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Efficient Approximation Algorithms for the 
Hamming Center Problem 

Leszek Ggsieniec * Jesper Jansson t 

Abstract 
The Hamming center problem for a set S of k binary 
strings, each of length n, is to find a binary string fl of 
length n that minimizes the maximum Hamming dis- 
tance between p and any string in S. Its decision ver- 
sion is known to be NP-complete [2]. We provide sev- 
eral approximation algorithms for the Hamming cen- 
ter problem. Our main result is a randomized ($ + E)- 
approximation algorithm running in polynomial time if 
the Hamming radius of S is at least superlogarithmic 
in k. Furthermore, we show how to find in polynomial 
time a set B of O(log k) strings of length n such that for 
each string in S there is at least one string in B within 
Hamming distance not exceeding the radius of S. 
1 Introduction 
Let ZT be the set of all strings of length n over the 
alphabet (0, 1). For a string o E ZT we use the notation 
o[i] to refer to the ith symbol of cr (the symbol placed 
on the ith position of Q), for i = 1, .., n, and we let 
o[i..j] represent the substring of Q starting at position 
i and ending at position j, where 1 5 i < j 5 n. The 
Hamming distance between any cri, a2 E Zg is defined 
as the number of positions in which the strings differ 
and is denoted by d(ai, ~2). 

The Hamming center problem (HCP) is stated as 
follows: Given a set S of k binary strings oi E Z;, 
where i = 1,2, .., k, find a string p E ZF such that the 
value r = ,rnZyk d@, cyi) is minimized. The string ,8 is 

called a cent&r-of the set S (most instances of HCP have 
several centers), and the value r is called its radius. 

A variant of HCP has been studied by Berman 
et al. in [l], where they look for all maximal blocks 
within a set of aligned binary strings, having centers 
with radius of size at most 1. Their study is motivated 
by the detection of potentially important regions within 
closely related DNA sequences. They provide a linear 
time algorithm to their problem. In fact, there exists a 
straightforward polynomial-time algorithm for HCP as 
long as the radius is O(1) (see Section 4). Berman et al. 
left the question open whether there exists an efficient 
algorithm for the case where the size of the radius is 
arbitrarily large. 

In [2], Frances and Litman showed that the decision 
version of HCP, by them called the Minimum Radius 
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Problem, as well as the equivalent dual Maximum 
Covering Radius Problem (MCR) are NP-complete. 

Motivated by the intractability of HCP, we present 
several approximation algorithms. Some similar results 
and many other related results can be found in [4]. 
2 Preliminaries 
The following simple heuristic yields a 2-approximation 
for HCP instantly by the triangle inequality: Set the 
approximative solution p’ to ~1, where 1 is chosen 
arbitrarily from the integers 1,2, .., k. 
Any given instance (~1, ~2, .., ok, rP) of the decision 
version of HCP, where oi E ZT for 1 5.i 5 k and rp E N: 
can be ex 

P 
ressed as the system of k linear inequalities. 

Let z = z1,22, .., z,) E (0, l}R represent a vector of 
0 - 1 variables and let the ith inequality be 

a;[m] = 0 ai[m]= 1 
l~rn<n l<mlTl 

A O-l-solution x that is compatible with the system 
of inequalities corresponds directly to a solution ,# for 
the supplied instance of HCP, as can be seen by setting 
P[m 

I3 
= Xrn, for 1 < m < n. 
y the known methods of solving the integer pro- 

gramming problem in polynomial time in case the num- 
ber of variables or the number of inequalities is constant, 
we obtain: 
LEMMA 2.1. HCP restricted to instances with O(1) 
strings as well as HCP restricted to instances with 
strings of length O(1) are solvable in polynomial time. 

3 Randomized Rounding 
By relaxing the integer constraints on x in the O-l- 
integer programming formulation of HCP, we get a lin- 
ear programming problem solvable in polynomial time 
[3]. Then, we use the following straightforward random- 
ized rounding scheme to obtain an approximative solu- 
tion p’ to the original problem: Let 5, be the value 
assigned to zm in the solution to the linear program. 
For each m, where 1 5 m 5 n, set p’[m] to 1 with 
probability i, and to 0 with probability 1 - 5m. 

The analysis of this method proceeds analogously 
to the one used in lattice approximation problem (see 
[3]). We consider each inequality separately, and flip the 
probability from pi to 1 -pi in case oi [m] = 1. By using 
two variants of Chernoff’s bounds (see [3]) and defining 
the generalized distance between any zi, 22 E [0, l]* as 

c ]zi [m] - z2[m]], we obtain: 
m=l 

LEMMA 3.1. The ma&mum Hamming distance between 
the approzimative solution p’ found by randomized 
rounding and any string in the input instance of HCP 
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with radius T is at most T + O(&i@$ with proba- for oi[l..f], i = 1: ..: k, is at most $f then we are done 
bi& 2 1 - 3, and at most ~(1 + E) with probability since the radius of cq[l..f], i = 1, .., k, is at least f,. 
2 1 -k .2 exp(-0.38s2w), where w is the minimum gen- Otherwise, the lemma follows from the second part of 
eralized distance between a string in the instance and an 
optimal solution to the relaxed version of the instance. 

