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A consensus tree is a single phylogenetic tree that summarizes the branching structure in a given set of
conflicting phylogenetic trees. Many different types of consensus trees have been proposed in the literature;
three of the most well-known and widely used ones are the majority rule consensus tree, the loose consensus
tree, and the greedy consensus tree. This article presents new deterministic algorithms for constructing them
that are faster than all the previously known ones. Given k phylogenetic trees with n leaves each and with
identical leaf label sets, our algorithms run in O(nk) time (majority rule consensus tree), O(nk) time (loose
consensus tree), and O(n2k) time (greedy consensus tree). Our algorithms for the majority rule consensus
and the loose consensus trees are optimal since the input size is �(nk). Experimental results show that the
algorithms are fast in practice.
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1. INTRODUCTION

Scientists and scholars often use phylogenetic trees to describe evolutionary relation-
ships [Felsenstein 2004; Gusfield 1997; Nakhleh et al. 2005; Semple and Steel 2003;
Sung 2010]. Since the early 1860s, a vast number of phylogenetic trees have been con-
structed and published in the literature but they do not always agree with each other;
two trees based on different datasets or obtained by different methods may contain
contradicting branching patterns even though their leaf label sets are identical. Also,
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when trying to infer a new, reliable phylogenetic tree from real data, heuristics for
maximizing parsimony or resampling techniques such as bootstrapping may produce
large collections of identically leaf-labeled phylogenetic trees having slightly different
branching structures [Amenta et al. 2003; Bansal et al. 2011; Degnan et al. 2009;
Felsenstein 2004; Kannan et al. 1998; Sung 2010]. To deal with conflicts that arise
between two or more such trees in a systematic manner, the concept of a consensus
tree was invented [Adams III 1972; Bryant 2003]. Informally, a consensus tree is a
phylogenetic tree that summarizes a given collection of phylogenetic trees. In addition
to resolving conflicts, consensus trees may be employed to locate strongly supported
groupings within a collection of trees [Felsenstein 2004] or as a basis for similarity
measures between two given phylogenetic trees.1

There are many ways to reconcile structural differences and remove inconsistencies
in a collection of trees. Depending on the application and the quality of the input
data, different definitions of a “consensus tree” may be appropriate. Consequently,
several alternatives have been proposed and analyzed by biologists, mathematicians,
and computer scientists since the 1970s; see, for example, Bryant [2003], Chapter 30
in Felsenstein [2004], or Chapter 8.4 in Sung [2010] for some surveys. Three of the
most widely used ones among practitioners are the following:

(i) the majority rule consensus tree [Margush and McMorris 1981],
(ii) the loose consensus tree [Meacham 1982 (see p. 84 of Jensen [1983]) and [Bremer

1990]], and
(iii) the greedy consensus tree [Bryant 2003; Felsenstein 2005].

For example, a search on Google Scholar for “majority rule consensus tree” returns
thousands of articles published in biology-related journals using this concept. Indeed,
in some contexts, the majority rule consensus tree can be regarded as an optimal
summary of a collection of trees [Holder et al. 2008]. See also the introduction of Cotton
and Wilkinson [2007] for other uses of the majority rule consensus tree.

Popular computational phylogenetics software packages such as PHYLIP
[Felsenstein 2005] and MrBayes [Ronquist and Huelsenbeck 2003] contain imple-
mentations for constructing (i) and (iii); COMPONENT [Page 1993] implements (i)
and (ii); SumTrees in DendroPy [Sukumaran and Holder 2010] implements (i); and
PAUP* [Swofford 2003] implements (i), (ii), and (iii). Although these programs work
very well in practical applications, they rely on randomization and their worst-case
running times may be unbounded. On the other hand, the fastest deterministic algo-
rithms published in the literature are quite slow. This situation is unsatisfactory from
a theoretical point of view. Therefore, in this article, we develop new, simple determin-
istic algorithms for constructing (i), (ii), and (iii). Our new algorithms are fast, both in
theory and in practice.

1.1. Definitions and Notation

A phylogenetic tree is a rooted, unordered, leaf-labeled tree in which every internal
node has at least two children and all leaves have different labels. To simplify the
presentation, phylogenetic trees are referred to as “trees” from here onward, and every
leaf in a tree is identified with its (unique) label. All edges in a tree are directed from
the root of the tree to its leaves. If u and v are nodes in a tree and there is a directed
path from u to v, then u is an ancestor of v, and v is a descendant of u. Every node in a
tree T is considered to be an ancestor as well as a descendant of itself; for any nodes u, v

1Measuring the similarity between phylogenetic trees is useful, for example, when querying phyloge-
netic databases [Bansal et al. 2011] or evaluating methods for phylogenetic reconstruction [Kuhner and
Felsenstein 1994].
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Fig. 1. Let S = {T1, T2, T3} as shown above with L = �(T1) = �(T2) = �(T3) = {a, b, c, d, e}. The cluster
collections of T1, T2, and T3 are as follows:

C(T1) = {{a}, {b}, {c}, {d}, {e}, {a, b}, {a, b, c}, {d, e}, L},
C(T2) = {{a}, {b}, {c}, {d}, {e}, {a, c}, {b, d, e}, L},
C(T3) = {{a}, {b}, {c}, {d}, {e}, {b, c}, {a, b, c}, L},

Majority rule, loose, and greedy consensus trees of S are displayed. Observe that the only non-trivial majority
cluster in S is {a, b, c}. Also observe that {d, e} is the only non-trivial cluster in S that is compatible with all
trees in S.

in T , in case v is a descendant of u and u �= v then we call v a proper descendant of u.
For any non-empty subset S of nodes in a tree T , the lowest common ancestor of S in T ,
denoted by lcaT (S), is the unique node w in T such that (i) w is an ancestor of all nodes
in S and (ii) w has no proper descendant that is an ancestor of all nodes in S.

Let T be a tree. The set of all nodes in T is denoted by V (T ) and the set of all
leaves in T by �(T ). Any non-empty subset of �(T ) is called a cluster of �(T ). For any
u ∈ V (T ), the subtree of T rooted at u (i.e., the subgraph of T induced by the set of
descendants of u) is written as T [u], and �(T [u]) is called the cluster associated with u.
Thus, the cluster associated with a node u consists of the descendants of u that are
leaves, and if u is a leaf, then �(T [u]) is a singleton set. For any C ⊆ �(T ), if |C| = 1
or C = �(T ), then C is called trivial; otherwise, C is non-trivial. The cluster collection
of T is defined as C(T ) = ⋃

u∈V (T ){�(T [u])}. See Figure 1 for some examples. When a
cluster C ⊆ �(T ) belongs to C(T ), we say that C occurs in T .
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Two clusters C1, C2 ⊆ �(T ) are called pairwise compatible if C1 ⊆ C2, C2 ⊆ C1, or
C1 ∩ C2 = ∅. Any cluster C ⊆ �(T ) is said to be compatible with T if C and �(T [u])
are pairwise compatible for every node u ∈ V (T ). (As an example, in Figure 1, the
cluster {b, d} is compatible with T2, but not compatible with T1 and T3.) If T1 and T2
are two trees with �(T1) = �(T2) such that every cluster in C(T1) is compatible with T2,
then it follows that every cluster in C(T2) is compatible with T1, and we say that T1
and T2 are compatible.

Next, let S = {T1, T2, . . . , Tk} be a set of trees satisfying �(T1) = �(T2) = · · · =
�(Tk) = L for some leaf label set L. A consensus tree for S is a tree that summarizes the
branching information contained in S according to some well-defined rule. This article
focuses on the following three variants:

• A cluster that occurs in more than k/2 of the trees in S is a majority cluster of S. A
majority rule consensus tree of S is a tree T such that �(T ) = L and C(T ) consists of
all majority clusters of S.

• A loose consensus tree of S is a tree T such that �(T ) = L and C(T ) consists of all
clusters that occur in at least one tree in S and that are compatible with all trees
in S.

• Let X be a list of all clusters that occur in at least one tree in S, sorted according to the
number of trees in S in which they occur (frequently occurring clusters coming first
and with ties broken arbitrarily). Construct a set Y of clusters as follows: Initialize
Y := ∅. Then, traverse the list X and for each cluster C encountered in this order and
check if C and C ′ are pairwise compatible for all C ′ ∈ Y; if yes, then let Y := Y ∪ {C}.
A greedy consensus tree of S is a tree T such that �(T ) = L and C(T ) = Y.

