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Abstract. The goal of an outdegree-constrained edge-modification prob-
lem is to find a spanning subgraph or supergraph H of an input undi-
rected graph G such that either: (Type I) the number of edges in H is
minimized or maximized and H can be oriented to satisfy some speci-
fied constraints on the vertices’ resulting outdegrees; or: (Type II) the
maximum or minimum outdegree of all vertices under an optimal orienta-
tion of H is minimum or maximum among all subgraphs or supergraphs
of G that can be constructed by deleting or inserting a fixed number
of edges. This paper introduces eight new outdegree-constrained edge-
modification problems related to load balancing called (Type I) MIN-
DEL-MAX, MIN-INS-MIN, MAX-INS-MAX, and MAX-DEL-MIN
and (Type II) p-DEL-MAX, p-INS-MIN, p-INS-MAX, and p-DEL-
MIN. We first present a framework that provides algorithms for solving
all eight problems in polynomial time on unweighted graphs. Next we
investigate the inapproximability of the edge-weighted versions of the
problems, and design polynomial-time algorithms for six of the problems
on edge-weighted trees.

Keywords: Graph orientation · Maximum flow ·
Computational complexity · Inapproximability · Greedy algorithm ·
Load balancing

1 Introduction

Graph modification problems are fundamental in graph theory and arise in
many theoretical and practical settings, including computational biology [15]
and machine learning [6]. Given a weighted or unweighted graph G = (V,E) and
a graph property Π, the general objective is to transform the graph G into a
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graph G′ satisfying property Π by applying a shortest sequence of graph mod-
ification operations. There are two main types of graph modification problems:
vertex-modification problems and edge-modification problems. In the former, one
is allowed to add or remove vertices from the graph, while in the latter, the goal is
typically to find a spanning subgraph or supergraph of G satisfying property Π.

A special case of edge-modification problems is when the property Π depends
on the vertices’ degrees. Such degree-constrained edge-modification problems
are very general and include many natural problems such as the Maximum
Weight Perfect Matching, Maximum r-Factor, Longest Cycle, and
General Factor problems. Indeed, one can regard Maximum Weight
Perfect Matching (or Maximum r-Factor) as the problem of finding a sub-
graph G′ of G such that: (i) the degree of every vertex in V (G′) is one (or r.);
and (ii) the total weight of the deleted edges is minimized. Similarly, Longest
Cycle is equivalent to the problem of finding a subgraph G′ such that: (i) the
degree of every vertex in V (G′) is two; (ii) G′ is connected; and (iii) the total
weight of the deleted edges is minimized. General Factor asks if it is possible
to delete edges from G so that the resulting graph G′ is connected and every
vertex v in G′ has degree equal to a number belonging to a specified set K(v).
Many of these problems are NP-hard; e.g., Longest Cycle as well as General
Factor are NP-hard even for unweighted graphs. Therefore, it is important to
identify special cases of them that can be solved efficiently. One such special case
of General Factor is the new problem MIN-DEL-MAX, introduced below.

An orientation of an undirected graph is an assignment of a direction to each
of its edges. By an outdegree-constrained edge-modification problem, we mean an
edge-modification problem where the solution is required to admit an orientation
in which the vertices’ outdegrees satisfy some specified constraints. This paper
introduces eight new outdegree-constrained edge-modification problems includ-
ing MIN-DEL-MAX. Besides the fact that MIN-DEL-MAX is a special case of
General Factor as mentioned in the above, MIN-DEL-MAX and the other
seven problems are related to load balancing which is also an important research
topic. Here we explain about the relation between MIN-DEL-MAX and a load
balancing problem as an example: Suppose there is a set of jobs to be completed,
each job can be processed by exactly one of two specified machines, assuming
that for any pair of machines at most one job is imposed, and we initially want
to assign each job to a machine while minimizing the maximum load on the
machines. This situation is represented by a graph with vertices interpreted as
machines and edges interpreted as jobs. An orientation of such a graph corre-
sponds to an assignment of jobs, where the start vertex (machine) of a directed
edge processes the edge (job). Unfortunately, after choosing one assignment, it
turns out that the maximum load is too high, so we have to give up trying to
complete all of the jobs. Instead, we compute the fewest jobs to abandon in order
to decrease the resulting maximum load to within some reasonable amount. This
procedure corresponds to finding a smallest set of deleting edges in the above
mentioned graph. The other seven problems have similar interpretations.

