
Theoretical Computer Science 532 (2014) 14–30
Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Fast relative Lempel–Ziv self-index for similar sequences

Huy Hoang Do a,∗, Jesper Jansson b, Kunihiko Sadakane c, Wing-Kin Sung a

a National University of Singapore, COM 1, 13 Computing Drive, Singapore 117417, Singapore
b Laboratory of Mathematical Bioinformatics, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
c National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

a r t i c l e i n f o a b s t r a c t

Keywords:
String decomposition
Textual substitution
Exact pattern searching
FM-index
Suffix range
Rank and select

Recent advances in biotechnology and web technology are continuously generating huge
collections of similar strings. People now face the problem of storing them compactly
while supporting fast pattern searching. One compression scheme called relative Lempel–
Ziv compression uses textual substitutions from a reference text to represent each string
in S as a concatenation of substrings from a reference string R . This basic scheme gives a
good compression ratio when every string in S is similar to R , but does not provide any
pattern searching functionality. Here, we describe a new data structure based on relative
Lempel–Ziv compression that is space-efficient and also supports fast pattern searching.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

There is an increasing need for indexing methods that can store collections of similar strings (or repetitive text) compactly
while supporting fast pattern searching queries. For example, in genomic applications, the sequencing of individual genomes
is becoming a feasible task. The “1000 Genomes Project” [1], aimed at characterizing common human genetic variations,
has already sequenced the partial genomes of a large number of persons from various populations. Aligning a read from a
sample to multiple human genomes has been proven to be useful for identifying polymorphisms [38]. In the near future,
researchers will face the problem of storing those individual (and highly similar) genomic sequences compactly and indexing
them efficiently. As another example, Wikipedia documents are modified and snapshots are taken every day to remember
older versions of the data. Typically, changes between versions are small. Hence, fast indexing methods for compressed
similar texts may allow people to search archived versions of Wikipedia documents quickly. The above applications motivate
the following general task:

The string set self-indexing problem: Given a set of strings S = {S1, . . . , St}, construct a data structure that can subse-
quently report all exact occurrences in S of any query pattern without using S .

This paper is concerned with the case where the given strings are similar. Before stating our new results, we survey
some existing data compression methods and compressed indexes that are suitable for sets of similar sequences in the next
two subsections. Throughout the paper, we use the terms “string”, “sequence”, and “text” synonymously.

1.1. Similar text compression methods

To store a single string S of length n, modern compression methods often guarantee to use less than or equals to nHk(S)

bits where Hk(S) is the k-th order empirical entropy of the string S . However, this entropy measurement may not be a

* Corresponding author.
E-mail addresses: hoang@comp.nus.edu.sg (H.H. Do), jj@kuicr.kyoto-u.ac.jp (J. Jansson), sada@nii.ac.jp (K. Sadakane), ksung@comp.nus.edu.sg

(W.-K. Sung).
0304-3975/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.tcs.2013.07.024

http://dx.doi.org/10.1016/j.tcs.2013.07.024
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:hoang@comp.nus.edu.sg
mailto:jj@kuicr.kyoto-u.ac.jp
mailto:sada@nii.ac.jp
mailto:ksung@comp.nus.edu.sg
http://dx.doi.org/10.1016/j.tcs.2013.07.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2013.07.024&domain=pdf

H.H. Do et al. / Theoretical Computer Science 532 (2014) 14–30 15
Base compression method Popular in Effective(∗) Search time(∗∗) Reference
LZ78 GIF image No linear [3,13,35]
BWT-transform bzip2 No linear [30]
LZ77 zip Yes quadratic [23]
Grammar based Yes quadratic [10,17]
Restricted structure Yes quadratic [21]
RLZ Yes linear this paper

Fig. 1. Summary of the compressed indexing structures. (∗): Effective for similar sequences. (∗∗): The search time is expressed in terms of the pattern length.

good upper bound for repetitive texts whose repeats are longer than k. For example, the storage based on entropy bound
of the text S S (where |S| � k) is 2nHk(S) bits. On the other hand, one can easily encode the text in nHk(S) + O (log n)

bits. Thus, there are methods that achieve the k-th order empirical entropy, yet perform poorly for repetitive texts [39].
As a consequence, compression methods have been designed for specific types of repetitive texts in biology. For example,
GenCompress [8] compresses a text considering approximate repeats. Christley et al. [9] and Kuruppu et al. [25] compressed
DNA sequences with respect to a reference sequence. BioCompress [20], XM [6], and COMRAD [24] are other repetitive
compressors designed specifically for DNA. Alternative approaches include methods based on grammar compression (for
example, Re-pair [28] was one of the first effective grammar-based compression methods) and LZ77 compression [41] for
general repetitive texts. Cfact [34] and Offlines [2] greedily replace duplicate text with shorter codes.

The compression methods above can store repetitive texts compactly, but do not allow random access to the compressed
text directly. Previous work has addressed this issue. Kreft and Navarro [22] provided the first efficient random access oper-
ations for the LZ77 method. Bille et al. [4] built additional data structures on top of an existing grammar-based compression
scheme to allow random access of any region with only logarithmic extra time per query.

1.2. Compressed indexes for similar text

Although the above compression schemes can compress similar sequences, they do not allow us to search for the oc-
currences of an arbitrary pattern quickly. Below, we survey some specialized data structures for indexing repetitive texts.
In a pioneering paper of Mäkinen et al. [30], a repetitive text is defined as a collection of strings of total length N , where
the strings are assumed to be highly similar, each string length is approximately n, and the strings share an alphabet of
size σ . They employed run-length encoding to reduce the redundancy of a suffix array structure. Their approach shrinks
the total index size greatly, but the space of the index is still proportional to the number of strings. In another paper,
Huang et al. [21] assumed that every string contains at most m′ point mutations with respect to a reference string. They
designed a space-efficient data structure of size O (n logσ + m′ log m′) bits to encode all such strings. Although the resulting
data structure is small, their approach cannot index certain other types of similar strings such as genome rearrangements,
formed by swapping substrings in genomic sequences, efficiently. (When only a few such rearrangements have occurred,
long substrings of the genomic sequences will be preserved; they just occur in a different order.) Kreft and Navarro [23]
built a self-index based on LZ77 compression. If the text of length N can be compressed using m LZ77 phrases, their data
structure is of size 2m log N + m log m + 5m logσ + O (m) + o(N) bits, but the query time is O (�2h + (� + occ) log N), i.e.,
quadratic in the pattern length �, and also dependent on a variable h, which equals to m in the worst case. In another line of
research, Claude and Navarro [10] proposed a self-index for grammar-based compression methods. It uses O (r log r)+ r log N
bits, where r is the number of rules generated by their grammar compression, h is the height of the grammar tree, and
the resulting query time is quadratic (O ((�2 + h(� + occ)) log r)). Using another technique for constructing a grammar from
the LZ77 phrasing, Gagie et al. [17] obtained a data structure of size 2r log r + O (m(log n + log m log logm)) and query time
O (�2 + (� + occ) log log N). Some results for LZ78 compression and FM-index were given in [3,13,35]. They have good query
time but require O (N Hk) bit-space in the worst case. They may not be good enough to index a repetitive text in prac-
tice [39] or in theory [36]. In summary, existing indexes for a set of similar strings either require: (1) a lot of space, (2) the
text to have some special structure, or (3) quadratic query time (for a summary, see the table in Fig. 1).