An example is given in Figure 1. As pointed out in Bryant [2003], for any given S, there
exists a unique majority rule consensus tree of S and a unique loose consensus tree
of S, but a greedy consensus tree of S is not always uniquely defined. (In the example
in Figure 1, three different greedy consensus trees exist because each of the clusters
{a, b}, {a, c}, {b, c} occurs once in S and exactly one of them will be included in any
greedy consensus tree, depending on how ties among clusters are broken.) Moreover,
if a cluster C occurs in the majority rule consensus tree of S or in the loose consensus
tree of S, then C occurs in every greedy consensus tree of S.

Throughout the text, we shall use the following notation to express the time com-
plexities of algorithms for constructing consensus trees. Let S be an input set of trees
with identical leaf label sets. Define k = |S| and n = |L|, and write S = {T1, T2, . . . , Tk},
where �(T1) = �(T2) = · · · = �(Tk) = L. Observe that n+1 ≤ |V (Ti)| ≤ 2n−1 for every
i ∈ {1, 2, . . . , k}. Let p be the number of different clusters occurring in S and q the total
number of clusters occurring in S (with repetitions). Thus, p ≤ q and q = �(nk) with
k · (n + 1) ≤ q ≤ k · (2n − 1).

1.2. Previous Work

The majority rule consensus tree was introduced by Margush and McMorris [1981].
Wareham [1985] gave a deterministic algorithm with a worst-case running time of
O(n2 + nk2) for building it.

The loose consensus tree is also known as the combinable component consensus
tree and the semi-strict consensus tree. It was introduced by Meacham in 1982 (see
p. 84 of Jensen [1983]) and independently by Bremer [1990] and can be computed in
O(nq2) = O(n3k2) time by a method outlined by McMorris and Wilkinson [2011] that
tests every cluster occurring in S against all other clusters in S for compatibility. In
the special case where Ti and Tj are compatible for all Ti, Tj ∈ S, the main algorithm
in Warnow [1994] constructs the loose consensus tree of S in O(nk) time.
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The greedy consensus tree is sometimes called the majority rule extended consensus
tree in the literature because it can be computed by allowing additional (non-majority)
clusters to be inserted into the majority rule consensus tree in a greedy fashion [Bryant
2003; Felsenstein 2005]. The straightforward algorithm implied by the definition of a
greedy consensus tree in Section 1.1 above (originally from Section 2.1.4 in Bryant’s
survey [2003]) runs in O(nq + n2 p) = O(n3k) time.

As for randomized methods, Amenta et al. [2003] published an algorithm for the
majority rule consensus tree with O(nk) expected running time but unbounded worst-
case running time. Here, randomization is used to count and store the number of
occurrences of clusters from S in suitably constructed hash tables. We note that
the implementations for computing consensus trees in existing software packages
such as PHYLIP [Felsenstein 2005], MrBayes [Ronquist and Huelsenbeck 2003],
SumTrees in DendroPy [Sukumaran and Holder 2010], COMPONENT [Page 1993],
and PAUP* [Swofford 2003] also rely on randomization and typically have unbounded
worst-case running times as well.

Some previous results related to other types of consensus trees are discussed in
Section 7.

1.3. New Results

After describing a number of essential algorithmic tools and properties of trees in
Section 2, we present fast deterministic algorithms for computing the majority rule
consensus tree, the loose consensus tree, and a greedy consensus tree in Sections 3, 4,
and 5, respectively, for an input set S of trees with identical leaf label sets. The worst-
case running times of the previously fastest deterministic algorithms (not including
the ones in the preliminary version of this article2) and our new ones are compared
below:

.

Previously best This article
Majority rule O(n2 + nk2) time O(nk) time

consensus tree [Wareham 1985] Section 3
Loose O(nq2) = O(n3k2) time O(nk) time

consensus tree [McMorris and Wilkinson 2011] Section 4
Greedy O(nq + n2 p) = O(n3k) time O(nq) = O(n2k) time

consensus tree [Bryant 2003] Section 5

Our algorithms for the majority rule consensus tree and the loose consensus tree are
optimal since the size of the input is �(nk). We thus resolve two long-standing open
problems in phylogenetics.

We implemented our algorithms to make sure that they are practical and applied
them to various simulated datasets, as explained in Section 6. In short, these exper-
iments showed that the running times of our deterministic algorithms are already
comparable to (and, in many cases, better than) those of the methods found in com-
monly used software packages such as PHYLIP [Felsenstein 2005], without having to
use randomization and hash tables for storing the clusters occurring in S. Notably,
for inputs consisting of a small number of very large trees (i.e., n 
 k), our prototype
implementations were much faster than than PHYLIP. In contrast to current practice,

2In the preliminary version of this article [Jansson et al. 2013], we developed a deterministic algorithm for
the majority rule consensus tree with O(nk log k) worst-case running time, based on recursion.
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this suggests that it might not always be a good idea to use randomization and hashing
when computing consensus trees.

2. PRELIMINARIES

This section lists some algorithmic results and properties of trees that will be used
later.

2.1. Day’s Algorithm

Day’s algorithm [Day 1985] takes as input two trees Tref and T with identical leaf
label sets. After linear-time preprocessing, the algorithm can check whether or not
any specified cluster that occurs in T also occurs in Tref, and each such check can be
performed in constant time. In particular, Day’s algorithm can be applied to identify
the set of all clusters that occur in both Tref and T in O(n) time, where n = |L|.

It works as follows. In the preprocessing phase, it does an O(n)-time depth-first
traversal of Tref while enumerating all the leaves as they are encountered. This yields a
bijection f from L to the set {1, 2, . . . , n} under which every C ∈ C(Tref) forms an interval
of consecutive integers. Furthermore, each of the at most n−1 intervals that represents
a non-singleton cluster in C(Tref) (or, equivalently, each internal node of Tref) is assigned
to one of the n leaves in Tref in such a way that (1) no leaf gets more than one interval
and (2) any interval [a..b] is assigned to either the leaf f −1(a) or the leaf f −1(b). One
way to do so is by applying a rule of the following form: For each internal node u in Tref,
if u has no left sibling, then assign u to the rightmost leaf descendant of u; otherwise,
assign u to the leftmost leaf descendant of u. Next, the algorithm preprocesses T in
O(n) time to store f (x) in each leaf x of T and to do a bottom-up traversal of T to obtain,
for every u ∈ V (T ), the values m(u) := minx∈�(T [u]){ f (x)}, M(u) := maxx∈�(T [u]){ f (x)},
and size(u) := |�(T [u])|.

After the preprocessing is done, one can check for any specified internal node u in T
whether or not the cluster �(T [u]) occurs in Tref using O(1) time simply by checking (1) if
size(u) = M(u) − m(u) + 1 (i.e., if the interval [m(u)..M(u)] is an interval of consecutive
integers) and (2) if either one of the two leaves f −1(m(u)) and f −1(M(u)) in Tref was
assigned the interval [m(u)..M(u)]. We summarize this result as follows:

THEOREM 2.1 ([DAY 1985]). Let Tref and T be two given trees with �(Tref) = �(T ) = L
and let n = |L|. After O(n) time preprocessing, it is possible to determine, for any
u ∈ V (T ), if �(T [u]) ∈ C(Tref) in O(1) time.

2.2. The delete and insert Operations on a Tree

Define the delete operation on any non-root, internal node u in a tree as the operation
of letting all of u’s children become children of the parent of u, and then removing u
and the edge between u and its parent. See Figure 2. Importantly, any delete operation
on a node u in a tree T removes the cluster �(T [u]) from the cluster collection C(T )
without affecting the other clusters. The time needed for this operation is proportional
to the number of children of u.

Conversely, define the insert operation as the operation that creates a new node u
which becomes (1) a child of an existing internal node v and (2) the parent of a proper
subset X of v’s children satisfying |X| ≥ 2; as a consequence, a new cluster �(T [u]) =⋃

vi∈X �(T [vi]) is inserted into C(T ).