We first provide algorithms for solving all of the eight new problems in poly-
nomial time on unweighted graphs. We then prove that their generalizations to
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edge-weighted graphs cannot be approximated within a ratio of ρ(n), for instance,
in polynomial time unless P = NP, where n is the number of vertices in the input
graph and ρ(n) ≥ 1 is any polynomial-time computable function. This inapprox-
imability holds even for planar bipartite graphs. Finally, as a tractable subclass
of the planar bipartite graphs, we consider the problems on edge-weighted trees.

1.1 Problem Definitions

Let G = (V,E) be a simple, undirected graph, where V and E are the set of
vertices and the set of edges, respectively. For any u, v ∈ V , the undirected
edge with endpoints in u and v is denoted by {u, v}, and the directed edge
from u to v is denoted by (u, v). For G, its complement (V,E) is denoted by
Gc, where E = {{u, v} | u, v ∈ V, u �= v, {u, v} �∈ E}. An orientation Λ of G is
an assignment of a direction to each edge in E, i.e., every {u, v} ∈ E is set to
either (u, v) or (v, u). (Equivalently, Λ is a set of directed edges that consists of
exactly one of the two directed edges (u, v) and (v, u) for every {u, v} ∈ E.) Let
Λ(G) denote the directed graph (V,Λ). For any v ∈ V and a fixed orientation Λ
of G, define d+(v) as the outdegree of v under Λ. Finally, let Γ (G) be the set of
all orientations of G.

We now define the first four new graph orientation problems. Each of them
takes as input a simple, undirected graph G = (V,E) and a positive integer k′.

• MIN-DEL-MAX: (Assumes w.l.o.g. that k′ ≤ min
Λ∈Γ (G)

max
u∈V

d+(u).) Find

the minimum number of edges whose deletion results in a graph G′ with
min

Λ∈Γ (G′)
max
u∈V

d+(u) ≤ k′.

• MIN-INS-MIN: (Assumes w.l.o.g. that k′ ≥ max
Λ∈Γ (G)

min
u∈V

d+(u).) Find the

minimum number of edges whose addition results in a simple graph G′ with
max

Λ∈Γ (G′)
min
u∈V

d+(u) ≥ k′.

• MAX-INS-MAX: (Assumes w.l.o.g. that k′ ≥ min
Λ∈Γ (G)

max
u∈V

d+(u).) Find the

maximum number of edges whose addition results in a simple graph G′ with
min

Λ∈Γ (G′)
max
u∈V

d+(u) ≤ k′.

• MAX-DEL-MIN: (Assumes w.l.o.g. that k′ ≤ max
Λ∈Γ (G)

min
u∈V

d+(u).) Find

the maximum number of edges whose deletion results in a graph G′ with
max

Λ∈Γ (G′)
min
u∈V

d+(u) ≥ k′.

Observe that in the problems MIN-INS-MIN and MAX-INS-MAX, the
resulting graphs must be simple. The above four problems optimize the number
of edges to delete or insert; we also define four related problems that take as input
a simple, undirected graph G = (V,E) and whose objectives are to optimize the
maximum/minimum outdegree for a fixed integer p representing the number of
deleted/inserted edges:
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• p-DEL-MAX: Find the smallest possible value of min
Λ∈Γ (G(V,E\E′))

max
u∈V

d+(u)

taken over all E′ ⊆ E with |E′| = p.

• p-INS-MAX: Find the smallest possible value of min
Λ∈Γ (G(V,E∪E′))

max
u∈V

d+(u)

taken over all E′ ⊆ E(Gc) with |E′| = p.

