and Min-

imize (W + 1)-Heavy restricted to planar graphs when W ∈ {1, 2}?

• What is the computational complexity of Minimize W -Light and Max-

imize (W + 1)-Heavy for the special case W = 1?

• When G is a tree, all the problems are solvable in O(n) = O(m) time
by Corollary 2, Theorem 2, and Theorem 7. Although these methods are
very simple, they achieve optimal running times since the size of the input
is Ω(m). Do any other classes of graphs admit O(m)-time algorithms for
some variants of the problems?

• Can Theorem 9 be strengthened to give non-trivial polynomial-time inap-
proximability bounds for Minimize W -Light and Maximize (W + 1)-
Heavy?

• Is it possible to refine our polynomial-time approximation algorithms for
Minimize W -Light and Maximize (W + 1)-Heavy to improve the ap-
proximation ratios in Theorems 10 and 11?

JGAA, 19(1) 441–465 (2015) 461

Finally, we briefly discuss two techniques from the literature that could lead to
stronger results for special cases of the new problems.

• Baker [5] presented a polynomial-time approximation scheme (i.e., a poly-
nomial-time (1 + ǫ)-approximation algorithm for any fixed ǫ > 0) for
Maximum Independent Set restricted to planar graphs. It first takes
any planar embedding of the input graph G, partitions its vertices into
successive layers V1, V2, V3, . . . , and defines a collection {G1, G2, . . . , Gk}
of k-outerplanar graphs, where k = ⌈1 + (1/ǫ)⌉, by removing the lay-
ers Vi, Vi+k, Vi+2k, . . . from a copy of G to get each Gi. It then runs an
exact, polynomial-time algorithm for Maximum Independent Set re-
stricted to k-outerplanar graphs on each Gi, and returns the best solution
found. For any optimal solution I, at least one graph Gi contains at least
k−1
k of the vertices in I, so this method is a (k

k−1)-approximation, i.e., a
(1 + ǫ)-approximation. Baker’s technique can be applied to many other
optimization problems on planar graphs (see [5]), and if one could de-
velop an exact, polynomial-time algorithm for Maximize W -Light with
W ∈ {1, 2} restricted to k-outerplanar graphs then the above analysis im-
plies that this problem variant admits a polynomial-time approximation
scheme for planar graphs as well.

• By formulating the problems in monadic second-order logic and apply-
ing Courcelle’s theorem [13], one would obtain fixed-parameter tractable
algorithms for graphs of bounded treewidth. Here, it is straightforward
to come up with formulas of length O(1) that express the condition that
every edge in G is oriented (e.g., first assign an arbitrary ordering to the
vertices in G and partition the edges into two sets, consisting of all edges
oriented from a vertex with a smaller index to a vertex with a larger in-
dex and vice versa, and ensure that each edge belongs to exactly one of
them) and that tell us in which direction any specified edge is oriented in
an orientation. The difficulty is defining a compact formula, i.e., whose
length does not depend on the size of the graph, for checking if a vertex
has at most / at least W outgoing edges. We leave it as an open problem
to resolve this issue.

Acknowledgments

The authors would like to thank Avraham Melkman, Manuel Sorge, and the
anonymous reviewers for some insightful comments.

Addendum

Some additional results that extend the tables in Figure 2 have recently been
obtained. They will appear in [2] and [31].

462 Asahiro et al. Graph Orientations Optimizing Light or Heavy Vertices

References

[1] Y. Asahiro, J. Jansson, E. Miyano, and H. Ono. Graph orien-
tation to maximize the minimum weighted outdegree. International
Journal of Foundations of Computer Science, 22(3):583–601, 2011.
doi:10.1142/S0129054111008246.

[2] Y. Asahiro, J. Jansson, E. Miyano, and H. Ono. Degree-constrained graph
orientation: Maximum satisfaction and minimum violation. Theory of
Computing Systems, to appear. doi:10.1007/s00224-014-9565-5.

[3] Y. Asahiro, J. Jansson, E. Miyano, H. Ono, and K. Zenmyo. Approx-
imation algorithms for the graph orientation minimizing the maximum
weighted outdegree. Journal of Combinatorial Optimization, 22(1):78–96,
2011. doi:10.1007/s10878-009-9276-z.

[4] Y. Asahiro, E. Miyano, H. Ono, and K. Zenmyo. Graph orienta-
tion algorithms to minimize the maximum outdegree. International
Journal of Foundations of Computer Science, 18(2):197–215, 2007.
doi:10.1142/S0129054107004644.

[5] B. Baker. Approximation algorithms for NP-complete problems
on planar graphs. Journal of the ACM, 41(1):153–180, 1994.
doi:10.1145/174644.174650.