Corollary 3.1 for w = sf.0 
LEMMA 4.2. p[( 

COROLLARY 3.1. If the radius of the instance is Earger proof. Suppose B 
+l)..n] contains less than ir ones. 
[(f+l).. n contains 2 $T ones. Since ] 

than qdm then the maximum distance between ~(P,cQ) L r, p[l..f] must contain 5 QT ones. Similarly, 
fl and any string in the instance is at moSt T + d(P, ok) 2 T implies that a[l..f] contains < $r zeros. 
o(Q-‘) With probability 2 1 - 5. If the minimum Hut this yields f < $ + 2, = gr 
generalized distance w between a string in the instance - 3 3 3 , contradicting 

and an optimal relaxed solution is at least a then 
f > iT.0 

Let r’ be the maximum distance between ,B’ and a string 
the m&mum distance between /3’ and any string in the cu, i = 1 . . 
instance is at most (1 + E)T with probability 2 i. 

k 
. Since f > q, it follows from 

4 ($+E)-Approximation Algorithm 
Lzmma 4.1’and Lemma 4.2 that F’*l r(l+&)+r/3 with 
probability 2 f. To conclude Subcase 2b, transform p 

Here, we present a randomized approximation algorithm back to the original set of strings, apply u-l to p’ and 
for HCP. For E > 0, let ,f3’ be the approximative solution 
delivered by our algorithm and let r’ = rrnZn~ d(fl, cri). 

flip p[rn] to 1 - /3’[m] whenever cq [m] = 1. 

THEOREM 4.1. The approximative center p’ found by 
We prove that r’ < (5 + E) r with probability 2 $. the algorithm for an instance of HCP is within distance 
Let f be the diameter of the input set S, i.e., f = (3 + E)T of any stew %, i = 1: --, k7 with probability 
,T2yk CII$yk d(Qi, Qj)>. > f . If the diameter f of the input instance satisfies 

I@ehist&&ish two cases, depending on the value of f: f 2 .$!$$! then /3 will be constructed in polynomial 

(l)f<w, and (2) f L g$Y time. If f < w, then p’ is actually an optimal 

The algorithm begins by computing f and w solution, and will be found in O(kn~%‘+‘) time. 
for the given instance and the specified value of E, 
whereupon it branches to either Case 1 or Case 2. 

Analogously as the similar approximation algorithm 

Case 1: f = O(1). The algorithm finds an exact solution 
from [4], our randomized algorithm can be easily deran- 
d 

by trying all of the C&e (3) = O(nf) strings in Z; 
omized using the method of conditional probabilities. 

5 
within Hamming distance f of 01, where 2 E {1,2, .., k}. 

Other Types of Approximation 

The total time required is O(kn . nf). 
To find a small set of approximative centers instead 

Case 2: (2a) f < $T, and (2b) f > $r. Since we 
of a single one, we transform the given instance of 
HCP to its integer programming formulation. By using 

don’t know beforehand which subcase holds for a given the relaxation and randomized rounding, we can find 
instance, the algorithm runs both of the procedures in polynomial time an approximative solution Pi that 
below and chooses the better one of the two solutions. satisfies at least a quarter of the inequalities with 
Subcase 2a: f 5 QT. Set ,0’ = 01, where I E {1,2, .., k}. probability greater than 5. After that, we remove all 
Since T’ 5 f 5 $T, so we are done. inequalities satisfied by /3i, and iterate our method 

Subcase 2b: f > $r. Let d(q) CQ) = f. Normalize all for the remaining inequalities to obtain a solution /3&, 

strings by flipping cri[m] to 1 - oli [m] whenever ~1 [m] = 
remove all inequalities satisfied by /3;, and so on. After 

1, for all m = l,.., n. Then, let some permutation cr K = O(log k) iterations, each inequality is satisfied by 

act on the columns so that the f positions of ok that 
contain 1s are located at ok 11, .., (rk[f . 

F!I Al 

some pi, 1 5 j 5 K, with probability 2 n-O(‘). 
None of the THEOREM 5.1. For an instance of HCP with binary 

transformations changes the amming ‘stances. strings ai, i = 1, .., 
Apply the idea of the simple heuristic from Section 2 

k, each of length n, we can find? in 
expected time polynomial in n+k, a set of binary strings 

on t,he first f positions of cq, i = 1, .., k. Set $1.-f] to pi, j = 1, .., K with K = O(log k), such that for each 
that ai[l..f which minimizes the maximum distance to 
the remaining ones, and set the last n - f positions of 7 

ai, i = 1, .-, k, there is a j E (1, .., K} for which the 

to OOO...O. Next, use the randomized rounding heuristic 
H amming distance between ai and & doesn’t exceed the 

described in Section 3 on the first 
1 2 “, k, to obtain &..f, and let p (f+l)-.n] = OOO...O. f 

positions of ai, i = 
radius of the instance. 
References 

Set p’ to that of the strings y, ~1 which has the smallest 
maximum distance to a string oi, i = 1, .., k. 

[l] P. Berman, D. Cumucio, R. Hardiion, W. Miller, and 
N. Stojanovic, A Linear-Time Algorithm for the l- 
Mismatch Problem, Proc. of WADS’97, 1997. 

LEMMA 4.1. If f 2 $!$$ then the maximum distance [2] M. F’ra.nces and A. Litman, On Covering Probiems of 

between pl[l..f] and a string ai[l-.f], i = 1, .., k, is 
Codes, Theory of Comp. Syst. 30, pp. 113-119, 1997. 

within 1 + e of the radius of O.i[l-*fJ, i = 1, ..,k, with 
[3] D.S. Hochbaum, Approximation Algorithms for NP- 

Hard Problems, PWS Publishing Comp., Boston, 1996. 

probability at least 3. [4] J.K. Lanctot, M. Li, B. Ma, S. Wang and L. Zhang, 

Proof. If the minimum generalized distance between 
Distinguishing String SelectIon Problems, to appear rn 

q[l..f], i = 1, .., k, and an optimal relaxed solution 
thii proceedings. 