• p-INS-MIN: Find the largest possible value of max
Λ∈Γ (G(V,E∪E′))

min
u∈V

d+(u)

taken over all E′ ⊆ E(Gc) with |E′| = p.

• p-DEL-MIN: Find the largest possible value of max
Λ∈Γ (G(V,E\E′))

min
u∈V

d+(u)

taken over all E′ ⊆ E with |E′| = p.

Throughout the paper, let n = |V | and m = |E| for any given
instance of the above eight problems. Δ is the (unweighted) maximum degree
taken over all vertices in the input G. Any algorithm ALG is called a σ-
approximation algorithm if the following inequality holds for every input
graph G: max

{
#ALG(G)
#OPT (G) ,

#OPT (G)
#ALG(G)

}
≤ σ, where #ALG(G) and #OPT (G) are

the number of deleted (or inserted) edges by ALG and an optimal algorithm,
respectively.

1.2 Related Work

To compute min
Λ∈Γ (G)

max
u∈V

d+(u) for an input undirected, unweighted graph G

is the Minimum Maximum Outdegree Problem (MinMaxO), previously
studied in [4,7,8,10,16]. MinMaxO can be solved in linear time for planar
graphs [10] and in polynomial time for general graphs [16]. The problem of com-
puting max

Λ∈Γ (G)
min
u∈V

d+(u), referred to as MaxMinO in [2], can also be solved

in polynomial time (Theorem 8 in [2]). (This is why the input k′ to MIN-
DEL-MAX, MIN-INS-MIN, MAX-INS-MAX, and MAX-DEL-MIN can be
assumed w.l.o.g. to satisfy k′ ≤ min

Λ∈Γ (G)
max
u∈V

d+(u) or k′ ≥ max
Λ∈Γ (G)

min
u∈V

d+(u).)

When generalized to edge-weighted graphs, both MinMaxO and MaxMinO
become NP-hard [2,4].

Theorem 8 in [2] states that MaxMinO is solvable in O(m3/2 log m log2 Δ)
time for unweighted graphs, which directly gives:

Theorem 1. MAX-DEL-MIN can be solved in O(nm3/2 log m log2 Δ) time.

Proof. First compute an orientation by which the minimum outdegree has value
max

Λ∈Γ (G)
min
u∈V

d+(u)(≥ k′) using the algorithm for MaxMinO from [2], and obtain a

directed graph. Then delete arbitrary d+(v)−k′ outgoing edges for each vertex v
in the directed graph to get a directed graph G′ with d+(v) = k′ for every v ∈ V .
This deletion of edges only needs linear time since we can delete arbitrary set
of outgoing edges for each vertex. The number of deleted edges is the maximum
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Table 1. The computational complexity of the algorithms in Sect. 2 for unweighted
graphs. For edge-weighted graphs all these problems are intractable, shown in Sect. 3.

Problem Time complexity Reference

MIN-DEL-MAX O(m2 log n) Theorem3

MIN-INS-MIN O(n4 logn) Theorem4

MAX-INS-MAX O(n4 logn) Theorem4

MAX-DEL-MIN min{O(nm3/2 logm log2 Δ),
O(m2 log n)}

Theorems 1 and 3

p-DEL-MAX O(m2 log n) Theorem3

p-INS-MIN O(n4 logn) Theorem4

p-INS-MAX O(n4 logn) Theorem4

p-DEL-MIN O(m2 log n) Theorem3

possible: Since every vertex has outdegree k′, the number of the directed edges
is nk′ in the graph, and so deleting any more edges would result in some vertex
having outdegree strictly less than k′ by the pigeonhole principle. Thus MAX-
DEL-MIN can be solved in O(nm3/2 log m log2 Δ) time. ��

A variant of MinMaxO in which one may perform p split operations on the
vertices (corresponding to adding p extra machines in the load balancing setting
described above) before orienting the edges was studied in [1]. That problem
seems harder than the eight problems studied here, as it is NP-hard even for
unweighted graphs when p is unbounded [1].