2.3. Characterizing Compatibility

Suppose that a tree T is given. For any cluster C ⊆ �(T ), let Child(C) be the set
of children of the node lcaT (C). The next lemma characterizes when C is compatible
with T .
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Fig. 2. Let T be the tree on the left and let u be the marked node. Then �(T [u]) = {d, e, f } and applying the
delete operation on u removes the cluster {d, e, f } from C(T ). The remaining non-trivial clusters are {a, b, c}
and {d, e}.

LEMMA 2.2. For any tree T and C ⊆ �(T ), C is compatible with T if and only if
|C ∩ �(T [ci])| equals 0 or |�(T [ci])| for each ci ∈ Child(C).

PROOF. (→) We prove the contrapositive. Suppose there exists a ci ∈ Child(C) with
0 < |C ∩ �(T [ci])| < |�(T [ci])|. This implies that �(T [ci]) contains some element x ∈ C
and some element y �∈ C. Since ci is a child of lcaT (C), there exists an element z ∈ C
which is a descendant of another child c j in Child(C), i.e., z �∈ �(T [ci]). But then
{x, z} ⊆ C and y �∈ C, while {x, y} ⊆ �(T [ci]) and z �∈ �(T [ci]), so C and �(T [ci]) are not
pairwise compatible. By definition, C is not compatible with T .
(←) Consider any u ∈ V (T ). There are three cases:

• u is an ancestor of lcaT (C): Then trivially C ⊆ �(T [u]).
• u is a descendant of lcaT (C): Let ci be the child of lcaT (C) which is an ancestor of u.

By the lemma statement, |C ∩ �(T [ci])| equals either 0 or |�(T [ci])|. If the former
holds, then C ∩ �(T [u]) = ∅; if the latter holds, then C ∩ �(T [u]) = �(T [u]) and
�(T [u]) ⊆ C.

• u is not an ancestor and not a descendant of lcaT (C): Then C ∩ �(T [u]) = ∅.

In all cases, C and �(T [u]) are pairwise compatible. Thus, C is compatible with T .

2.4. Procedure Merge_Trees

Merge_Trees is a procedure that combines all the clusters from two non-conflicting trees
into one tree in linear time. Formally, let T1 and T2 be two trees with �(T1) = �(T2) = L
such that T1 and T2 are compatible. Procedure Merge Trees(T1, T2) returns a tree T
with �(T ) = L and C(T ) = C(T1) ∪ C(T2) in O(n) time, where n = |L|.3
Merge_Trees operates in two phases. The first phase is a preprocessing phase that

works as follows. As in Day’s algorithm (see Section 2.1), do an O(n)-time depth-first
traversal of T1 to construct a bijection f from L to the set {1, 2, . . . , n} under which
every C ∈ C(T1) forms an interval of consecutive integers. Do a bottom-up traversal
of T2 to obtain and store, for each v ∈ V (T2), the value m(v) := minx∈�(T2[v]){ f (x)}. Also
do a top-down traversal of T2 to compute, for each v ∈ V (T2), the number of edges from
the root of T2 to v and store it in depth(v). Then, transform T2 into an ordered tree by
ordering the children at each internal node v of T2 so for every two children a and b
of v, a is to the left of b if and only if m(a) < m(b). This can be done in O(n) time in
total by putting all v ∈ V (T2) into a single list X , sorting X using the m(v)-values as
the key (to sort O(n) integers belonging to {1, 2, . . . , n} takes O(n) time with counting
sort), and then traversing the sorted X to set the left-to-right orderings of the children
at all nodes in T2. Now Lemma 2.2 implies:

3The procedure INSERT in Warnow [1994] also accomplishes this, but in our opinion, Merge_Trees is simpler.
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Fig. 3. Suppose that �(T1[u]) for some specified u ∈ V (T1) corresponds to the interval [a..b] in the left-to-
right leaf ordering in T2. The relationship between the nodes a′

left, b′
right, and ru determines where in T2 to

insert �(T1[u]) as a new cluster. In this example, du = a′
left and eu = the rightmost child of ru.

LEMMA 2.3. After making T2 an ordered tree as described above, any C ⊆ L is
compatible with T2 if and only if C is of the form C = ⋃

ci∈D �(T2[ci]), where D is a
consecutive subsequence of the children of the node lcaT2 (C).

Therefore, when inserting a cluster of the form �(T1[u]) into T2, we have to create a
new child node c of the node ru := lcaT2 (�(T1[u]) and let a consecutive subsequence of
the children of ru become children of c instead. To be able to identify this consecutive
subsequence of children, we need to find the leftmost and rightmost children of ru whose
subtrees contain leaves from �(T1[u]). For this purpose, for each x ∈ L, first define
leaf rankT2

(x) to be 1 + (the number of leaves to the left of x in T2). Then, for every
u ∈ V (T1), define start(u) := minx∈�(T1[u]) leaf rankT2

(x) and stop(u) := maxx∈�(T1[u])
leaf rankT2

(x). Intuitively, start(u) and stop(u) tell us the interval in the left-to-right
ordering of the leaves in T2 that consists of all leaves from �(T1[u]). Use the following
recursive formulas to precompute start(u) and stop(u) for all u ∈ V (T1) in O(n) time in
total:

LEMMA 2.4. For any u ∈ V (T1), let Child(u) be the set of children of u. Then:

start(u) =
{

leaf rankT2
(u), if u is a leaf

minc∈Child(u) start(c), otherwise

stop(u) =
{

leaf rankT2
(u), if u is a leaf

maxc∈Child(u) stop(c), otherwise

Next, for every x ∈ L, define xleft as the node v in T2 with the smallest value of depth(v)
(i.e., as close to the root as possible) whose leftmost leaf descendant is x. Define xright
for every x ∈ L analogously but using the rightmost leaf descendant instead. See
Figure 3. To compute xleft and xright for all x ∈ L, do an O(n)-time bottom-up traversal
of T2. Finally, apply the method of Bender and Farach-Colton [2000] or Harel and
Tarjan [1984] to preprocess T2 in O(n) time so every subsequent lca-query on any two
nodes in T2 can be answered in O(1) time. This concludes the first phase.

We now describe the second phase of Merge_Trees which inserts clusters from T1
into T2. (Recall from the first paragraph in this subsection that Merge_Trees requires
every �(T1[u]) to be compatible with T2.) To avoid changing the parent of any node
in T2 more than once, we use a bottom-up approach.
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For each u ∈ V (T1) in bottom-up order, do the following steps: Retrieve a := start(u)
and b := stop(u), and let a′ and b′ be the elements of L satisfying leaf rankT2

(a′) = a
and leaf rankT2

(b′) = b. Obtain ru := lcaT2 ({a′, b′}) in O(1) time by querying the lca data
structure. Define du as the leftmost child of ru such that �(T1[u]) ∩ �(T2[du]) �= ∅ and
eu as the rightmost child of ru such that �(T1[u]) ∩ �(T2[eu]) �= ∅. (As will be shown
shortly, du and eu tell us where in T2 to insert �(T1[u]) as a new cluster.) See Figure 3
for an illustration. To compute du and eu efficiently, we can use the next lemma.

LEMMA 2.5. The following holds:

(1) If depth(a′
left) > depth(ru), then du = a′

left; otherwise, du = the leftmost child of ru.
(2) If depth(b′

right) > depth(ru), then eu = b′
right; otherwise, eu = the rightmost child of ru.

Thus, apply Lemma 2.5 to find du and eu in O(1) time. In case du is the leftmost child
of ru and eu is the rightmost child of ru, then �(T2[ru]) = �(T1[u]), that is, the cluster
already occurs in T2 and we do nothing. Otherwise, insert �(T1[u]) into T2 by creating
a new child c of ru, setting depth(c) := depth(ru) + 1, and letting all children of ru in
the sequence du, . . . , eu become children of c. Also update a′

left to point to c if du was
not the leftmost child of ru, and update b′

right analogously. The correctness follows from
Lemma 2.3. Finally, after all nodes have been taken care of, return T2.

In the second phase, since the nodes are treated in bottom-up order, the parent of
each node in T2 changes at most once. Furthermore, due to the bottom-up ordering,
there is no need to update any depth values or lca values for nodes in T2 although
they will change during execution. For each u ∈ V (T1), we perform O(1) additional
operations. In total, everything takes O(n) time.