1.3. Our results

Our main contribution is a compressed static indexing data structure with two alternative space–time trade-offs. The
smaller alternative can store a set of strings S relatively to a reference string R in asymptotically optimal space. The larger
alternative improves the query time at the expense of using more space. The results are summarized as follows:

Theorem 1.1. Given a reference string R of length n over an alphabet Σ of size σ = O (loga n) for some constant a and a set of strings
S = {S1, . . . , St} over Σ , let m be the smallest possible number of substrings of R (a.k.a. factors) to represent S . All exact occurrences
of any query pattern P of length � can be reported using either of the following alternatives. Their complexity specifications are:

(a) (2 + 1
ε)nHk(R) + O (n) + O (m log n) bits and O (� logε n + occ · (logε

σ n + log m
log n)) query time;

(b) (2 + 1)nHk(R) + O (n) + O (m log n log log n) bits and O (� log log n + occ · (logε
σ n + log m

)) query time,
ε log n

16 H.H. Do et al. / Theoretical Computer Science 532 (2014) 14–30
R = ACGTGATAG
S1 = TGATAGACG = TGATAG, ACG = 8 2
S2 = GAGTACTA = GA, GT, AC, TA = 5 6 1 7
S3 = GTACGT = GT, ACGT = 6 3
S4 = AGGA = AG, GA = 4 5

(a)

T [..] Factor Pos. in R

1 AC 1..2

2 ACG 1..3

3 ACGT 1..4

4 AG 8..9

5 GA 5..6

6 GT 3..4

7 TA 7..8

8 TGATAG 4..9

(b)

T [..] Factor (rev.) Pos. in R

1 GA 5..6

2 TA 7..8

3 AC 1..2

4 AG 8..9

5 TGATAG 4..9

6 ACG 1..3

7 GT 3..4

8 ACGT 1..4

(c)

Fig. 2. (a) A reference string R and a set of strings S = {S1, S2, S3, S4} decomposed into the smallest possible number of factors from R . (b) The array T [1..8]
(to be defined in Section 2) consists of the distinct factors sorted in lexicographical order. (c) The array T [1..8].

where occ is the number of occurrences of P , k is any positive integer less than logσ n, and ε � 1 is a constant. For both alternatives,
the data structure can be constructed in O (

∑t
i=1 |Si | + (n + m) log(n + m)) time.

Our compression scheme is based on a variant of the relative Lempel–Ziv (RLZ) compression scheme from [25]. It rep-
resents each Si ∈ S as a concatenation of substrings of R (referred to as factors) obtained from the LZ77-like factorization
of R . See Fig. 2 for an example. Experiments on large scale genomic data in [25] have shown that this method yields good
compression ratios for repetitive texts even when parts of the sequence are rearranged.

In this paper, we assume that the reference R is given. In case where R is not available, we can apply the method of
Kuruppu et al. [26] to find a suitable one. We also assume the alphabet size σ is in polylogarithmic of the word length
(i.e., σ = O (loga n) for some constant a). For larger alphabets, e.g. σ = Ω(nα), the query time needs an additional term of
O (� logσ/ log log n + occ · logσ) and the space needs an additional term of O (n logσ log log n/ log n) = o(n logσ).

Both alternatives in Theorem 1.1 use the same pattern searching algorithm. The algorithm considers two cases: Case 1,
where the pattern P is a substring of a single factor; and case 2, where P crosses at least one boundary between two
factors. (See Fig. 4.) For case 2, the pattern is partitioned into two parts: left and right. The left part ends at the end of the
first factor, while the right part begins at the start of the second factor. For each possible partition of the pattern, the left
part and right part are searched independently and then joined together by an appropriate 2D range query data structure.
However, to avoid the quadratic pattern search time, we use multiple tricks to reuse results between the searches in each
partition.

We remark that recently, Gagie et al. [17] independently proposed a similar method to index a set of sequences. Their
space complexity is O (nHk(R) + n + m(log n + log m log log m)) bits, and the query time is O ((� + occ) logε n), where ε > 0.
Thus, compared to the method in our Theorem 1.1(a), their method always uses more space while having similar time.
Compared to that in Theorem 1.1(b), theirs is slower while having asymptotically comparable space. Also note that in their
method, the reference sequence is restricted. It must be one of the sequences in S (otherwise false occurrences may be
reported).

The paper is organized as follows. Section 2 defines the notation used throughout the paper and outlines the framework
of our new data structures. Section 3 describes some auxiliary data structures used in our construction. These data struc-
tures are known in the literature; however, we also present some improvements which may be of independent interest.
Section 3.4 presents a new data structure for answering a restricted type of 2D range queries. Sections 4–7 describe further
technical details of our main data structure.

2. Data structure framework

2.1. The relative Lempel–Ziv (RLZ) compression scheme

Let R be a reference sequence of length n over an alphabet Σ and let S = {S1, . . . , St} be a given set of strings over Σ .
Each sequence Si ∈ S is compressed based on R by relative Lempel–Ziv (RLZ) compression [25]. Precisely, given two strings S
and R , where R contains all the symbols in S , the Lempel–Ziv factorization (or parsing) of S relative to R , denoted by L Z(S|R),

H.H. Do et al. / Theoretical Computer Science 532 (2014) 14–30 17
Input: A string S and the BWT of R
Output: A decomposition of S , i.e., S1 . . . Sk

1: i = 1; k = 1:
2: while i � |S| do
3: By backward search on R , identify the longest prefix Sk = S[i.. j] of S[i..|S|] such that Sk is a substring of R .
4: k = k + 1; i = j + 1;
5: end while
6: Report S1 . . . Sk

Fig. 3. Algorithm to decompose a string into RLZ factors.

is a way to express S as a concatenation of substrings of the form S = w0 w1 w2 . . . wz such that: (1) w0 is an empty string;
and (2) wi for i > 0 is a non-empty substring of S and wi is the longest prefix of S[(|w0..wi−1| + 1)..|S|] that occurs in R .
Each substring wi is called a factor (or phrase), and can be represented by a pair of numbers (pi, li), where pi is a starting
position of wi in R and li denotes the length of wi .

L Z(S|R) was suggested in [25]. The algorithm, which runs in linear time, is summarized in Fig. 3. By definition, the
decomposition guarantees that no factor can be expanded any further to the right. Furthermore, the RLZ compression
scheme has the following property:

Lemma 2.1. L Z(S|R) represents S using the smallest possible number of factors.

Proof. Consider the algorithm to decompose a string into RLZ factors in Fig. 3. Let distR(S) denote the minimal number of
factors of R to represent S . We prove the property by induction. First, any string S of length 1 has a decomposition using
distR(S) = 1 factor of R .

Next, by induction, for any string X of length less than �, we assume X can be constructed using distR(X) factors of R .
Now, consider a string S of length � and assume the algorithm reports S = S1 . . . Sk . To obtain a contradiction, suppose the
optimal decomposition is S ′

1 . . . S ′
k′ where k′ < k. Since the algorithm always finds the longest string, we know that |S1| �

|S ′
1|. Note that for S[|S1|+1..�], the algorithm will decompose it into S2 . . . Sk , which consists of k −1 factors. The induction

hypothesis states that distR(S[|S1| + 1..�]) = k − 1. As S[|S ′
1| + 1..�] is longer than S[|S1| + 1..�], we have distR(S[|S ′

1| +
1..�]) � distR(S[|S1| + 1..�]). Hence, k′ − 1 = distR(S[|S ′

1| + 1..�]) � distR(S[|S1| + 1..�]) = k − 1. Contradiction. �
For every Si ∈ S , denote the Lempel–Ziv factorization of each Si relative to R by Si = Si1 Si2 . . . Sici . Define m = ∑t

i=1 ci .
By Lemma 1, m is in fact the smallest possible number of factors to represent S . Next, take all the s distinct factors that
appear in the factorizations for S and let T [1..s] be an array containing these factors sorted in lexicographical order (see
Fig. 2(b)). Note that s � min{n2,m}. Our data structure stores T [1..s] in O (s log n) bits by encoding each T [j] by its starting
and ending positions in the reference string R , and the set S in O (m log s) = O (m log n) bits by representing each Si ∈ S as
a list of indices from T [1..s] (see Fig. 2(a)).

Let F [1..m] be the lexicographically sorted array of all non-empty suffixes in S that start with a factor; i.e., each element
F [y] is of the form Sip Si(p+1) . . . Sici , and is called a factor suffix from here on. See Fig. 12(a) for an example. Importantly,
our data structure does not store F [1..m] explicitly. For any string x, x denotes its reverse. Let T [1..s] be an array of all
reversed distinct factors Sij sorted lexicographically. By using the relative Lempel–Ziv decomposition, each sequence Si can
be viewed as a new sequence S ′

i based on the alphabet of all the distinct factors in T [1..s] (see Fig. 2).

2.2. Pattern searching

To find the occurrences of a query pattern P in S , we follow the basic strategy outlined in Section 1.3. Suppose P is a
query pattern of length �. Each occurrence of P in S1, . . . , St belongs to one of the following two main cases; see Fig. 4:

Fig. 4. When P occurs in string Si , there are two possibilities, referred to as case 1 and case 2. In case 1 (shown on the left), P is contained inside a single
factor Sip . In case 2 (shown on the right), P stretches across two or more factors Si(p−1), Sip , . . . , Si(q+1) .