1.3 Our Contributions and Organization of the Paper

Section 2 presents polynomial-time algorithms for the new problems on
unweighted graphs. See Table 1 for a summary of their computational complexity.
In Sect. 3 we develop polynomial-time algorithms for six of the eight problems on
edge-weighted trees, and prove the polynomial-time inapproximability for planar
bipartite edge-weighted graphs for all eight problems. Finally, we conclude the
paper in Sect. 4. Due to space constraints, some proofs are deferred to the full
version of this paper.

2 Unweighted Graphs

In this section, we present polynomial-time algorithms for the unweighted ver-
sions of the new problems. Rather than developing a separate algorithm for each
problem, our strategy is to give a unified framework from which each of the eight
algorithms follows as a special case. We take advantage of the problems’ struc-
tural similarities by encoding the input graph G in all eight cases as a directed
graph NG, augmenting NG with edge capacities as defined below to obtain a
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Fig. 1.A graph G and the directed graph NG constructed from G. All edges are directed
from left to right in NG. The part surrounded by the dashed lines represents NH .

flow network, and then using binary search together with a fast algorithm for
computing maximum flows. NG is the same for all problems; only the edge capac-
ities in the flow network depend on which of the problems is being solved. The
encoding used here is an extension of the one in [4]; to be precise, the definition
of NG follows the basic construction in [4] and then adds auxiliary vertices and
directed edges that can capture the deletion and insertion of edges in the input
graph.

The formal definition of NG is as follows. For any undirected graph G(V,E),
construct the directed graph NG = (VG, EG) with vertex set VG and edge set EG

by defining: E = {{u, v} | u, v ∈ V, u �= v, {u, v} �∈ E}, VG = V ∪ E ∪ E ∪
{x, y, r, s, t}, EG = {(s, v) | v ∈ V } ∪ {(vi, e), (vj , e) | e = {vi, vj} ∈ E ∪ E} ∪
{(r, e) | e ∈ E} ∪ {(e, x) | e ∈ E} ∪ {(e, y) | e ∈ E} ∪ {(s, r), (x, t), (y, t)}.
Note that if e = {u, v} ∈ E (or E), then NG contains two directed edges (u, e)
and (v, e) for e in the vertex subset E (or E) of NG. Note that the vertex r
and the set of vertices in E capture deletion and insertion of edges respectively,
mentioned in the previous paragraph. See Fig. 1 for an illustration. We remark
that maximum flows in suitably defined flow networks were previously used to
solve some other graph orientation problems in [1–4]. The definition of NG that
we present here is more general.

Section 2.1 below explains how to use NG to solve the problems MIN-DEL-
MAX and p-DEL-MAX. Due to the space limitation, discussions for the other
six problems are omitted. Then, Sect. 2.2 analyzes the time complexity of the
obtained algorithms. To solve MIN-INS-MIN, p-INS-MIN, MAX-INS-MAX,
and p-INS-MAX, we need to explicitly construct the entire directed graph NG.
However, for MIN-DEL-MAX, p-DEL-MAX, MAX-DEL-MIN, and p-DEL-
MIN, the algorithms will only need the induced subgraph NH = NG[V ∪ E ∪
{s, r, x, t}] = NG \ (E ∪ {y}) of NG, and so these algorithms’ running times will
be lower when G is sparse.
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2.1 Using NG to Solve the Problems

First we focus on the problem MIN-DEL-MAX. For an undirected graph
G(V,E) with k = min

Λ∈Γ (G)
max
u∈V

d+(u) and a positive integer k′ ≤ k, construct

the directed graph NH = NG[V ∪ E ∪ {s, r, x, t}]. For any positive integer p,
let NH(p) = (V (NH), E(NH), cap) be the flow network obtained by augmenting
NH with edge capacities cap, where:

cap(a) =

⎧
⎪⎪⎨
⎪⎪⎩

k′, if a = (s, v) for v ∈ V
p, if a = (s, r)
|E|, if a = (x, t)
1, otherwise

The following lemma relates the size of the maximum flow in NH(p) to the
number of deleted edges from G.