THEOREM 2.6. Let T1 and T2 be two given trees with �(T1) = �(T2) = L that are
compatible and let n = |L|. Procedure Merge_Trees(T1, T2) returns a tree T with �(T ) =
L and C(T ) = C(T1) ∪ C(T2) in O(n) time.

2.5. Procedure One-Way_Compatible

This subsection describes a linear-time procedure named One-Way_Compatible whose
input is two trees T1 and T2 with identical leaf label sets and whose output is a copy
of T1 in which every cluster that is not compatible with T2 has been removed. In
other words, for any two trees T1 and T2 with �(T1) = �(T2) = L, Procedure One-
Way_Compatible(T1, T2) outputs a tree T with �(T ) = L such that C(T ) = {C ∈ C(T1) :
C is compatible with T2}. The procedure is asymmetric; for example, if T1 consists of
n leaves attached to a root node and T2 �= T1, then One-Way_Compatible(T1, T2) = T1,
while One-Way_Compatible(T2, T1) = T2.

Procedure One-Way_Compatible is similar to Merge_Trees in Section 2.4. It also op-
erates in two phases, where the first phase is a preprocessing phase and the second
phase traverses T1. The first phase of One-Way_Compatible performs all the steps from
the first phase of Merge_Trees, plus a bottom-up traversal of T1 to obtain and store, for
every u ∈ V (T1), the value size(u) := |�(T1[u])|.

The second phase of One-Way_Compatible differs from that of Merge_Trees. Instead
of inserting new nodes into T2, it deletes all nodes from T1 whose associated clusters
are not compatible with T2. To check if �(T1[u]) for any u ∈ V (T1) is compatible with T2
in O(1) time, apply the following technique (refer to Section 2.4 for explanations of
the notation used below). Assign a := start(u) and b := stop(u), and let a′ and b′
be the elements of L such that leaf rankT2

(a′) = a and leaf rankT2
(b′) = b. Compute

ru := lcaT2 ({a′, b′}) in O(1) time by querying the lca data structure. Next, if depth(a′
left) >

depth(ru), then define du := a′
left; otherwise, define du := the leftmost child of ru. Similarly,
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if depth(b′
right) > depth(ru), then define eu := b′

right; otherwise, define eu := the rightmost
child of ru. The value |�(T1[u])| is retrieved from size(u) in O(1) time. Then:

LEMMA 2.7. �(T1[u]) is compatible with T2 if and only if (i) the parent of du is ru,
(ii) the parent of eu is ru, and (iii) |�(T1[u])| = b − a + 1.

PROOF. Let C denote the cluster �(T1[u]). Lemma 2.3 states that C is compatible
with T2 if and only if C = �(T2[ci]) ∪ �(T2[ci+1]) ∪ . . . ∪ �(T2[c j]) for some consecutive
subsequence ci, ci+1, . . . , c j of the children of the node ru.
(→) Suppose C = �(T2[ci]) ∪ �(T2[ci+1]) ∪ . . . ∪ �(T2[c j]), where ci, ci+1, . . . , c j is a
consecutive subsequence of children of ru. If i = 1, then du is the leftmost child of ru
by definition. If i > 1, then a′ is the leftmost leaf in T2[ci] and du = a′

left must be
child of ru because otherwise there would exist some other leaf from C to the left of a′,
which is impossible. Therefore, du is always a child of ru, and we have (i). An analogous
argument shows that (ii) also holds. To prove (iii), note that the |C| elements of C occur
as a consecutive block starting at position a and ending at position b in the left-to-right
ordering of the leaves in T2, which means that |C| = b − a + 1.
(←) Suppose (i), (ii), and (iii) hold. By the definition of a′

left, the leftmost leaf descendant
of every node on the path in T2 between a′ and a′

left is a′. Thus, the leftmost leaf
descendant of du is a′. In the same way, the rightmost leaf descendant of eu is b′.
Then, conditions (i) and (ii) imply that C ⊆ �(T2[du]) ∪ . . . ∪ �(T2[eu]), where du, . . . , eu
is a consecutive subsequence of children of ru. There are exactly b − a + 1 leaves in
the interval a′..b′ in the left-to-right ordering of T2, so |�(T2[du]) ∪ . . . ∪ �(T2[eu])| =
b − a + 1. From condition (iii), |C| = |�(T2[du]) ∪ . . . ∪ �(T2[eu])|, which shows that
C = �(T2[du])∪ . . .∪�(T2[eu]), where du, . . . , eu is a consecutive subsequence of children
of ru.

Now, the second phase of One-Way_Compatible is as follows: For each u ∈ V (T1), apply
Lemma 2.7 and if �(T1[u]) is compatible with T2, then mark u as “good”; otherwise,
mark u as “bad.” Next, traverse T1 in top-down order and for each node u ∈ V (T1)
encountered, if u is “bad,” then perform a delete operation on u.

In total, the first phase takes O(n) time. The time complexity of the second phase is
O(n) since each compatibility check takes O(1) time by applying Lemma 2.7 and since
the total time needed for all node deletions is O(n). The latter is because whenever a
node u in T1 is deleted so the children of u get a new parent, the top-down order ensures
that the new parent will never be deleted; hence, for every node in T1, its parent can
change at most once.

THEOREM 2.8. Let T1 and T2 be two given trees with �(T1) = �(T2) = L and let
n = |L|. Procedure One-Way_Compatible(T1, T2) returns a tree T with �(T ) = L such
that C(T ) = {C ∈ C(T1) : C is compatible with T2} in O(n) time.

2.6. Finding All Majority Elements

In this subsection, we describe a technique for solving a problem closely related to the
majority rule consensus tree problem: Given a list W of subsets of a set X, output all
majority elements in W, where a majority element in W is defined to be any element
of X that occurs in more than half of the subsets in W. It can be solved easily by using
one counter for each element in X, but when |X| is very large and many elements
from X never occur in W at all, we need a method whose time complexity does not
depend on |X|.

Denote k = |W|, and for any j ∈ {1, 2, . . . , k}, let W[ j] be the jth subset in the list W.
For our purposes, it is sufficient to focus on the restriction of the problem in which
X is an ordered set and each W[ j] is specified as a sorted list. The following two-phase
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algorithm solves the restricted problem by maintaining a set of current candidates,
which are certain elements belonging to X, along with a counter for each current
candidate:

• Phase 1: Initialize the set of current candidates as the empty set. Sweep through W,
that is, for each j ∈ {1, 2, . . . , k}, consider W[ j] and do the following. First, for every
current candidate x, increase x’s counter by 1 if x ∈ W[ j], or decrease it by 1 if
x �∈ W[ j]; if x’s counter reaches 0, then remove x from the set of current candidates.
Second, insert every x ∈ W[ j] that is not a current candidate into the set of current
candidates and initialize its counter to 1.

• Phase 2: Let X′ be the set of current candidates. Sweep through W one more time to
count the total number of occurrences in W of every element in X′. Output the ones
that occur more than k

2 times.

As an example, let X = {a, b, c, d, e} and W = (W[1], W[2], W[3]) = ({a, b, d}, {a, c},
{d, e}). After the first iteration of Phase 1, the set of current candidates is {a, b, d} and
all three counters are set to 1. After the second iteration, the set of current candidates
is {a, c}, with a’s and c’s counters equal to 2 and 1, respectively. After the last iteration
of Phase 1, the set of current candidates is {a, d, e}. In Phase 2, the algorithm outputs a
and d.

To prove the correctness of this method, observe that for any x ∈ X, if x occurs in
more than k

2 subsets in W, then x must be one of the current candidates at the end of
Phase 1 because its counter is >0. Hence, all majority elements in W (if any) belong
to the set X′. However, as in the example above, some non-majority elements might
also be included in X′. For this reason, Phase 2 is used to identify those elements that
indeed occur more than k

2 times. To analyze the time complexity, since each W[ j] is
given as a sorted list, it is easy to maintain the set of current candidates in a sorted list
and implement all operations for that value of j in time proportional to the number of
current candidates. This yields:

LEMMA 2.9. Let X be an ordered set and let W be a list of sorted subsets of X. The
above algorithm outputs all majority elements in W in O(k · y) time, where k = |W| and
at most y elements from X belong to the set of current candidates at any point in time.