[6] B. Balasundaram, S. S. Chandramouli, and S. Trukhanov. Ap-
proximation algorithms for finding and partitioning unit-disk
graphs into co-k-plexes. Optimization Letters, 4(3):311–320, 2010.
doi:10.1007/s11590-009-0146-5.

[7] N. Bansal and M. Sviridenko. The Santa Claus problem. In Proceedings of
STOC 2006, pages 31–40. ACM, 2006. doi:10.1145/1132516.1132522.

[8] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Sur-
vey. SIAM Monographs on Discrete Mathematics and Applications, 1999.
doi:10.1137/1.9780898719796.

[9] G. S. Brodal and R. Fagerberg. Dynamic representations of sparse graphs.
In Proceedings of WADS 1999, volume 1663 of Lecture Notes in Computer
Science, pages 342–351. Springer, 1999. doi:10.1007/3-540-48447-7_34.

[10] Z.-Z. Chen, M. Fellows, B. Fu, H. Jiang, Y. Liu, L. Wang, and B. Zhu.
A linear kernel for Co-Path/Cycle Packing. In Proceedings of AAIM 2010,
volume 6124 of Lecture Notes in Computer Science, pages 90–102. Springer,
2010. doi:10.1007/978-3-642-14355-7_10.

[11] M. Chrobak and D. Eppstein. Planar orientations with low out-degree
and compaction of adjacency matrices. Theoretical Computer Science,
86(2):243–266, 1991. doi:10.1016/0304-3975(91)90020-3.

http://dx.doi.org/10.1142/S0129054111008246
http://dx.doi.org/10.1007/s00224-014-9565-5
http://dx.doi.org/10.1007/s10878-009-9276-z
http://dx.doi.org/10.1142/S0129054107004644
http://dx.doi.org/10.1145/174644.174650
http://dx.doi.org/10.1007/s11590-009-0146-5
http://dx.doi.org/10.1145/1132516.1132522
http://dx.doi.org/10.1137/1.9780898719796
http://dx.doi.org/10.1007/3-540-48447-7_34
http://dx.doi.org/10.1007/978-3-642-14355-7_10
http://dx.doi.org/10.1016/0304-3975(91)90020-3

JGAA, 19(1) 441–465 (2015) 463

[12] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The
MIT Press, Massachusetts, 1990.

[13] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable
sets of finite graphs. Information and Computation, 85(1):12–75, 1990.
doi:10.1016/0890-5401(90)90043-H.

[14] A. Dessmark, K. Jansen, and A. Lingas. The maximum k-dependent
and f -dependent set problem. In Proceedings of ISAAC 1993, volume
762 of Lecture Notes in Computer Science, pages 88–97. Springer, 1993.
doi:10.1007/3-540-57568-5_238.

[15] I. Dinur and S. Safra. On the hardness of approximating mini-
mum vertex cover. Annals of Mathematics, 162(1):439–485, 2005.
doi:10.4007/annals.2005.162.439.

[16] T. Ebenlendr, M. Krčál, and J. Sgall. Graph balancing: A special case of
scheduling unrelated parallel machines. Algorithmica, 68(1):62–80, 2014.
doi:10.1007/s00453-012-9668-9.

[17] U. Feige. Approximating maximum clique by removing sub-
graphs. SIAM Journal on Discrete Mathematics, 18(2):219–225, 2004.
doi:10.1137/S089548010240415X.

[18] M. R. Fellows, J. Guo, H. Moser, and R. Niedermeier. A gen-
eralization of Nemhauser and Trotter’s local optimization theorem.
Journal of Computer and System Sciences, 77(6):1141–1158, 2011.
doi:10.1016/j.jcss.2010.12.001.

[19] T. Fujito. A unified approximation algorithm for node-deletion
problems. Discrete Applied Mathematics, 86(2–3):213–231, 1998.
doi:10.1016/S0166-218X(98)00035-3.

[20] H. N. Gabow. Upper degree-constrained partial orientations. In Proceedings
of SODA 2006, pages 554–563. SIAM, 2006.

[21] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for finding a min-
imum spanning pseudoforest. Information Processing Letters, 27(5):259–
263, 1988. doi:10.1016/0020-0190(88)90089-0.

[22] M. Garey and D. Johnson. Computers and Intractability – A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York,
1979.

[23] F. Gavril. Algorithms for minimum coloring, maximum clique, minimum
covering by cliques, and maximum independent set of a chordal graph.
SIAM Journal on Computing, 1(2):180–187, 1972. doi:10.1137/0201013.