Lemma 2. For an input graph G(V,E) to MIN-DEL-MAX, there exists a
flow in NH(p) with value |E| if and only if there are exactly p edges in G whose
deletion leaves a graph G′ with min

Λ∈Γ (G′)
max
u∈V

d+(u) ≤ k′.

Proof. Suppose there exists a flow for the network NH(p) with value |E|. Since
the edge capacities are integers, we can assume that the flow has nonnegative
integral flows in each edge by the integrality theorem (see, e.g., [11]). Let j be
the size of the flow through the vertex r and j ≤ p. We consider those j edges
of the form (r, e), incident to r, through which the flow passes by. Let G′ be
the graph obtained by deleting those edges from G (If j < p, then delete p − j
arbitrary edges from G in order to ensure that exactly p edges are deleted from
G). Then, construct an orientation of G′ as follows. For every edge f = (v, e) in
NH(p) that contributes a unit of flow, where v ∈ V and e ∈ E, orient the edge e
away from v. Since every vertex v ∈ V can have at most k′ flow, max

u∈V
d+(u) ≤ k′

and hence min
Λ∈Γ (G′)

max
u∈V

d+(u) ≤ k′.

Conversely, if there are p edges whose deletion leaves a graph G′ with
min

Λ∈Γ (G′)
max
u∈V

d+(u) ≤ k′, then construct a flow with value |E| as follows. Let

S = E\E(G′) and let Λ be a fixed orientation of G′ that minimizes the maxi-
mum outdegree. For e ∈ S, send one unit of flow from s to r, r to e, e to x, and
then x to t, and the total flow is p. If e /∈ S, then send one unit of flow from
s to v, v to e, e to x, and then x to t, where e is oriented away from v in Λ.
For Λ, max

u∈V
d+(u) ≤ k′ and thus d+(u) ≤ k′, for every u ∈ V . Hence, through

every vertex v ∈ NH(p) that corresponds to v ∈ V , at most k′ units of flow pass,
which is the capacity of the vertex v. In that way, every edge in G contributes
one unit of flow and hence this particular flow of NH(p) has value |E|. ��

By Lemma 2, the minimum number of edges that can be deleted to get a
graph G′ with min

Λ∈Γ (G′)
max
u∈V

d+(u) ≤ k′ is the same as the smallest value of p
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1 pmin 0, pmax E|;
2 repeat
3 p

|

�(pmin + pmax)/2�;
4 Construct NH(p) and let f be the value of the maximum flow of NH(p) ;
5 if f = |E| then
6 pmax p;
7 else
8 pmin p;
9 end

10 until pmin ≥ pmax;
11 Output p and halt;

Fig. 2. The algorithm for MIN-DEL-MAX on unweighted graphs

such that there exists a flow in NH(p) of value |E|. A binary search on p will
give the minimum value of p for which there exists a flow of size |E| in NH(p).
The algorithm’s pseudocode is listed in Fig. 2.

As for p-DEL-MAX, given an undirected graph G(V,E) with k =
min

Λ∈Γ (G)
max
u∈V

d+(u), build the directed graph NH = NG[V ∪ E ∪ {s, r, x, t}]. For

any positive integer �, let NH(�) = (V (NH), E(NH), cap) be the flow network
obtained by augmenting NH with edge capacities cap, where:

cap(a) =

⎧
⎪⎪⎨
⎪⎪⎩

�, if a = (s, v) for v ∈ V
p, if a = (s, r)
|E|, if a = (x, t)
1, otherwise

By Lemma 2, the minimum value of the maximum outdegree is the same as
the minimum value of � such that there exists a flow of value |E| in NH(�). Hence,
by an algorithm similar to the one for MIN-DEL-MAX, for any �, 0 ≤ � ≤ k,
we can check whether there is a flow of value |E| and locate the smallest integer
� with this property by a binary search on �.