Remark 2.10. The algorithm presented above can be viewed as a direct extension of
Boyer and Moore’s algorithm in Boyer and Moore [1991], which solves the special case
of the problem where every subset in the list W has cardinality 1.

3. CONSTRUCTING THE MAJORITY RULE CONSENSUS TREE

Here, we present a new algorithm Maj_Rule_Cons_Tree for building the majority rule
consensus tree of S. It uses the technique from Section 2.6 to locate all majority clusters
in S by interpreting X as the set of all possible clusters of L (so every element x ∈ X is
a subset of L) and the list W as the length-k sequence of cluster collections of the trees
in S. In other words, W = (W[1],W[2], . . . ,W[k]) = (C(T1), C(T2), . . . , C(Tk)), and for
every j ∈ {1, 2, . . . , k}, it holds that W[ j] ⊆ X.

Algorithm Maj_Rule_Cons_Tree has the same high-level structure as the two-phase
algorithm in Section 2.6: In Phase 1, it computes a set of candidate clusters that
includes all majority clusters, and then, in Phase 2, it removes all candidate clusters
that do not occur in more than k

2 of the trees in S. Whatever clusters that remain must
be the majority clusters of S. During the algorithm’s execution, the current candidates
are stored as nodes in a tree T , as explained below. Storing the candidate clusters in a
tree instead of in a list is in fact the key to getting an efficient algorithm.

The pseudocode is summarized in Figure 4. Phase 1 and Phase 2 are described in
Sections 3.1 and 3.2, respectively. To achieve a good time complexity, some steps of the
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Fig. 4. Algorithm Maj_Rule_Cons_Tree for constructing the majority rule consensus tree.

algorithm are implemented by applying Day’s algorithm (i.e., to count occurrences of
clusters) and the procedures Merge_Trees and One-Way_Compatible from Section 2 (i.e.,
to insert new candidate clusters into T that are compatible with the current T but not
already in T ); the details are given in Section 3.3.

3.1. Description of Phase 1

Phase 1 of the algorithm examines the trees T1, T2, . . . , Tk in sequential order. As in
Section 2.6, the algorithm maintains a set of current candidates, each equipped with its
own counter. Every current candidate is some cluster of L and thus an element from X,
like before. However, there are two crucial differences between Maj_Rule_Cons_Tree
and the method in Section 2.6.

The first difference is that Maj_Rule_Cons_Tree does not store the set of current
candidates in a sorted list as in Section 2.6 but encodes them as nodes in a tree T
whose leaf label set equals L. To be precise, every node v in T represents a current
candidate cluster �(T [v]) and has a counter count(v). For any j ∈ {1, 2, . . . , k}, when
treating the tree Tj , all clusters in C(T ) that also belong to C(Tj) get their counters
incremented by 1, while all clusters in C(T ) that do not belong to C(Tj) get their counters
decremented by 1. If this leads to some counter reaching 0, then the internal node in T
corresponding to that cluster is deleted. Next, all other clusters in C(Tj) that are not
current candidates but are compatible with T are upgraded to current candidate status
by inserting them into T and initializing their corresponding nodes’ counters to 1.

The other important difference between this approach and the one in Section 2.6 is
that for any j ∈ {2, . . . , k}, a cluster C that occurs in Tj but is not a current candidate
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does not automatically become a current candidate; C will only be inserted into T if it
is pairwise compatible with all the current candidates. We therefore need an additional
lemma to guarantee the correctness of Phase 1:

LEMMA 3.1. For any C ⊆ L, if C is a majority cluster of S, then C ∈ C(T ) at the end
of Phase 1.

PROOF. Suppose that C is a majority cluster of S. During the execution of Phase 1,
for any j ∈ {1, 2, . . . , k}, say that C is blocked in iteration j if the following happens:
C is not a current candidate, C occurs in the tree Tj , and C is not allowed to become a
current candidate because C is not compatible with the current T .

Let a denote the number of trees in S in which C occurs. By the definition of a
majority cluster, a > k

2 . Hence, there are k− a < k
2 trees in S in which C does not occur.

We claim that each such tree Tx can cancel out the effect on C ’s counter of at most one
of the a occurrences of C in S. To prove the claim, let Tx be any tree in S in which C
does not occur and consider the two possible cases:

• If C is a current candidate when Tx is treated, then C ’s counter will be decremented
by 1.

• If C is not a current candidate when Tx is treated, then some clusters which are not
pairwise compatible with C may get their counters incremented by 1. As a result,
C may be blocked in another iteration.

Next, since a− (k− a) > k
2 − k

2 = 0, the counter for C will have a non-zero value at the
end of Phase 1. By the definition of the tree T in the algorithm, C ∈ C(T ) holds.

3.2. Description of Phase 2

Phase 2 of the algorithm is straightforward. It checks how many times every cluster
in the tree T occurs among T1, T2, . . . , Tk. Any clusters that do not occur more than
k
2 times are removed from T . It follows immediately from Lemma 3.1 that the cluster
collection of the remaining tree T equals the set of all majority clusters of S. Hence,
the output of the algorithm is the majority rule consensus tree.

LEMMA 3.2. The tree output by Algorithm Maj_Rule_Cons_Tree at the end of Phase 2
is the majority rule consensus tree of S.

3.3. Time Complexity Analysis

We now analyze the worst-case running time of Algorithm Maj_Rule_Cons_Tree.

THEOREM 3.3. Algorithm Maj_Rule_Cons_Tree constructs the majority rule consensus
tree of S in O(nk) time.

PROOF. We first show that in Phase 1, every iteration of the main loop in Step 3
takes O(n) time. To perform Step 3.1 in O(n) time, run Day’s algorithm (see Sec-
tion 2.1) with Tref = Tj and then check each �(T [v]) to see if it occurs in Tj . By
Theorem 2.1, this requires O(n) time for preprocessing, and each of the O(n) nodes
in V (T ) can be checked in O(1) time.4 The delete operations take O(n) time in total
since every node’s parent is changed at most once (the nodes are handled in top-down
order, so if some node is deleted then the new parent of its children cannot be deleted
in the same iteration). Next, Step 3.2 can be implemented in O(n) time by letting
P := One-Way Compatible(Tj, T ) and Q := Merge Trees(P, T ), updating the structure
of T to make T isomorphic to the obtained Q, and setting the counters of all new

4This way of counting occurrences of clusters has been used elsewhere in the literature, for example, in
Wareham [1985] and on p. 217 of Sung [2010].
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nodes to 1. This works because according to Theorem 2.8, P is a tree consisting of the
clusters occurring in Tj that are compatible with the set of current candidates, and by
Theorem 2.6, Q is the result of inserting each such cluster into T , if it did not already
occur in T . There are O(k) iterations in the main loop, so Phase 1 takes O(nk) time.

In Phase 2, Step 5.1 is executed in O(n) time by applying Day’s algorithm like in
Step 3.1. Thus, the loop in Step 5 takes O(nk) time. Step 6 can be carried out in O(n)
time by treating the nodes in top-down order as above. In total, Phase 2 also takes
O(nk) time.

Remark 3.4. A natural way to parameterize the majority rule consensus tree is
by letting � be any real number such that 1/2 ≤ � ≤ 1 and keeping only clusters
that occur in more than a fraction � of the input trees in S [McMorris et al. 1983].
Algorithm Maj_Rule_Cons_Tree can be modified accordingly without affecting the time
complexity by changing Step 6 since the set of all such clusters for any fixed 1/2 ≤ � ≤ 1
is a subset of the set of majority clusters of S.

4. CONSTRUCTING THE LOOSE CONSENSUS TREE

The loose consensus tree of S can be computed by testing every cluster that occurs
in S against all other clusters in S for compatibility [McMorris and Wilkinson 2011].
Since each pair of clusters can be checked in O(n) time, this gives an algorithm with
O(nq2) = O(n3k2) running time. (If we incorporate a bottom-up technique based on
Lemma 2.2 to check a cluster for compatibility with a tree in O(n) time, then the
running time is improved slightly to O(nkq) = O(n2k2).) Below, we show how to do
it in O(nk) time, which is optimal. Our algorithm is called Loose_Cons_Tree. It uses
Merge_Trees from Section 2.4 and One-Way_Compatible from Section 2.5 as subroutines.