18 H.H. Do et al. / Theoretical Computer Science 532 (2014) 14–30
Fig. 5. Each row represents the string T [i] in reverse; each column corresponds to a factor suffix F [i] (with dashes to mark factor boundaries). The locations
of the number “1” in the matrix mark the factor in the row preceding the suffix in the column. Consider an example pattern “AGTA”. There are 5 possible
partitions of the pattern: “-AGTA”, “A-GTA”, “AG-TA”, “AGT-A” and “AGTA-”. Using the index of the sequences in Fig. 2, the big shaded box is a 2D query for
“A-GTA” and the small shaded box is a 2D query for “AG-TA”.

• Case 1: P lies completely inside one factor, denoted by Sip .
• Case 2: P is not a substring of a single factor, i.e., P = X Sip . . . SiqY , where X is a suffix of Si(p−1) and Y is a prefix

of Si(q+1) .

(Observe that the case P = XY is an instance of case 2.) To locate all occurrences of P , our data structure uses a number
of auxiliary data structures (explained in Subsection 2.3), to report all occurrences of P in S according to case 1 and case 2
separately. Let occ1 and occ2 be the number of occurrences of P as in case 1 and case 2, respectively.

Case 1: [P occurs inside a factor] Since all the factors are substrings of the reference R , the pattern is first searched for in
the reference. Then, the factors that cover an occurrence of the pattern in the previous step are reported as the result. This
case takes O (� + occ1 logε n) time, as discussed in detail in Section 4.

Case 2: [P is not a substring of a single factor] As illustrated in Fig. 4, in this case, every occurrence of P can be divided into
two parts: the left part (P [1.. j] matches some suffix of a factor), and the right part (P [j + 1..�] matches a factor suffix). To
find the occurrences of this case, we try to match all the (� + 1) possible partitions (P [1.. j], P [j + 1..�]) of the pattern. For
each partition, the left parts are matched against the set of reversed factors in T . The successful matches are represented
by a range in T . The right parts are matched against the set of factor suffixes in F . The results are also represented by a
range in F . Then, the successful matches of the left part P [1.. j] and right part P [j + 1..�] are combined and validated using
a 2D-range query data structure. (See Fig. 5 for an example.)

2.3. Overview of our main data structure

The data structure for case 1 is called I(T) and is defined in Section 4. It finds all occurrences of P corresponding to
case 1 in O (� + occ1 logε n) time and uses 2n + o(n) + O (s log n) bits (Theorem 4.1).

The data structures that facilitate the searching for case 2 are more complicated and consist of three components:
(i) X (T) to match the left parts; (ii) Y(F , T) to match the right parts; and (iii) M to report the correct combinations of the
left parts and right parts. Further technical details of X (T), Y(F , T), and M are given in Sections 5, 6, and 3.4, respectively.
Note that each of the two alternatives in Theorem 1.1 uses the same components for (i) and (ii). Their space and time
trade-offs result from using different versions of (iii). The usage of each component is summarized as follows:

(i) First, X (T) in Section 5 uses O (s log n) + o(n) bits space. It finds all occurrences of prefixes of P that are equal to a
suffix of a factor Si(p−1) in O (� log log n) time. More precisely, X (T) returns, for every j, the maximal range st j ..ed j

in T such that P [1.. j] is a prefix of every element in T [st j], . . . , T [ed j].
(ii) Second, Y(F , T) in Section 6 uses (2 + 1/ε)nHk(R) + 2.55n + o(n logσ) + O (m log n) bits space. It finds all occurrences

of suffixes of P that are equal to a prefix of a factor suffix in F , i.e., Sip . . . SiqY , where Y is a prefix of Si(q+1) , in
O (�(logσ/ log log n + log log n)) time. More precisely, Y(F , T) returns, for every j, the maximal range st′

j ..ed′
j such that

P [(j + 1)..�] is a prefix of every element in F [st′
j], . . . , F [ed′

j].

H.H. Do et al. / Theoretical Computer Science 532 (2014) 14–30 19
(iii) Third, we encode all combinations of Si(p−1) and Sip . . . SiqY as follows: Define M to be a binary (s × m)-matrix where
M[x, y] = 1 if and only if T [x] is the preceding factor of the suffix F [y], i.e., F [y] = Sip Si(p+1) . . . Sici and Si(p−1) = T [x]
is the x-th lexicographically smallest in T . Note that each column of the matrix M contains exactly one 1. (See Fig. 5.)

Lemma 2.2. All case 2 occurrences of P can be found by listing the entries equal to 1 in the rectangles [st j, ed j] × [st′
j, ed′

j] in M, for
all j.

Proof. (→) Consider an occurrence of case 2 of P in Si , that is, Si[s..e] = P and Si[a..t] is a factor and a � s < t < e. Let
T [p] be the entry in T that represents the factor Si[a..t]. We have Si[t + 1..|Si |] is a factor suffix. Let F [p′] be the entry in F
that represents Si[t + 1..|Si |]. By the definition of the matrix M , there is an entry 1 in M[p, p′]. Consider j = (t − s + 1), we
have P [1.. j] = Si[a..s] is a suffix of T [p], and therefore, st j � p � ed j . Similarly, P [j..|P |] is prefix of F [p′], and therefore,
st′

j � p′ � ed′
j . Therefore, the occurrence Si[s..e] = P implies a number 1 in the specified rectangle.

(←) Consider a number 1 in the region [st j, ed j] × [st′
j, ed′

j]. The position of the occurrence can be found as follows. Let
(i′, j′) be the position of the number 1. Let Si[p..|Si |] be the factor suffix of F [j′]. We have P [j + 1..|P |] = Si[p..p + |P | − j]
Since T [i′] is the previous factor of F [j′], Si[p − j..p − 1] = P [1.. j]. Therefore, P occurs in Si from position p − j to
position |P |. �

For each pattern P of length �, we may need up to � queries in the matrix M to find all the results. (See
Fig. 12(b) for an example.) Section 3 gives two alternative 2D range query data structures M that support the oper-
ation query _2d(M, [st, ed], [st′, ed′]) on M for finding these entries: If M is of size O (m log s log log s) bits, all entries
equal to 1 can be found in O ((1 + occ) log log s) time for each query, and if M is of size O (m log s) bits, the query takes
O ((1 + occ) · logε s) time.

As a final step, we need a data structure to decode all occurrences of cases 1 and 2 to find their actual locations in S .
This simple data structure, called D, is used to convert indices of F to their exact locations in S . It requires O (m log n) bits,
and O (log m/log n + log log n) time for decoding each occurrence. The details are presented in Section 7.

Note that the data structure is designed as a static database. Once the reference sequence is given, the input strings can
be factorized in linear time using the algorithm in Section 2.1, i.e., using O (N) time where N is the total length of the input.
The construction algorithms for X , Y and I are not complicated. The internal components can be directly constructed based
on their definitions using only constant number of sort and scan operations on some arrays. All the external components
(Section 3) can be built in O (m log m) time. The whole data structure can be constructed in O (N + (n +m) log(n +m)) time.

The total space equals the sum of the spaces of all components, namely: arrays T and T ; data structures: I(T), X (T),
Y(F , T), M and D. (Note that the FM-indexes of R although counted only inside Y(F , T), it is shared with I(T) and X (T)

for looking up values in suffix array.) Putting everything together, the total space requirement is (2 + 1/ε)nHk(R) + 5.55n +
O (m log n) bits, while all occurrences of P in S can be found in O (�(logσ/ log log n + logε n)+ occ · (logε

σ n + log m
log n)) time; or

(2 + 1/ε)nHk(R) + 5.55(n) + O (m log n log log n) bits and O (�(logσ/ log log n + log log n) + occ · (logε
σ n + log m

log n)) time. When

σ is in Ω(logO (1) n), the term logσ/ log log n becomes O (1). We thus obtain Theorem 1.1 above.

3. Some useful auxiliary data structures

3.1. rank and select and integer data structures from the literature

Let B[1..n] be a bit vector of length n with k ones and n − k zeros. The rank and select data structure supports two
operations: rankB(i) returns the number of ones in B[1..i]; and selectB(i) returns the position in B of the ith one. Given
an array A[1..n] of non-negative integers, where each element is at most m, we are interested in the following operations:
max _ indexA(i, j) returns arg maxk∈i.. j A[k], and range _ queryA(i, j, v) returns the set {k ∈ i.. j: A[k]� v}. We also need one
more operation for the case when A[1..n] is sorted in non-decreasing order, called successor _ indexA(v), which returns the
smallest index i such that A[i] � v . The data structure for this operation is called the y-fast trie [40]. The complexities of
some existing data structures supporting the above operations are listed in the table in Fig. 6.