2.2 Time Complexity of the Algorithms

Let n = |V | and m = |E| for a given graph G = (V,E), and let N = |V (NH)|
and M = |E(NH)|. We note that for the directed graph NH , N = n + m + 4
and M = n + 4m + 2. For MIN-DEL-MAX, the search for p = O(m) can be
carried out using binary search, which takes O(log p) = O(log m) = O(log n)
time since m = O(n2). The maximum flow problem on NH(p) can be solved
in O(MN) time [14], so MIN-DEL-MAX can also be solved in O(m2 log n)
time. Since � = O(n), in a similar way, we can analyze the time complexity of
our algorithms for p-DEL-MAX, MAX-DEL-MIN, and p-DEL-MIN. Thus we
have:



46 Y. Asahiro et al.

Theorem 3. For unweighted graphs, MIN-DEL-MAX, p-DEL-MAX, MAX-
DEL-MIN, and p-DEL-MIN can be solved in O(m2 log n) time.

As shown in Theorem 1, MAX-DEL-MIN can be solved in O(nm3/2

log m log2 Δ) time. The above algorithm is faster than it when m = Ω(n2) and
so Δ = Ω(n), that is, the input graph is very dense.

On a similar note, for the directed graph NG, N = |VG| = n(n+1)
2 + 5 and

M = |EG| = n(3n−1)
2 +m+3. For MIN-INS-MIN, the search for p = O(m) can

be carried out using binary search and therefore takes O(log p) = O(log m) =
O(log n) time. The maximum flow problem on NG(p) can be solved in O(MN)
time [14], so MIN-INS-MIN can also be solved in O(n4 log n) time. Using � =
O(m), we can bound the time complexity of our algorithms for p-INS-MIN,
MAX-INS-MAX, and p-INS-MAX in the same way. We obtain:

Theorem 4. For unweighted graphs, MIN-INS-MIN, p-INS-MIN, MAX-
INS-MAX, and p-INS-MAX can be solved in O(n4 log n) time.

3 Edge-Weighted Graphs

For the problems in this paper, we can define corresponding weighted versions.
For the weighted versions of the problems, d+(v) for every vertex v and a fixed
orientation represents the total weight of outgoing edges of v. Each of MIN-
DEL-MAX, MAX-DEL-MIN, MIN-INS-MIN, and MAX-INS-MAX takes
as input a simple undirected edge-weighted graph G = (V,E,w) and the target
maximum/minimum outdegree k′, where the function w assigns a positive integer
(weight) to each edge. Then the objective of these problems is still to optimize
the number of edges to delete/insert. (We do not optimize the total weight
of deleted/inserted edges.) p-DEL-MAX, p-DEL-MIN, p-INS-MIN, and p-
INS-MAX are similarly defined on edge-weighted graphs, where we need to
delete/insert p edges for the problems.

3.1 Polynomial-Time Algorithms for Edge-Weighted Trees

Assuming P �= NP , inapproximability of the weighted versions of the problems
on planar bipartite graphs will be shown in Sect. 3.2. In this section, we design
exact polynomial-time algorithms for some of the problems on weighted trees
which is a representative subclass of planar bipartite graphs.

The important thing here is that we know the optimal costs for MinMaxO
and MaxMinO on edge-weighted trees: For MinMaxO, the maximum outde-
gree of a vertex under any orientation is at least the maximum weight of the
edges. Then, for MaxMinO, the minimum outdegree of a vertex under any ori-
entation is 0, since there exist only n − 1 edges so that at least one of n vertices
cannot have outgoing edges under any orientation. From this observation, an
optimal orientation for edge-weighted trees is to orient all the edges towards
an arbitrarily selected root vertex. Based on these observations, straightforward
discussion gives the following lemma (the proof has been omitted here due to
space limitations):
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Lemma 5. For edge-weighted trees, MAX-DEL-MIN and p-DEL-MIN can be
solved in O(n) time.

In conjunction with the above lemma, we can show the next theorem.
Although the above lemma is obtained as a direct consequence of the known
results for MaxMinO, we need to design more complicated algorithms for MAX-
DEL-MIN, p-DEL-MIN, MIN-INS-MIN, and p-INS-MIN (the proof has been
omitted here due to space limitations).