First, for any j ∈ {1, 2, . . . , k}, we define the set of one-way compatible clusters up to j
as the set O j = ⋃ j

i=1{C ∈ C(Ti) : C is compatible with all trees in {Ti, Ti+1, . . . , Tj}}. It
is easy to see that:

LEMMA 4.1. For any j ∈ {1, 2, . . . , k}, all clusters in O j are pairwise compatible.

PROOF. Consider any two clusters C, C ′ ∈ O j . If j = 1 or if C and C ′ occur in the same
tree Ti, then the lemma is trivially true. Therefore, assume without loss of generality
that j ≥ 2 and C ∈ C(Ti) and C ′ ∈ C(Ti′ ), where i < i′ ≤ j. Since C ∈ O j , C is compatible
with all trees in {Ti, . . . , Tj} and thus compatible with Ti′ . This means that C and C ′
are pairwise compatible.

Then, according to Theorem 3.5.2 in Semple and Steel [2003], the set O j equals the
cluster collection of a uniquely defined tree for each j ∈ {1, 2, . . . , k}. Define Rj to be
the tree with C(Rj) = O j . Clearly, R1 = T1. To obtain Rj for any j ∈ {2, . . . , k}, we shall
use the following recursive formulation:

LEMMA 4.2. Let j ∈ {2, . . . , k} and A = One-Way_Compatible(Rj−1, Tj). Then
Merge_Trees(A, Tj) is equal to the tree Rj.

PROOF. By definition, C(Rj−1) = O j−1, and A = One-Way_Compatible(Rj−1, Tj) is a
tree whose cluster collection C(A) is the subset of C(Rj−1) consisting of those clusters
that are also compatible with Tj . Thus, C(A) = ⋃ j−1

i=1 {C ∈ C(Ti) : C is compatible with
all trees in {Ti, . . . , Tj}}.

Consequently, Merge_Trees(A, Tj) returns a tree whose cluster collection is equal to
C(A) ∪ C(Tj). Trivially, all clusters occurring in Tj are compatible with Tj , so C(A) ∪
C(Tj) = ⋃ j

i=1{C ∈ C(Ti) : C is compatible with all trees in {Ti, . . . , Tj}} = O j . Hence,
this tree is equal to Rj .

Next, we show that C(T ) ⊆ C(Rk), where T is the loose consensus tree of S.
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Fig. 5. Algorithm Loose_Cons_Tree for constructing the loose consensus tree.

LEMMA 4.3. Let T be the loose consensus tree of S. Every cluster that occurs in T also
occurs in Rk.

PROOF. Let C be any cluster in C(T ). By the definition of the loose consensus tree,
C ∈ C(Tj) for some j ∈ {1, 2, . . . , k} and C is compatible with all trees in {T1, T2, . . . , Tk}.
In particular, C is compatible with the trees {Tj, . . . , Tk}, so C ∈ Ok, that is, C occurs
in Rk.

As suggested by Lemma 4.3, one strategy for computing the loose consensus tree of S
is to build the tree Rk and then remove certain clusters from it. The next lemma tells
us which ones.

LEMMA 4.4. Let T be the loose consensus tree of S. Then C(T ) = {C ∈ C(Rk) : C is
compatible with all trees in S}.

PROOF. Consider any C ∈ C(Rk). Then for some j ∈ {1, 2, . . . , k}, C ∈ C(Tj) and
C is compatible with all trees in {Tj, . . . , Tk}. If C is also compatible with all trees in
{T1, T2, . . . , Tk}, then C belongs to the set {C ∈ ⋃k

i=1 C(Ti) : C is compatible with all trees
in {T1, T2, . . . , Tk}}, which is equal to C(T ) by the definition of the loose consensus tree.

For the other direction, consider any C ∈ C(T ). Then C ∈ C(Rk) by Lemma 4.3, and C
is compatible with all trees in {T1, T2, . . . , Tk} by the definition of the loose consensus
tree.

Algorithm Loose_Cons_Tree is shown in Figure 5. Its correctness follows from Lem-
mas 4.3 and 4.4. To analyze its time complexity, observe that every execution of
One-Way_Compatible takes O(n) time according to Theorem 2.8 and every execution
of Merge_Trees takes O(n) time by Theorem 2.6, so Step 2 takes O(nk) time. For the
same reason, Step 4 takes O(nk) time. We have:

THEOREM 4.5. Algorithm Loose_Cons_Tree constructs the loose consensus tree of S in
O(nk) time.

5. CONSTRUCTING A GREEDY CONSENSUS TREE

We now give an algorithm for building a greedy consensus tree of S in O(nq) = O(n2k)
time. Recall that p is the number of different clusters and q the total number of clusters
occurring in S, with repetitions.

The method in the definition of a greedy consensus tree in Section 1.1 (see also
Section 2.1.4 in Bryant [2003]) immediately yields a time complexity of O(nq + n2 p) =
O(n3k). Our improvement comes from eliminating one of the bottlenecks: Instead of
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Fig. 6. Algorithm Greedy_Cons_Tree for constructing a greedy consensus tree.

first building a maximal set Y of pairwise compatible clusters in O(n2 p) time and then
constructing a tree T from Y, we build T directly by inserting one cluster at a time.5
To do so, we use an O(n)-time method made possible by Theorem 4.5:

LEMMA 5.1. For any tree T and C ⊆ �(T ) with C �∈ C(T ), it is possible to determine
if C is compatible with T and, if so, insert C into C(T ) in O(n) time, where n = |�(T )|.

PROOF. Create a tree T ′ with �(T ′) = �(T ) in which all leaves belonging to C have a
common parent node attached to the root of T ′ and all leaves in �(T ′) \ C are attached
to the root. Clearly, the only non-trivial cluster occurring in T ′ is C. Let Tloose be the
loose consensus tree of {T , T ′}. By definition, C is compatible with T if and only if
C(Tloose) = C(T ) ∪ {C} and |C(Tloose)| = |C(T )| + 1. Run Algorithm Loose_Cons_Tree on
{T , T ′}, which takes O(n) time according to Theorem 4.5, and let Tloose be its output.
If the number of nodes in Tloose is larger than that of T (i.e., if the cluster C has been
inserted), then let T := Tloose; otherwise, answer “C is not compatible with T .”

The algorithm is named Greedy_Cons_Tree and is listed in Figure 6. Step 1 fixes an
arbitrary ordering of L and creates a bit vector Du

j of length n for each node u in each
tree Tj that indicates which leaves belong to �(Tj[u]) (for every b ∈ {1, 2, . . . , n}; the bth
bit of Du

j is set to 1 if and only if the leaf with number b in the ordering is a descendant
of u in Tj). Step 2 puts the resulting bit vectors (q in total) in a list W, sorts W, and does
a single scan of W to find the p different clusters in S and the number of occurrences
of each one. Steps 1 and 2 take O(nq) time by doing a bottom-up traversal of each Ti
and using radix sort to sort W. Next, Step 3 sorts p integers belonging to {1, 2, . . . , k}
to obtain a list X of all clusters in S sorted according to frequency, which takes O(k+ p)
time with counting sort. Finally, Steps 4 and 5 build a greedy consensus tree T by
trying to insert each cluster, according to the order in X , into T with the method from
Lemma 5.1. Step 4 uses O(n) time, and Step 5 O(np) time because of Lemma 5.1. The
total time complexity is O(nq + k + p + n + np) = O(nq). In summary:

THEOREM 5.2. Algorithm Greedy_Cons_Tree constructs a greedy consensus tree of S
in O(nq) time.

5Note that Algorithm Maj_Rule_Cons_Tree in Section 3 uses a similar kind of strategy; to keep track of
candidate clusters efficiently, it stores them in a tree instead of in a list.
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Remark 5.3. The problem of determining if Ti and Tj are compatible for all Ti, Tj ∈ S
and, if so, constructing a tree T ′ with C(T ′) = ⋃k

j=1 C(Tj), can be solved in O(nk)
time [Warnow 1994]. Another solution is obtained by adapting the method in the proof
of Lemma 5.1 as follows. Let T ′ := Loose_Cons_Tree(S). For j ∈ {1, 2, . . . , k}, run Day’s
algorithm (see Section 2.1) with Tref = T ′ and T = Tj . If �(Tj[u]) ∈ C(T ′) for every
u ∈ V (Tj) and j ∈ {1, 2, . . . , k}, then output T ′; otherwise, output “no.” The total running
time is O(nk).