Operation Extra space Time Reference Remark
rankB (i), selectB (i) log

(n
k

) + o(n) O (1) [33]
max _ indexA(i, j) 2n + o(n) O (1) [16]
range _ queryA(i, j, v) O (n log m) O (1 + occ) [31], p. 660
successor _ indexA(v) O (n log m) O (log log m) [40] A is sorted

Fig. 6. The time and space complexities to support the operations defined above.

20 H.H. Do et al. / Theoretical Computer Science 532 (2014) 14–30
3.2. Suffix array and FM-index

Consider any string R with a special terminating character $ which is lexicographically smaller than all the other
characters. The suffix array S AR is the array of integers specifying the starting positions of all suffixes of R sorted lex-
icographically. For any string P , let st and ed be the smallest and the biggest, respectively, indexes such that P is the
prefix of suffix S AR [i] for all st � i � ed. Then, (st, ed) is called a suffix range or S AR -range of P , i.e., P occurs at
S AR [st + 1], . . . , S AR [ed] in R . For any given string P specified by its suffix range (st, ed) in S AR , an FM-index of R supports
the following operations: lookupR(i) returns the value of S AR [i]; ΨR(i) returns the index j such that S AR [j] = S AR [i] + 1;
and backward _ searchR(c, (st, ed)) returns the suffix range in S AR of the string c P , where c is any character and (st, ed) is
the suffix range of P .

Lemma 3.1. Given any string R of length n over an alphabet of size σ , the FM-index of R uses nHk(R) + O (n logσ log log n/ log n)

bits and supports backward _ searchR in O (logσ/ log log n) time and ΨR in O (1) time (where k < logσ n). Given additional
(1/ε)nHk(R) + 2(log e + 1)n + o(n) bits, lookupR can be supported in O (logε

σ n + logσ) time.

Proof. The FM-index, that uses nHk(R) + O (n logσ log log n/ log n) bits and supports the operations backward _ searchR

and ΨR within the specified time, is described in [12,29,32]. [19] showed how to support ΨR and lookupR using
(1 + 1/ε)nHk(R) + 2(log e + 1)n + o(n) bits. If we store the FM-index and the data structure in [19] separately, it takes
(2 + 1/ε)nHk(R) + O (n) bits. Since these two data structures have some overlap, we can reduce the space when storing
both of them by nHk(R) bits as follows:

Let Σ i be an alphabet, such that for any character c ∈ Σ i , c = a1a2 . . .a2i , where a j ∈ Σ . Let Ri be the sequence using
the alphabet Σ i , such that Ri[j] = R[2i × j]R[2i × j + 1] . . . R[2i × j + 2i − 1]. Let Ψ i be the Ψ function for sequence Ri .

In [19], a recursive data structure of (1 + 1/ε) level is stored to compute the value of S AR . Let h′ = log logσ n and
h = log log n, they store Ψ i for i = 0,h′ε,2h′ε, . . . ,h′ and S ARh . However, since ΨR = Ψ 0, and ΨR is provided by the normal
FM-index, we don’t need additional space for Ψ 0. That saves nHk(R) bits. �

In the FM-index above, the compression technique is only effective for moderate size alphabet (i.e., σ = O (loga n) for
some constant a). When the alphabet is larger (e.g. σ = O (nα)), the sequence becomes more like a permutation of distinct
numbers. The second term in the space complexity can surpass the main nHk(R) term; and Hk(R) grows to its log n upper
bound. Moreover, the running time with logσ is no longer a small number. A general FM-index is an FM-index extended
to alphabets of unbounded size. It is not compressed, but its query time is only log logσ . The next lemma is our simple
extension of the normal FM-index to the general FM-index case, obtained by applying the result from [18] and some
additional arrays:

Lemma 3.2. Given any string S of length m over an alphabet of size s, there exists a general FM-index of S that uses m log s +o(m log s)
bits and supports backward _ searchS in O (log log s) time and ΨS in O (1) time. Using an additional m log s +o(m log s) bits, lookupS
can be supported in O (log m/ log s) time.

Proof. The original data structure for the FM-index uses m log s + o(m log s) bits space and support backward _ searchS and
ΨS as described in Sections 3.1 and 3.2 of [18]. We now explain how to support lookupS using the stated space and time
complexity.

Define Ψ 1
S (i) = ΨS (i) and Ψ k

S (i) = ΨS (Ψ
k−1
S (i)) for k > 1. Then, we have, S A S [Ψ k

S (i)] = S A S [i] + k. Let t = log m/ log s.
Use the additional bits to store:

• A succinct bit vector B[1..m] such that B[i] = 1 if and only if S A S [i] mod t ≡ 0.
• An array of integers V [1..m/t] such that V [i] = S A S [selectB(i)].

Since S A S [1..m] contains all values from 1 to m, there exists a value i′ such that S A S [i′] mod t ≡ 0 and S A S [i]− S A S [i′] < t .
From the definitions of B and ΨS , we have B[i′] = 1 and i′ = Ψ k

S (i) and k < t . To find i′ , iteratively compute Ψ k
S (i) until

B[Ψ k
S (i)] is 1; this enumeration takes at most O (t) time. The value of S A S [i′] can be looked up from V . Then, S A S [i] =

S A S [i′] − k. Therefore, the value of S A S [i] takes O (log m/ log s) time to compute.
For the extra space complexity, the bit vector B uses O (m) bits. The array V uses m · log s/(logm/ log s) � m log s bits. In

total, we use 2m log s + o(m log s) additional bits. �
3.3. Bi-directional FM-index

Recall that, given a suffix array S AR , a pattern P can always be represented by an S A-range (st, ed). The traditional
FM-index can only extend the search pattern to the left by one character using backward search (i.e., given S A-range of P ,
backward_search returns the S A-range of c P). However, computing the value of array A[1..|P |] in Section 6 requires us to
modify the search pattern at both the left end and the right end. A trivial solution is to use a heavier data structure called

H.H. Do et al. / Theoretical Computer Science 532 (2014) 14–30 21
the suffix tree. However, even using the existing compressed suffix tree [14,37], the modification at one end of the pattern
will take O (log n) time, which is too much for our requirement in Theorem 1.1 (b).

Therefore, we use a data structure called bi-directional FM-index which allows us to extend and delete one character at
either end of the pattern in O (logσ/ log log n) time (where σ is the size of the alphabet).

Consider a sequence R over an alphabet Σ of size σ , the suffix array S AR , and the suffix array of the reversed sequence
S AR . Given a string X , we let st(X) and ed(X) be the start and the end of the suffix range of X in S AR , respectively.
Similarly, st(X) and ed(X) denote the start and the end of the suffix range of X in S AR , respectively. Given a pattern
P [1..�], let rR be the suffix range of P in S AR , i.e., rR = (st(P), ed(P)). Let rR = (st(P), ed(P)). Let c be any character in Σ .
The bi-directional FM-index is a data structure supporting the following four operations:

• forward_search(rR , rR , c): returns the new suffix range of pattern Pc in S AR , and the suffix range of Pc in S AR .
• backward_search(rR , rR , c): returns the suffix ranges of c P and c P in S AR and S AR , respectively.
• delete_back(rR , rR): returns the suffix range of P [2..�] in S AR , and the suffix range of P [2..�] in S AR .
• delete_front(rR , rR): returns the suffix ranges of P [1..� − 1] and P [1..� − 1] in S AR and S AR , respectively.

In other words, the operation forward_search extends the searching pattern by one character to the right, while the operation
backward_search extends it one character to the left. The operation delete_back deletes the leftmost character from the
searching pattern, the delete_front deletes the rightmost one.

To implement the bi-directional FM-index, we use: the BWT of R , the BWT of R , the topology of the suffix tree of R ,
the topology of the suffix tree of R . (Note that the topology of each tree can be stored in 2.55n + o(n) bits each according
to [15].) The operations forward_search and backward_search have been considered before:

Lemma 3.3. (See Lam et al. [27].) Using the FM-index of R and the FM-index of R, we can compute operation forward _ search and
operation backward _ search.