Theorem 6. For edge-weighted trees, MIN-DEL-MAX, p-DEL-MAX,
MAX-DEL-MIN, p-DEL-MIN, and MIN-INS-MIN are solvable in O(n)
time. Also, p-INS-MIN is solvable in O(n log(wmaxΔ)) time, where wmax is
the maximum weight of edges and Δ is the maximum (unweighted) degree of
vertices.

3.2 Inapproximability for Edge-Weighted Planar Bipartite Graphs

MinMaxO is known to be NP-hard for edge-weighted planar bipartite graphs [5].
This implies the following inapproximability:

Theorem 7. There is no polynomial-time ρ(n)-approximation algorithm for
MIN-DEL-MAX on edge-weighted planar bipartite graphs unless P=NP, where
ρ(n) ≥ 1 is any polynomial-time computable function.

Proof. Suppose for the sake of obtaining a contradiction that there exists a
polynomial-time ρ(n)-approximation algorithm ALG for some polynomial-time
computable function ρ(n) > 1 for MIN-DEL-MAX on edge-weighted planar
bipartite graphs. Then, ALG can find an orientation in a given edge-weighted
graph G in polynomial time such that the objective value ALG(G) satisfies
OPT (G) ≤ ALG(G) ≤ ρ(n) · OPT (G). Therefore, one can distinguish either
OPT (G) > 0 or OPT (G) = 0 in polynomial time using ALG which admits the
approximation ratio of ρ(n), based on the observation that ALG(G) > 0 if and
only if OPT (G) > 0. If OPT (G) = 0, then there is no need to remove any edge to
make the outdegree of every vertex at most k, whereas if OPT (G) ≥ 1, we need
to remove at least one edge. This means that a decision version of MinMaxO
with target value k can be solved in polynomial time, which contradicts the
NP-hardness of MinMaxO on edge-weighted planar bipartite graphs. ��

The inapproximability bound 1.5 of MinMaxO for edge-weighted planar
bipartite graphs gives the next theorem.

Theorem 8. There is no polynomial-time 1.5-approximation algorithm for p-
DEL-MAX on edge-weighted planar bipartite graphs unless P=NP.

Proof. Consider an input planar bipartite graph G of MinMaxO. Add one new
vertex u and one edge {u, v} of weight n·wmax to G for arbitrary v ∈ V (G), where
wmax is the maximum weight of edges in G. Let this new graph be G′, where G′

is also a planar bipartite graph. Observe that for 1-DEL-MAX, this new edge
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should be deleted since otherwise the maximum outdegree is at least nwmax,
which is larger than the total weight of edges in G, and then we need to orient
the edges in G optimally. Namely, if we can approximate 1-DEL-MAX within
a ratio 1.5 for G′ in polynomial-time, it also gives the answer to MinMaxO for
G. This contradicts the inapproximability of MinMaxO, so that 1-DEL-MAX
cannot be approximated within a ratio of 1.5 in polynomial-time. This discussion
can be extended to the case p ≥ 2 by adding p new vertices and p new edges of
weight n · wmax to G. The theorem follows. ��

The NP-hardness and the inapproximability bounds of MaxMinO and Min-
MaxO for edge-weighted planar bipartite graphs [2,4] can be applied in the same
way as Theorems 7 and 8 to obtain the following theorem (the proof has been
omitted here due to space limitations):

Theorem 9. There is no polynomial-time ρ(n)(ρ(n), ρ(n), 2, 1.5, 2, resp.)-
approximation algorithm for MIN-INS-MIN(MAX-INS-MAX, MAX-DEL-
MIN, p-INS-MIN, p-INS-MAX, p-DEL-MIN, resp.) on edge-weighted planar
bipartite graphs unless P=NP, where ρ(n) ≥ 1 is any polynomial-time com-
putable function.