6. IMPLEMENTATIONS AND EXPERIMENTAL RESULTS

We implemented our algorithms for constructing majority rule, loose, and greedy con-
sensus trees in the C++ programming language. Section 6.1 below describes a number
of modifications that were made to obtain fast running times in practice. Observe
that the modified algorithms achieve the same worst-case time complexities as in Sec-
tions 3–5 and remain fully deterministic. Specifically, we still do not use randomization
and hash tables for storing clusters.

After implementing the algorithms, we ran them on simulated datasets of vary-
ing sizes and compared their running times to those of some freely available, widely
used software: PHYLIP [Felsenstein 2005], SumTrees in DendroPy [Sukumaran and
Holder 2010], and COMPONENT [Page 1993]. (We did not compare our methods to
PAUP* [Swofford 2003] because it is commercial software that we did not have access
to.) The results are reported in Section 6.2.

Our prototype implementations have been combined into a package which we call
Fast Algorithms for Consensus Trees (FACT). A web interface to FACT has been set
up at the following URL:

http://compbio.ddns.comp.nus.edu.sg/~consensus.tree

The source code of FACT may also be obtained from there or directly from the authors.

6.1. Fast Implementations

Majority rule consensus tree and loose consensus tree:

A special data structure that can answer lca-queries in O(1) time after linear-time
preprocessing [Bender and Farach-Colton 2000; Harel and Tarjan 1984] was used in
the descriptions of the procedures Merge_Trees in Section 2.4 and One-Way_Compatible
in Section 2.5. Although this leads to conceptually simple and asymptotically optimal
algorithms, the linear-time preprocessing has a high constant factor. A faster (and more
easily codable) alternative that does not need such a data structure for answering lca-
queries is presented below.

We use the same notation as in Sections 2.4 and 2.5. For any node u ∈ V (T1), let
a := start(u), b := stop(u), and let a′ and b′ be the leaves in Lsuch that leaf rankT2

(a′) = a
and leaf rankT2

(b′) = b. Referring back to Lemma 2.7, it seems that the lca is required
because we need to check whether the parent of du and the parent of eu are both equal
to ru. We bypass this issue by making use of the correctness of Lemma 2.7 to deduce
that �(T1[u]) is compatible with T2 if and only if:

• depth(parent(du)) ≤ depth(ru) and depth(parent(eu)) ≤ depth(ru).
• The path from a′ to parent(a′

left) and the path from b′ to parent(b′
right) intersect and

therefore share at least one common internal node.
• The internal node common to these two paths which has the greatest depth is

lca(a′, b′).

We construct and store these paths explicitly during the preprocessing phase. For each
leaf x, we store the path from x to xleft in left path(x) and the path from x to xright in
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right path(x). By using resizable arrays to store the paths, we can query for a node at
a certain depth along any path in O(1) time.

Given a′ and b′, we assume without loss of generality that depth(a′
left) ≥ depth(b′

right).
We query right path(b′) for the node on the path from b′ to b′

right that is at depth
depth(a′

left). Let p1 := a′
left and p2 := the corresponding node on the path from b′ to b′

right.
There are two possibilities:

• If p1 = p2, then p1 is the lca of a′ and b′, that is, ru = p1. From this, we deduce that du
is the node on left path(a′) at depth depth(a′

left)+1, and eu is the node in right path(b′)
at the same depth.

• If p1 �= p2 and parent(p1) = parent(p2), then parent(p1) = lca(a′, b′) = ru. Therefore,
p1 = du and p2 = eu.

After finding ru, du, and eu in this way, the procedures Merge_Trees and One-
Way_Compatible continue their execution as described in Section 2.4 and 2.5.

Greedy consensus tree:

Step 5 of Algorithm Greedy_Cons_Tree in Section 5 tries to insert all clusters of S into
the current tree T , one after another according to their frequencies. Lemma 5.1 in
Section 5 demonstrated how to do this for any given cluster in O(n) time by applying
Algorithm Loose_Cons_Tree from Section 4. But since we only need to check if a cluster
(rather than an entire tree) is compatible with T , the following approach, with the
same asymptotic worst-case running time, turns out to be more efficient in practice:

Perform a bottom-up traversal of T and for each node u ∈ V (T ), calculate the number
of leaves from C that are in �(T [u]). Let num(u) denote this number. To compute
num(u), use the formula num(u) = ∑

num(ci) for every ci ∈ V (T ) that is a child of u.
The first node u encountered in the bottom-up traversal that satisfies num(u) = |C| is
the lowest common ancestor of C in T . Now, determine if C is compatible with T [u] by
checking if num(ci) = |�(T [ci])| or 0 for every child ci of u. This takes O(n) time and
the correctness follows from Lemma 2.2.

If C is compatible with T , then insert it as follows: Let u = lcaT (C) be the node found
during the bottom-up traversal described above. Create a new node v, let v be a child
of u, let every child ci of u satisfying num(ci) = |�(T [ci])| become a child of v instead,
and return the modified T . Since we change the parent-child relationship of each node
at most once, the time complexity of this procedure is also O(n).

Constant optimizations:

The computationally most intensive part of Greedy_Cons_Tree is the enumeration and
counting of clusters in Step 2. Clusters are represented as bit vectors of length n, so
to speed up the operations on clusters, we use words of length � to compress each bit
vector into �n

�
� words. Then, any two clusters can compared in O( n

�
) time, allowing the

enumeration and counting of clusters in Step 2 to be done in O( nq
�

) = O( n2k
�

) time.

6.2. Experimental Results

Simulated datasets:

For certain specified values of n and k, we generated a dataset as follows. First, a
random tree T with n distinctly labeled leaves was created. Here, T would represent
a “true” underlying phylogenetic tree. Next, a set S of k conflicting trees with the same
leaf label sets was derived from T by applying random mutations to k copies of T . Two
kinds of mutations were used:
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• Delete an internal node v, and attach the children of v to the parent of v.
• Disconnect a node v, and reattach it to some ancestor of the parent of v.

Before and after each mutation, the following invariant was maintained:
Every internal node has at least two children, and no leaf has any children.

The methods:

We evaluated the nine different methods listed below. As before, n = the number of
leaves, k = the number of trees, p = the number of distinct clusters, and q = the
number of clusters (including repetitions).

• M-PHYLIP: The majority rule consensus tree method in PHYLIP [Felsenstein 2005].
It counts the occurrences of each cluster using hashing and constructs the consensus
tree from the clusters that occur more than k

2 times. Since hashing is used, this
method has expected time complexity O(nk).

• M-SumTrees: The majority rule consensus tree method in SumTrees, which is part
of DendroPy [Sukumaran and Holder 2010]. The documentation for the implemented
algorithm was unavailable.

• M-Naı̈ve: A self-implemented, naive algorithm for computing the majority rule
consensus tree, based on Wareham [1985]. Given S, it runs Day’s algorithm (see
Section 2.1) O(k2) times, using each tree in S as the reference tree Tref and com-
paring it against the other trees in S to count the occurrences of all clusters. A
consensus tree is constructed from those clusters that appear more than k

2 times.
The time complexity is O(nk2).

• M-Fast: An implementation of our new majority rule consensus tree algorithm
Maj_Rule_Cons_Tree described in Sections 3 and 6.1. Its time complexity is O(nk).

• L-Naı̈ve: A self-implemented, naive algorithm for computing the loose consensus
tree. First, all clusters in the input trees are extracted as bit vectors and the dis-
tinct clusters are retrieved. Every pair of distinct clusters is checked for pairwise
compatibility, and the set of clusters compatible with all other clusters is then used
to construct the consensus tree. Applying the constant optimizations mentioned in
Section 6.1 gives a time complexity of O( nq

�
+ p2n

�
+ n2). For this implementation, we

set � = 60.
• L-Fast: An implementation of our new loose consensus tree algorithm
Loose_Cons_Tree described in Sections 4 and 6.1. Its time complexity is O(nk).