We will now present how to implement the operation delete_back. For delete_front, since R and R are symmetric by a
string reversal operation, we can implement delete_front by a similar procedure but swapping the roles of R and R .

Formally, the problem of computing delete_back is: given st(c X), ed(c X) st(c X) and ed(c X), compute the values of: st(X),
ed(X), st(X) and ed(X). First, st(X) and ed(X) can be computed using the following lemma:

Lemma 3.4. Given st(c X) and ed(c X), the values of st(X) and ed(X) can be computed using the suffix link of R in O (1) time.

Proof. Computing the suffix range of P [2..�] in S AR from that of P [1..�] is identical to computing the suffix link in the
compressed suffix tree [15,37]. The operation can be done in constant time if the topology of the suffix tree and the function
ΨR are given. Here ΨR is the inverse of the backward search of the FM-index, and can be computed in constant time (See
Lemma 3.2). �

Then, the values of st(X) and ed(X) can be computed using the following lemma:

Lemma 3.5. st(X) and ed(X) can be computed by using the following equations:

st(X) = st(c X) −
∑
a<c

[
ed(aX) − st(aX) + 1

]

ed(X) = ed(c X) +
∑
z>c

[
ed(zX) − st(zX) + 1

]

Proof. As c X = Xc, X is prefix of c X . Note that (st(c X), ed(c X)) is the suffix range of c X in S AR . Therefore, st(X)� st(c X)�
ed(c X)� ed(X).

Let 	st = st(c X)− st(X). Because c is the last character of Xc, hence, 	st equals the number of occurrences of substrings
Xa in R for all character a in Σ and a < c. Thus, 	st equals the number of occurrences of aX in R for all a < c. Note that
the number of occurrences of aX in R is [ed(aX) − st(aX) + 1]. That is, st(X) − st(c X) = ∑

a<c[ed(aX) − st(aX) + 1].
Similarly, let 	ed = ed(X) − ed(c X). 	ed equals the number of occurrences of zX in R for all character z and z > c. We

obtain ed(X) − ed(c X) = ∑
c<z[ed(zX) − st(zX) + 1]. �

From Lemma 3.4 and Lemma 3.5, we can compute delete_front. delete_back follows similarly. To summarize, we have the
following theorem:

Theorem 3.6. The bi-directional FM-index can be implemented using the BWT of R, the BWT of R, and the topologies of the two suffix
trees of R and R. It supports all of the four operations in O (logσ/ log log n + 1) time, and uses (2 + 1/ε)nHk(S) + O (n) bits.

22 H.H. Do et al. / Theoretical Computer Science 532 (2014) 14–30
Proof. From Lemma 3.3, we can do forward _ search and backward _ search. From Lemma 3.4, we can compute st(X) and
ed(X). From the equations in Lemma 3.5, we can compute st(X) and ed(X) using the following procedure. For each character
a, we compute (st(aX), ed(aX)) = backward _ search((st(X), ed(X)),a). Then, we substitute the values on the right-hand side
of the equations. Since each operation backward _ search takes O (logσ/ log log n + 1) time, we can complete the operation
delete_back in O (σ logσ/ log log n + 1) time.

Note that if we use the wavelet tree in [5] as a component of the BWT (as in [29]), the whole term
∑

a<c[ed(aX) −
st(aX) + 1] and

∑
c<z[ed(zX) − st(zX) + 1] can be computed in O (logσ/ log log n + 1) time, because characters in the

alphabet are stored in leaves of the wavelet tree in alphabetic order. By a single traversal from the root of the wavelet tree
to the leaf for c, we can compute the total frequency of characters smaller than c. This improvement also applies to the
f orward_search and backward_search operations by Lam et al. [27] in Lemma 3.3.

The space requirement can be proven by adding up all the requirement of each component. �
3.4. A new data structure for a special case of 2D range queries

We now describe the 2D range query data structure mentioned in Section 2 for case 2. This data structure, called M,
helps to combine the results of X (T) and Y(F , T) to form the final answers for case 2. Let M be a binary (s × m)-matrix.
We define M[x, y] = 1 if T [x] is the preceding factor of the factor suffix F [y]. The operation query _2d(M, [a1,a2], [b1,b2])
reports all points in the rectangle [a1,a2] × [b1,b2] in M whose values are 1. Here, [a1,a2] and [b1,b2] specify consecutive
rows and consecutive columns of M , respectively. The next lemma summarizes known results for general binary matrices:

Lemma 3.7. (See [7].) Let M be a given binary matrix of size m×m with n 1s. M can be stored while supporting query _2d(M, [a1,a2],
[b1,b2]) as follows:

1. O (n log1+ε m) bits and O (log log m + occ) query time,
2. O (n log m) bits and O ((1 + occ) logε m) query time,

where ε > 0 is a constant and occ is the number of 1s inside the specified rectangle.

A proof of Lemma 3.7 was given by [7]. In this section, we improve the time for 2D range queries when M has a special
form, namely when every column of M[1..s,1..m] contains exactly one 1. The corollary is as follows.

Corollary 3.8. Let M be a given binary matrix of size s × m, where s � m and every column contains exactly one entry equal to 1. We
can store M while supporting query _2d(M, [a1,a2], [b1,b2]) within the following space and time complexities:

1. O (m log s log log s) bits and O ((1 + occ) log log s) query time; or, alternatively,
2. O (m log s) bits and O ((1 + occ) logε s) query time,

where ε > 0 is a constant and occ is the number of 1s in the specified rectangle.

Proof. Suppose we have access to any data structure for storing general binary matrices of size (s×m) that uses O (m ·α(m))

bits space and supports query _2d(M, [a1,a2], [b1,b2]) in O (β(m) + γ (m)occ) time, where α, β , and γ are polylogarithmic
functions (e.g. logk m), and α(m) is in Ω(log m), and s � m. Then we can construct another data structure for the special
case in which each column has exactly one 1 that uses O (m · α(s)) bits and with O (β(s) + γ (s)occ) query time.

Let M be a binary matrix of size (s × m) in which each column has exactly one 1 and s � m. We partition M into
κ = m

s2 vertical blocks of size s × s2 arranged from left to right. For � = 1,2, . . . , κ , define st� = 1 + s2(� − 1) and ed� = s2�,
and let block � be the submatrix M[1..s, s�..e�]. Any query _2d(P , [a1,a2], [b1,b2]) can be classified into one of two types:
(i) st� � b1 � b2 � ed� for some � = 1, . . . , κ ; and (ii) otherwise.

For (i), the query rectangle lies within a single block and we just use either data structure from Lemma 3.7 for
M[1..s, st�..ed�] for � = 1, . . . , κ . Since every block has s2 ones, the total space needed to support queries of type (i) in
O (β(s) + γ (s)occ) time is O (κs2α(s2)) = O (mα(s)) bits.

To handle queries of type (ii), we store
(s

2

)
rank and select data structures for

(s
2

)
bit vectors Bij[1..κ], defined as follows.

For 1 � i � j � s and 1 � � � κ , let Bij[�] = 1 if and only if there exists some M[p,q] = 1 where i � p � j and 1 +
s2

m (� − 1) � q � s2

m �. By Section 3.1, the total space to store the rank and select data structures is O (
(s

2

)
κ) = O (m) bits.

Furthermore, for each 1 � � � κ , we store a list L� of the s2 ones in M[1..s, st�..ed�] in sorted order according to their
column numbers. We also store s pointers Ptr�[1..s], where Ptr�[i] points to the first entry in the list L� whose column
number is at least i. All lists L� and Ptr� can be stored in O (s2κ log s) = O (m log s) bits.

Using Bij[�], L� , and Ptr� , we answer query _2d(M, [a1,a2], [b1,b2]) as follows. Let stimin and edimax be the smallest sti

and the biggest edi such that both of them lie in the interval b1..b2. Then the answer to the query equals the union of:

H.H. Do et al. / Theoretical Computer Science 532 (2014) 14–30 23
(1) query _2d(M, [a1,a2], [b1, stimin − 1]);
(2) query _2d(M, [a1,a2], [stimin , edimax]); and
(3) query _2d(M, [a1,a2], [edimax ,b2]).

Now, (1) and (3) can be computed in O (β(s) + γ (s)occ) time by querying in inside blocks (case (i) using data structure in
Lemma 3.7). For (2), we use the rank and select data structure for Ba1a2 to find all entries Ba1a2 [j] = 1 for imin � j � imax ,
and for each such j, we report all points in L j within Ptr j[a1] and Ptr j[a2 + 1]. The running time is O (1 + occ) time.