[24] F. Gavril. Testing for equality between maximum matching and mini-
mum node covering. Information Processing Letters, 6(6):199–202, 1977.
doi:10.1016/0020-0190(77)90068-0.

http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1007/3-540-57568-5_238
http://dx.doi.org/10.4007/annals.2005.162.439
http://dx.doi.org/10.1007/s00453-012-9668-9
http://dx.doi.org/10.1137/S089548010240415X
http://dx.doi.org/10.1016/j.jcss.2010.12.001
http://dx.doi.org/10.1016/S0166-218X(98)00035-3
http://dx.doi.org/10.1016/0020-0190(88)90089-0
http://dx.doi.org/10.1137/0201013
http://dx.doi.org/10.1016/0020-0190(77)90068-0

464 Asahiro et al. Graph Orientations Optimizing Light or Heavy Vertices

[25] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal
of the ACM, 45(5):783–797, 1998. doi:10.1145/290179.290181.

[26] M. M. Halldórsson. Approximations of weighted independent set and hered-
itary subset problems. Journal of Graph Algorithms and Applications,
4(1):1–16, 2000. doi:10.7155/jgaa.00020.

[27] F. Havet, R. J. Kang, and J.-S. Sereni. Improper coloring of unit disk
graphs. Networks, 54(3):150–164, 2009. doi:10.1002/net.20318.

[28] L. S. Heath and J. P. C. Vergara. Edge-packing in planar graphs. Theory of
Computing Systems, 31(6):629–662, 1998. doi:10.1007/s002240000107.

[29] G. Karakostas. A better approximation ratio for the vertex cover
problem. ACM Transactions on Algorithms, 5(4), 2009. Article 41.
doi:10.1145/1597036.1597045.

[30] R. M. Karp. Reducibility among combinatorial problems. In
Proceedings of Complexity of Computer Computations, pages 85–
103. The IBM Research Symposia Series, Plenum Press, 1972.
doi:10.1007/978-1-4684-2001-2_9.

[31] K. Khoshkhah. On finding orientations with the fewest number of vertices
with small out-degree. Discrete Applied Mathematics, 194:163 – 166, 2015.
doi:10.1016/j.dam.2015.05.007.

[32] C. Komusiewicz, F. Hüffner, H. Moser, and R. Niedermeier.
Isolation concepts for efficiently enumerating dense subgraphs.
Theoretical Computer Science, 410(38–40):3640–3654, 2009.
doi:doi:10.1016/j.tcs.2009.04.021.

[33] B. McClosky. Independence Systems and Stable Set Relaxations. PhD
thesis, Rice University, U.S.A., 2008.

[34] H. Moser, R. Niedermeier, and M. Sorge. Exact combinatorial algorithms
and experiments for finding maximum k-plexes. Journal of Combinatorial
Optimization, 24(3):347–373, 2012. doi:10.1007/s10878-011-9391-5.

[35] C. Nash-Williams. Decomposition of finite graphs into forests.
Journal of the London Mathematical Society, s1-39(1):12, 1964.
doi:10.1112/jlms/s1-39.1.12.

[36] N. Nishimura, P. Ragde, and D. M. Thilikos. Fast fixed-parameter tractable
algorithms for nontrivial generalizations of vertex cover. Discrete Applied
Mathematics, 152(1–3):229–245, 2005. doi:10.1016/j.dam.2005.02.029.

[37] A. Schrijver. Combinatorial Optimization. Springer, 2003.

[38] V. Venkateswaran. Minimizing maximum indegree. Discrete Applied Math-
ematics, 143(1–3):374–378, 2004. doi:10.1016/j.dam.2003.07.007.

http://dx.doi.org/10.1145/290179.290181
http://dx.doi.org/10.7155/jgaa.00020
http://dx.doi.org/10.1002/net.20318
http://dx.doi.org/10.1007/s002240000107
http://dx.doi.org/10.1145/1597036.1597045
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1016/j.dam.2015.05.007
http://dx.doi.org/doi:10.1016/j.tcs.2009.04.021
http://dx.doi.org/10.1007/s10878-011-9391-5
http://dx.doi.org/10.1112/jlms/s1-39.1.12
http://dx.doi.org/10.1016/j.dam.2005.02.029
http://dx.doi.org/10.1016/j.dam.2003.07.007

JGAA, 19(1) 441–465 (2015) 465

[39] D. Zuckerman. Linear degree extractors and the inapproximability of Max
Clique and Chromatic Number. Theory of Computing, 3(1):103–128, 2007.
doi:10.4086/toc.2007.v003a006.

http://dx.doi.org/10.4086/toc.2007.v003a006

	Introduction
	Definitions
	New results and organization of the paper
	Motivation
	Related work

	Maximize W-Light & Minimize (W+1)-Heavy
	W = 0
	W 1, restriction to trees
	W 1, NP-hardness
	W 1, approximation algorithms

	Minimize W-Light & Maximize (W+1)-Heavy
	W = 0
	Polynomial-time solutions for special graphs
	W 2, NP-hardness
	W 1, a greedy approximation algorithm for Maximize (W+1)-Heavy
	W 1, an approximation algorithm for Minimize W-Light

	Concluding remarks