4 Concluding Remarks

We studied eight new graph orientation problems whose objective is to mini-
mize/maximize the outdegree of the vertices after inserting/deleting edges, and
presented polynomial-time algorithms for these problems on unweighted graphs.
Also we showed the polynomial-time inapproximability for those problems on
edge-weighted graphs, and polynomial-time algorithms for six of the problems
were designed on edge-weighted trees. One of the further research topics is to
study the complexity of MAX-INS-MAX and p-INS-MAX on edge-weighted
trees. A natural generalization of MIN-DEL-MAX can be defined as follows:

Input: An unweighted graph G = (V,E) and a mapping ρ that assigns to each
vertex v ∈ V an integer from {0, 1, . . . ,deg(v)}.

Goal: To find the minimum number of edges to delete to get a spanning subgraph
H of G such that d+(u) ≤ ρ(u) for every u ∈ V .

To solve this problem, we can first construct a directed graph NG in the same
way as in Sect. 2. Next, we augment edge capacities and costs to NG to get a flow
network by keeping the capacities and costs same as that of NG for k′ except
the capacities of the directed edges of the form {(s, u) | u ∈ V }. The capacity
of the directed edge (s, u) is defined to be ρ(u) instead of k′, for every u ∈ V .
Then we see that there exists a flow in NG with value |E| if and only if there
are p edges in G whose deletion leaves a graph d+(u) ≤ ρ(u), for every vertex
u ∈ V (G). In other words, the modified problem can be solved in polynomial
time. In fact, both the modified problem and the original MIN-DEL-MAX
have the same time complexity since the directed graphs that we construct in
both cases are the same. We can generalize MIN-INS-MIN, MAX-INS-MAX,
MAX-DEL-MIN in the same way and solve them in polynomial time as well.
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The above problem is a special case of General Factor introduced by
Lovász [12,13], which is defined as

Input: An unweighted graph G = (V,E) and a mapping K that assigns to each
vertex v ∈ V a set K(v) ⊆ {0, 1, . . . ,deg(v)} of integers.

Goal: To check if there is a subgraph H of G s.t. dH(v) ∈ K(v) for every v ∈ V .

General Factor is a generalization of the factor problem, and NP-hard even
for unweighted graphs [9]. Here the extension to the mapping from an integer to
a set of integers makes the problem harder. We conjecture that the analogous
generalizations to the problems in this paper are NP-hard as well.
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9. Cornuéjols, G.: General factors of graphs. J. Comb. Theory Ser. B 45, 185–198
(1988)

10. Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and com-
paction of adjacency matrices. Theor. Comput. Sci. 86(2), 243–266 (1991)

11. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd
edn. The MIT Press, Cambridge (2009)

12. Lovász, L.: The factorization of graphs. In: Combinatorial Structures and Their
Applications, pp. 243–246 (1970)

13. Lovász, L.: The factorization of graphs II. Acta Math. Acad. Sci. Hung. 23, 223–
246 (1972)

https://doi.org/10.1007/978-3-319-96151-4_5
https://doi.org/10.1007/3-540-48447-7_34


50 Y. Asahiro et al.

14. Orlin, J.B.: Max flows in O(nm) time, or better. In: Proceedings of the 45th Annual
ACM Symposium on Theory of Computing (STOC 2013), pp. 765–774. Association
for Computing Machinery (ACM) (2013)

15. Sharan, R.: Graph modification problems and their applications to genomic
research. Ph.D. thesis, School of Computer Science, Tel-Aviv University (2002)

16. Venkateswaran, V.: Minimizing maximum indegree. Discrete Appl. Math. 143,
374–378 (2004)


	Graph Orientation with Edge Modifications
	1 Introduction
	1.1 Problem Definitions
	1.2 Related Work
	1.3 Our Contributions and Organization of the Paper

	2 Unweighted Graphs
	2.1 Using NG to Solve the Problems
	2.2 Time Complexity of the Algorithms

	3 Edge-Weighted Graphs
	3.1 Polynomial-Time Algorithms for Edge-Weighted Trees
	3.2 Inapproximability for Edge-Weighted Planar Bipartite Graphs

	4 Concluding Remarks
	References