In conclusion, we can build a data structure of size O (mα(s)) bits that supports the operation query _2d(M, [a1,a2],
[b1,b2]) on M in O (β(s) + γ (s)occ) time. Combining this result and Lemma 3.7, we have Corollary 3.8. �
4. The data structure I(T) for case 1

Recall from Section 2 that the array T [1..s] stores the s distinct factors of R that occur in the factorizations of S
in lexicographical order. Here, we define a data structure named I(T) and apply it to locate all occurrences of a query
pattern P that lie entirely inside single factors in T [1..s] (case 1 in Section 2). The main result of this section is summarized
in the following theorem:

Theorem 4.1. The data structure I(T) uses 2n + o(n) + O (s logn) bits. Given the suffix range st..ed of a query pattern P in S AR , it
reports all occurrences of P inside factors stored in T [1..s] using O (occ1(logε n + logσ)) time, where occ1 is the number of answers.

A naive solution is to concatenate all the factors in T [1..s] and then build a suffix tree or an FM-index, but the space
used by such an approach would be proportional to the total size of S . Instead, we formulate the problem as a variant of
an interval cover problem. Each factor will be represented as an interval on the reference sequence R . The pattern P is first
searched in the reference R , then the factors that cover the locations that P occurs at are reported.

Note that we cannot simply enumerate all the occurrences of P in R to find the covering factors. This is because we
assume that the reference R may be independent of the sequences S , and there may be occurrences of P in R but not in S
(we call these occurrences false positives). The number of false positives of P in R can be O (n). If we enumerate them, the
search time cannot be bounded by � and occ1.

To avoid checking the false positive occurrences of the pattern, we impose an order on the occurrences of P in R .
Each location in R is implicitly annotated with the length of the longest factor that covers over it. The searching algorithm
prioritizes the occurrences of P in R with longer covers. It stops when the longest possible cover factor is shorter than the
pattern length. In this way, we can ensure that the false positive occurrences are not enumerated.

We need the following definitions: for each i ∈ {1,2, . . . , s}, define spi and epi as the starting and ending positions
of the factor T [i] inside the reference string R , i.e., T [i] = R[spi ..epi]. We say that any factor T [i] covers a position p if
spi � p � epi . Also, factor T [i] is to the left of factor T [j] if either: (1) spi < sp j ; or (2) spi = sp j and epi < ep j . Let G[1..s]
be an array of indices such that G[i] = j if T [j] is the i-th leftmost factor. To be able to convert between indices, we define
Is[j] = spG[i] and Ie[j] = epG[i] . Note that Is[1] is the starting position of the leftmost factor and that the values of Is[1..s]
are non-decreasing.

Next, for every p ∈ {1,2, . . . ,n}, define D[p] = max j=1..s{Ie[j]− p + 1: Is[j]� p}. Intuitively, D[p] measures the distance
from position p to the rightmost ending position of all factors that cover p. We have the following observation. Let {pi} be
the set of positions of the occurrences of pattern P in R . For any such p j , if D[p j] > � (where � is the pattern length), the
occurrence p j of P is covered by at least one factor. (In other words, position p j is a true positive occurrence of pattern P .)
Therefore, if the {pi} is sorted by the values of D[pi], the true positive and false positive occurrences can be separated easily.

However, since the occurrences of P in R are already sorted by the order in the suffix array S AR , we need some
additional conceptual structures to remember the D[pi]-order. Let D ′[1..n] be an array such that D ′[p] = D[S AR [p]]. (For
an example, see Fig. 7(a).) D ′[p] tells us the length of the longest interval whose starting position equals S AR [p]. Hence, D
and D ′ can be used to filter all false positive occurrences according to the next lemma:

Lemma 4.2. For any index p and length a, there exists a factor T [j] that covers all positions from S AR [p] to (S AR [p] + � − 1) in R if
and only if D ′[p]� �.

Proof. (Necessary condition). If T [j] covers S AR [p], then D[S AR [p]] � |T [j]|. We also have that T [j] covers (S AR [p] + a −
1); therefore, |T [j]| � a. That means D[S AR [p]] � a. By the definition of D ′ , we have D ′[p]� a.

(Sufficient condition). Follows directly from the definitions of D and D ′ . �
Now, we describe the new data structure I(T). It consists of:

• The array G[1..s], using s log n bits;
• A successor data structure (see Section 3) for Is , using s log n + o(n) bits;
• A range maximum data structure (see Section 3) for Ie , using 2s + o(s) bits; and
• A range maximum data structure for D ′ , using 2n + o(n) bits.

24 H.H. Do et al. / Theoretical Computer Science 532 (2014) 14–30
Fig. 7. (a) The factors (displayed as grey bars) from the example in Fig. 2 listed in left-to-right order, and the arrays G, Is, Ie, D , and D ′ that define the
data structure I(T) in Section 4. (b) The same factors ordered lexicographically from top to bottom, and the arrays B, C , and Γ that define the data
structure X (T) in Section 5.

Algorithm Search_Pattern(st, ed)

Input: The data structure I(T), the FM-index of R and the suffix range st..ed of the pattern P in S AR .
Output: Every factor T [j] in which P occurs.

1: Compute q = max _ indexD ′ (st, ed)

2: if D ′[q]� � then
3: Report all factors that cover S AR [q]..(S AR [q] + � − 1) using Lemma 4.3
4: Search_Pattern(st,q − 1)

5: Search_Pattern(q + 1, ed)

6: end if

Fig. 8. Algorithm for computing all occurrences of P in T [1..s].

Note that we do not explicitly store the arrays D[1..n], D ′[1..n], Is[1..s], and Ie[1..s]. Lemma 4.3 shows how to recover
the values of D[p] and D ′[p] for any position p ∈ {1,2, . . . ,n} from the data structure I(T). Also, Is[i] and Ie[i] can be
computed in O (1) time given G[i] and T .

Lemma 4.3. Given the data structures I(T) and the FM-index of R, for any positions p and q in R, we can:

(i) Compute D[p] in O (1) time;
(ii) Compute D ′[p] in O (logε

σ n + logσ) time; and
(iii) Report all factors that cover positions p..q in O (1 + occ) time.

Proof. For (i), using the successor data structure for Is , we can identify the maximum y such that Is[y] � p in O (1) time.
Using the range maximum data structure for Ie , we can identify an index v such that Ie[v] = max j�y Ie[j] in O (1) time.
Then, D[p] = Ie[v] − p + 1. For (ii), S AR [p] can be computed in O (logε n + logσ) time by Lemma 3.1 in Section 3, so
D ′[p] = D[S AR [p]] can be computed in the same time.

For (iii), it is obvious that all the factors that cover both p and q need to start at a position less than or equal to p.
Among them, the factors ending at q or to the right of q are those that need to be reported. Formally, the set of answers is
{T [G[i]]: Is[i]� p and q � Ie[i]}.

This is the 2-sided range query problem. We first find the maximum index y such that Is[y] � p. Since Is is non-
decreasing, the problem becomes reporting every value i such that i � y and q � Ie[i]. This problem can be handled by the
maximum data structure (Section 3.1) for Ie . �

Based on I(T) and the suffix range for the query pattern P , Algorithm Search_Pattern in Fig. 8 finds all occurrences
of P in factors from T [1..s]. Basically, it checks the occurrences {pi} of P in R based on the order of D[pi] from bigger to
smaller, and stops when D[pi] < �.

In Fig. 8, the value pi is implicitly represented by S AR [q], i.e., pi = S AR [q]. Let st..ed be the suffix range of P in S AR . In
line 1, the algorithm finds an index q from the range st � q � ed, such that D[S AR [q]] has the biggest value. The condition
D ′[q] � |P |, in line 2, guarantees that S AR [q] and S AR [q] + � − 1 are covered by at least one factor (where � is the length
of the pattern). Since st � q � ed, it holds that R[S AR [q]..(S AR [q] + � − 1)] is an occurrence of P in R . Then, the line 3 of

H.H. Do et al. / Theoretical Computer Science 532 (2014) 14–30 25
Fig. 9. Data structures used in case 2.

the algorithm reports every T [j] that contains P by using Lemma 4.3. Finally, the algorithm recursively finds smaller values
from its sub-ranges in line 4 and line 5.