• G-PHYLIP: The greedy consensus tree method in PHYLIP [Felsenstein 2005]. Like
M-PHYLIP, the occurrences of the clusters are counted by hashing. Then, the clusters
are processed in non-increasing order of the number of occurrences and a maximal set
of pairwise compatible clusters is created. Checking whether two clusters are com-
patible is sped up to O( n

�
) by using words of length �. The expected time complexity

is O(q + n2q
�

+ n2).
• G-Naı̈ve: A naive variant of the algorithm used in G-PHYLIP. The difference is that

hashing is not used to count the clusters. Instead, words of length � = 60 are used to
speed up the computations. The time complexity is O( nq

�
+ nq2

�
+ n2).

• G-Fast: An implementation of our new greedy consensus tree algorithm
Greedy_Cons_Tree described in Sections 5 and 6.1. Its time complexity is O( nq

�
+ np).

For this implementation, we set � = 60.

In addition to the above, the program COMPONENT [Page 1993] was also considered.
This software uses hashing to compute its results. However, COMPONENT seems to
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have a built-in limit on the number of leaves and crashes when n > 100. For this
reason, it was not evaluated in our experiments.

Testing:

We used the following combinations of the parameters n and k:

• (a) n = 500, k = 1000
• (b) n = 2000, k = 1000
• (c) n = 5000, k = 100
• (d) n = 2000, k ∈ {2000, 3000, 4000, 5000}
• (e) n ∈ {500, 1000, 2000, 3000, 4000, 5000}, k = 100

For each of (a)–(d), we generated 10 datasets, applied the methods, and measured
their running times. The purpose of case (c) was to demonstrate that M-Fast is much
faster than M-PHYLIP when n 
 k, and the purpose of case (d) was to investigate the
performance of M-Fast and M-PHYLIP for very large inputs. (Thus, we did not run
the other methods for (c) and (d).) In (e), we generated at least three datasets for each
specified value of n and plotted the methods’ worst-case running times against each
other in order to visualize the differences between them for a small, fixed value of k.

All experiments were carried out on Ubuntu Nutty Narwhal, a 64-bit operating
system with 8.00GB RAM and a CPU running at 2.20GHz. The worst-case and average
running times (in seconds) are reported below.

Experimental results:

(a) n = 500, k = 1000:

Worst-case Average
M-PHYLIP 1.94 1.88
M-SumTrees 91.18 89.55
M-Naı̈ve 291.19 274.96
M-Fast 3.72 3.69
L-Naı̈ve 8.00 7.12
L-Fast 5.34 5.16
G-PHYLIP 2.94 2.67
G-Naı̈ve 4.34 4.14
G-Fast 4.10 3.76

(b) n = 2000, k = 1000:

Worst-case Average
M-PHYLIP 34.07 30.03

M-SumTrees 932.12 918.55
M-Naı̈ve 1100.69 1089.57
M-Fast 16.09 14.86
L-Naı̈ve 335.31 319.03
L-Fast 22.11 21.85

G-PHYLIP 67.19 63.09
G-Naı̈ve 115.72 111.78
G-Fast 41.32 40.08

(c) n = 5000, k = 100:

Worst-case Average
M-PHYLIP 93.25 90.04

M-SumTrees — —
M-Naı̈ve — —
M-Fast 4.40 4.28
L-Naı̈ve — —
L-Fast — —

G-PHYLIP — —
G-Naı̈ve — —
G-Fast — —
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(d) n = 2000, k ∈ {2000, 3000, 4000, 5000}:
M-PHYLIP returned “Error allocating memory” for n = 2000, k ≥ 2000, whereas M-
Fast worked fine and obtained the following worst-case and average running times.

k Worst-case Average
2000 31.22 30.86
3000 47.42 46.23
4000 62.54 61.88
5000 78.96 77.78

(e) n ∈ {500, 1000, 2000, 3000, 4000, 5000}, k = 100:
In the next three diagrams, the horizontal axis represents n and the vertical axis
represents the worst-case running time (in seconds).

Journal of the ACM, Vol. 63, No. 3, Article 28, Publication date: June 2016.



28:22 J. Jansson et al.

Discussion:

Based on the experimental results, we see that the improved consensus tree algorithms
perform much better than their naive counterparts, as expected. We also see that our
prototype implementations are competitive against the currently available software,
even though our algorithms do not use any randomization.

—M-Fast (Maj_Rule_Cons_Tree) was better than SumTrees and COMPONENT for all
datasets. Furthermore, it was significantly faster than PHYLIP when nwas large and
k was small (for n = 5000, k = 100, it was about 20 times faster). On the other hand,
for small n, PHYLIP was faster. This behavior can be explained by the probability
of collisions in the hash tables that PHYLIP uses to store clusters increasing as n
increases.

—M-Fast (Maj_Rule_Cons_Tree) may come in handy when analyzing huge phylogenetic
datasets in the future. For large inputs (n = 2000 and 2000 ≤ k ≤ 5000), PHYLIP
ran out of memory but our algorithm did not.

—L-Fast (Loose_Cons_Tree) could handle much larger datasets than COMPONENT
and ran quickly, producing a solution for the dataset with n = 2000, k = 1000 in a
little over 20s.

—G-Fast (Greedy_Cons_Tree) was slower than PHYLIP when n and k were small and
n � k. It outperformed PHYLIP as the datasets got larger and n 
 k.

We conclude that hashing is not always necessary to obtain fast algorithms for building
consensus trees.

7. FINAL REMARKS

To end this article, we briefly mention a few other useful types of consensus trees
and some related open problems. As above, let S = {T1, T2, . . . , Tk} be a set of trees
satisfying �(T1) = �(T2) = · · · = �(Tk) = L for some leaf label set L of cardinality n.

First, a strict consensus tree of S [Sokal and Rohlf 1981] is a tree T with �(T ) = L
containing precisely those clusters that occur in every tree in S, i.e., C(T ) = ⋂k

i=1 C(Ti).
This type of consensus tree is well understood [Bryant 2003; Felsenstein 2004; Sung
2010]. The advantages of the strict consensus tree is that it is always unique and can
be computed quickly; the algorithm by Day [1985] (see Section 2.1) can compute it
in (optimal) O(nk) time. The disadvantage of the strict consensus tree is that it often
discards valuable branching information. For example, in Figure 1, only the trivial
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clusters occur in every tree in S, so the strict consensus tree of S is just a root node to
which the leaves a, b, c, d, e are directly attached.

Second, an R* consensus tree of S [Bryant 2003] is a tree T with �(T ) = L that
contains as embedded subtrees as many so-called rooted triplets as possible from a
special set Rmaj and no other rooted triplets; see Bryant [2003], Degnan et al. [2009],
and Jansson and Sung [2013] for the definition. The R* consensus tree has several nice
properties [Degnan et al. 2009], but it is still not known how to compute it efficiently.
The fastest methods run in O(n3k) time for unbounded k [Bryant 2003; Jansson and
Sung 2013] and in O(n2

√
log n) time when k = 2 [Jansson and Sung 2013], and it is an

open problem to reduce their running times.
Third, extensions of consensus trees to multi-labeled phylogenetic trees (MUL-trees),

where the same leaf label may be used more than once in the same tree, were introduced
by Lott et al. [2009] and further studied in Cui et al. [2012] and Huber et al. [2012].
Here, a major obstacle is that MUL-trees’ cluster collections are no longer sets but
multisets, and certain basic problems become NP-hard when extended to multisets.
A challenging task is to define informative types of consensus MUL-trees that admit
efficient algorithms.

Some other types of consensus trees that we are currently working on are the Adams
consensus tree [Adams III 1972], the majority rule (+) consensus tree [Dong et al.
2010], the frequency difference consensus tree [Goloboff et al. 2003], and local consen-
sus trees [Kannan et al. 1998]. Any new consensus tree algorithms that we implement
will be included in the FACT package (see Section 6). For further discussions on the
advantages and disadvantages of different types of consensus trees, see [Bryant 2003;
Degnan et al. 2009; Felsenstein 2004; Holder et al. 2008; Sung 2010].
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