5. The data structure X (T) and X (T) for case 2

We now turn our attention to case 2 in Section 2 (see Fig. 4(b)). This section gives the details of two symmetry data
structures X (T) and X (T). For any given pattern P , X (T) (X (T)) locates every occurrence of a suffix (prefix) of P that
equals a prefix (suffix) of a factor of S . (See Fig. 9.) Data structure X (T) is used to find the left part of the pattern in our
searching algorithm outlined in Section 2.2. Data structure X (T) is used as a component in the data structure Y(F , T) to
find the right part in Section 6. To simplify the presentation, we only describe X (T) below.

Our solution considers every non-empty suffix of P as a separate query pattern for X (T). For each suffix Q , we assume
that Q is specified by the corresponding suffix range st Q ..edQ in the suffix array S AR for the reference string R , along with
the length of Q . Since T [1..s] stores all distinct factors Sij in lexicographically sorted order, all occurrences of Q in S can
be represented as a range p..q in T such that Q is a prefix of every element in T [p], . . . , T [q]. The theorem and corollary
below summarize the data structures X (T) and X (T).

Theorem 5.1. The data structure X (T) uses O (s log n)+o(n) bits. For any suffix range st..ed in S AR of a query pattern P , it can report
the maximal range p..q such that P is a prefix of all T [j], where p � j � q, in O (log log n) time.

Corollary 5.2. The data structure X (T) uses O (s logn) + o(n) bits. For any suffix range st..ed in S AR of a query pattern P , it can
report the maximal range p..q such that P is a prefix of all T [j], where p � j � q, in O (log log n) time.

A simple solution for this problem is to build a trie of all the factors of S . However, such a data structure requires too
much space. In this section, we observe a mapping between the lexicographically sorted order of the factors (stored in the
array T [1..s]) and the suffix array of reference sequence in Lemma 5.3. Based on this mapping, to find if one pattern is
a prefix of any factor, we search for the pattern in the reference suffix array S AR , and then calculate the mapping using
Lemma 5.4 in O (log log n) time to extract all factors.

To start, we need some efficient way to check if the query pattern P is a prefix of any specified factor T [j]. Since the
factor T [j] is a substring of R , let st j ..ed j denote the corresponding suffix range of T [j] in S AR . The next lemma says how
their suffix ranges are related:

Lemma 5.3. Suppose stP ..edP is the suffix range of P in S AR . P is a prefix of T [j] if and only if either: (1) stP < st j � edP ; or
(2) stP = st j and |T [j]| � |P |.

Proof. We use the following property of the suffix array: Given a suffix array S AR , consider two strings x and y such that
|x| < |y|. Let stx and edx be the suffix range of x in S AR . Let st y and edy be the suffix range of y. If x is prefix of y, then
stx � st y � edy � edx . Otherwise, (stx, edx) and (st y, edy) are disjoint.

(→) By the property of the suffix array, if P is prefix of T [j], then the suffix range of T [j] is inside the suffix range of P
in S AR . That is stP � st j � ed j � edP . In addition, since P is prefix of T [j], we have |P | � |T [j]|. That means condition (1)
or (2) is correct.

(←) If condition (1) is true, i.e., stP < st j � edP , then ed j � edP . (Otherwise it will violate the property of the suf-
fix array.) Since P is equals the share prefixes of all R[S AR [stP]..n] . . . R[S AR [edP]..n] and T [j] is the share prefix of
R[S AR [st j]..n] . . . R[S AR [ed j]..n]. Since the range of T [j] is strictly inside the range of T [j], the length of P is strictly
less than the length of T [j]. Therefore, P is a proper prefix of T [j].

If condition (2) is true, we have st P = st j . Thus, either P is prefix of T [j] or T [j] is prefix of P . However, we also have
|T [j]| � P ; therefore, P is a prefix of T [j]. �

For every i = 1, . . . ,n, define Γ (i) = {|T [j]|: st j = i and st j ..ed j is the suffix range of T [j] in S AR}. In other words, Γ (i)
is the set of lengths of factors whose suffix ranges start at i in S AR . We use Γ (i) to map a suffix range in S AR to a range
of factors in T according to:

26 H.H. Do et al. / Theoretical Computer Science 532 (2014) 14–30
Fig. 10. Two sub-cases.

Lemma 5.4. Suppose stP ..edP is the suffix range of P in S AR . Then, p..q is the range in T [1..s] such that P is a prefix of all T [j] where
p � j � q, where p = 1 + ∑stP −1

i=1 |Γ (i)| + |{x ∈ Γ (stP): x < |P |}| and q = ∑edP
i=1 |Γ (i)|.

Proof. By the definition of Γ (i), for every T [j] such that 1 + ∑stP −1
i=1 |Γ (i)| � j �

∑edP
i=1 |Γ (i)|, we have stP � st j � edP . If

stP < st j � edP , condition (1) in Lemma 5.3 holds. Otherwise, st P = st j . However, p = 1 + ∑stP −1
i=1 |Γ (i)| + |{x ∈ Γ (stP): x <

|P |}|. All the T [j]’s with length less than |P | are not included; therefore, condition (2) in Lemma 5.3 holds. �
Now, we present the data-structure X (T) based on Lemma 5.4. First, let B[1..n] be a bit vector such that B[i] = 1 if

Γ (i) is non-empty, and B[i] = 0 otherwise. Next, suppose Γ (i) is the r-th non-empty set, and let L[r] be a y-fast trie [40]
for Γ (i) (see Section 3). Let C[1..s] be a bit vector such that C[∑r

i=1 |Γ (i)|] = 1, and 0 otherwise. See Fig. 7(b). The data
structure X (T) consists of three parts: (i) The rank data structure for the bit vector B[1..n] (s log n + o(n) bits); (ii) The
select data structure for the bit vector C[1..s] (s log n + o(n) bits); and (iii) The y-fast trie data structure L[r] for Γ (i) if Γ (i)
is the r-th non-empty set (O (s log n) bits). In total, X (T) requires O (s log n) + o(n) bits.

Note that, for any �, we have

�∑
i=1

∣∣Γ (i)| = selectC
(
rankB(�)

)

∣∣{x ∈ Γ (�): x < c
}∣∣ = successor _ index

(
L
[
rankB(�)

]
, c

)

Using X (T), they can be computed in O (log log n) time. Hence, the values of p and q in Lemma 5.4 can be computed in
O (log log n) time. Theorem 5.1 follows.

6. The data structure Y(F , T) for case 2

This section outlines our solution for finding the occurrences for the right part of the pattern. For each suffix P [i..�] for
1 � i � � of the pattern P , we need to check if P [i..�] is the prefix of some factor suffix in S (see Fig. 4 in Section 2.2).

Solving this problem is not too complicated. Since any factor suffix has a unique RLZ factorization; given one pattern P ′ ,
we can factorize the pattern using the reference, i.e., RL Z(P ′|R); then, match all the factorizations generated from the
pattern with those sequences of S . However, in this problem, all the suffixes P [i..�] needs to be matched against S . If
we treat each suffix as an independent query pattern, it would take O (�2) time to answer all the queries. In this section,
we present our approach to reuse the factorization and matching information between the suffixes to speed up the whole
process. Briefly, each suffix of P is represented by a suffix range in the factor suffix array F . We factorize the suffixes of the
pattern and match them with the database sequences in one run from right to left using dynamic programming.

To be precise, we build a data structure Y(F , T) which for any pattern P of length � can compute the range of P [i..�]
in F for all 1 � i � �, i.e., the range st..ed in F where P [i..�] is a prefix of F [st], . . . , F [ed]. Let Q [i] denote the range for
each i. The following theorem summarizes the main result:

Theorem 6.1. The data structure Y(F , T) uses O (n) + (2 + 1/ε)nHk(R) + o(n logσ) + O (m log n) bits. It can find all suffix ranges
of F that match some suffix of a query pattern P of length � in O (�(logσ/ log log n + log log n)) time.

First, there are two sub-cases for our pattern in this section (see Fig. 10): (1) the whole suffix P [i..�] is a prefix of some
factors; and (2) suffix P [i..�] contains at least one factor inside and a tail which is a prefix of some factors. Solving the
first sub-case is straightforward (since we can use data structure X (T) in Section 5). The second sub-case can be simplified
based on the observation that the matched factors are unique. The properties of the two sub-cases are summarized in the
following lemma:

Lemma 6.2. For any F [i′], define the head of F [i′] to be the first factor of F [i′]. For any 1 � i � �, if P [i..�] is prefix of F [st], . . . , F [ed],
then P and st..ed satisfy either one of the following properties:

• (1) P [i..�] is the prefix of the heads of all factor suffixes F [st], . . . , F [ed].
• (2) The heads of all F [st], . . . , F [ed] are prefix of P [i..�]. In fact, these heads are the same; and equal P [i.. j] where j is the biggest

index such that P [i.. j] is a factor of S .

H.H. Do et al. / Theoretical Computer Science 532 (2014) 14–30 27
1: Let rR and rR be suffix ranges of the empty string ε in S AR and S AR .
2: j = 1
3: for i = 1 to |P | do
4: while j � |P | and the last forward search succeeded do
5: rR , rR = forward_search(rR , rR , P [j])
6: j = j + 1
7: end while
8: if rR is a factor according to X (T) then let A[i] = the factor found by X (T)

9: else let A[i] = nil
10: rR , rR = delete_back(rR , rR)
11: end for

Fig. 11. Algorithm to fill in the array A[1..|P |].

Proof. Denote P [i..�] by Pi for short. Assume Pi is the prefix of two factor suffix F [x] and F [y]. Let X = T [x′] and Y = T [y′]
are the head of F [x] and F [y] respectively. Because x and y are symmetrical, without loss of generality, we just consider
two cases |X | = |Y | and |X | < |Y |. Assume |X | < |Y |, we have the following sub-cases: (a) X is prefix of Y and Y is prefix
of Pi . (b) X is prefix of Pi and Pi is prefix of Y . (c) Pi is prefix of both X and Y .

We will prove that sub-cases (a) and (b) cannot be true. Therefore, only sub-case (c) or |X | = |Y | happens which leads
to only cases (1) and (2) of the lemma.

In both sub-cases (a) and (b), factor X is a prefix of Y . Let c be the character in position (|X | + 1) of F [x]. Due to the
maximal property of the encoding in Section 2.1, X ·c does not occurs in the reference R . But, Y must have some occurrence
in R; therefore, the character at position (|X | + 1) of F [x] is different from the character at the same position of F [y].
However, Pi matches the position (|X |+ 1) of both F [x] and F [y] in these sub-cases, and therefore, it is a contradiction. �

Lemma 6.2 gives an important property of maximally factored suffixes. Namely, if a pattern matches the prefixes of two
factor suffixes, the list of factors in the two prefixes are identical, except for the last factor whose prefix matches a suffix of
the pattern. In other words, the factorization of P [i..�] only depends on the factorization of one other suffix P [i + a..�] (for
some value a that can be computed). From this observation, we obtain the following.

Let S be the concatenation of the factorizations of all strings in S , and let B be a general FM-index of S (Section 3) that
supports backward_searchS(T [i], (st, ed)). The array Q [i] can be computed as follows. Define A[i] = P [i.. j], where j is the
largest index such that P [i.. j] is a factor of S , if one exists, and nil otherwise. Let Y [i] be the range st..ed in F such that
P [i..�] is the prefix of all the heads of factor suffixes F [st]..F [ed], if one exists, and nil otherwise.

Informally, each entry Y [i] store the result of the sub-case (1). Each entry A[i] of array A stores the trace of a possible
factorization for suffix P [i..�]. Then, array Q [1..�] can be computed by dynamic programming based on the following
equation:

Q [i] =
⎧⎨
⎩

Y [i] if Y [i] 	= nil

backward_searchS(A[i], Q [i + |A[i]|]) if Y [i] = nil & A[i] 	= nil

nil otherwise

(1)

By Eq. (1), Q [1..�] can be computed in three steps:

(a) compute A[i] for i = 1 to �;
(b) compute Y [i] for i = � to 1; and
(c) compute Q [i] for i = � to 1.

Next, we present the data structure Y(F , T) and discuss steps (a)–(c). The data structure Y(F , T) consists of:

• The bi-directional BWT (see Section 3.3).
• The data structure X (T) (see Section 5).
• The select data structure for a bit-vector V [1..m], defined by V [i] = 1 if the head of F [i] differs from the head of

F [i + 1], and V [i] = 0 otherwise.
• The general FM-index B of S.

First, we discuss step (a). Fig. 11 gives the algorithm to compute A[1..�]. Lemma 6.3 presents the correctness of the time
complexity of the algorithm.

Lemma 6.3. We can compute all A[1..�] in O (�(logσ/ log log n + log log n)) time.

Proof. We apply the bi-directional FM-index (see Section 3.3) to compute A[1..�], as shown in Fig. 11:
The inner loop (lines 4–7) of the algorithm extends the search sequence to the maximal length. The outer loop

(lines 3–11) assigns a value to A[i] and deletes the first character to move to the next position. To check any factor in

28 H.H. Do et al. / Theoretical Computer Science 532 (2014) 14–30
Fig. 12. (a) The array F [1..m] consists of the factor suffixes Sip Si(p+1) . . . Sici , encoded as indices of T [1..s]. Also shown in the table is a bit vector V and
BWT-values, defined in Section 6. (b) For each factor suffix F [j], column j in M indicates which of the factors that precede F [j] in S . To search for the
pattern P = AGTA, we need to do two 2D range queries in M: one with st = 1, ed = 2, st′ = 7, ed′ = 8 since A is a suffix of T [5] and T [7] (i.e., a prefix in
T [1..2]) and GTA is a prefix in F [7..8], and another one with st = 4, ed = 4, st′ = 9, ed′ = 9 since AG is a suffix of T [4] (i.e., a prefix in T [4]) and TA is a
prefix in F [9].

X (T) takes O (log log n) time. The alphabet is of constant size, so the time for every forward _ search and delete _ back
operation is O (logσ/ log log n). Thus, each A[i] is obtained in O (logσ/ log log n + log log n) time. �

In step (b), we compute Y [1..�] in two phases. The first phase computes another array Y ′[1..�], defined as follows:
Y ′[i] is the range st′..ed′ in T such that P [i..�] is the prefix of T [st′], . . . , T [ed′]. By using the X (T) data structure from
Section 5, we can obtain Y ′[1..�]. Then, given Y ′[1..�], the second phase computes Y [1..�] with the select data structure
for V as follows: Y [i] = (selectV (st − 1) + 1, selectV (ed)), where (st, ed) = Y ′[i]. Finally, in step (c), we apply Eq. (1) to
compute Q [1..�]. The total running time is therefore O (�(logσ/ log log n + log log n)).

The data structure X (T) uses O (s log n) = O (m log n) bits. The bi-directional BWT uses (2 + 1/ε)nHk(R) + O (n) bits. The
general FM-index B requires O (m log s) = O (m log n) bits. The select data structure on bit-vector V is implemented using
O (m) bits. Thus, Theorem 6.1 follows.

7. Decoding the occurrence locations

Recall that given strings S = {S1, S2, . . . St}, we decompose each Si into factors. The substring from the start of a factor
to the end of the string is called factor suffix. One factor may occur at multiple locations of the set of strings S , but every
factor suffix has a unique location in S . All the distinct factors are represented in the array T [1..s]. The sorted order of the
factor suffixes is represented in the array F [1..m].

The result of case 1 of our algorithm is a set of factors such that P is a substring of them. Since each factor in this
set can have multiple locations in S , the first problem reports, for an index p of T , all the locations in S that factor T [p]
occurs at.

The result of case 2 is a set of factor suffixes represented in F such that a suffix of P is the prefix of these factor suffixes.
The second problem reports, for an index p of F , the unique location in S that the factor suffix F [p] occurs at. We design
a pipeline with 3 phases to resolve cases 1 and 2.

• Phase (I): Given an index p of T , return a set of indices {p′} such that T [p] equals the first factor of each F [p′].
• Phase (II) computes relative locations in S for a factor suffix in F :

Given an index p of F , return i, j such that F [p] starts at Sij in S .
• Phase (III) converts the relative locations in S to the exact location in S:

Given i, j, return 1 + ∑ j−1 |Siq|, i.e., the starting location of Sij in the input string Si .
q=1

H.H. Do et al. / Theoretical Computer Science 532 (2014) 14–30 29
To obtain the results for case 1, we apply all 3 phases. For case 2, we only apply phases (II) and (III).
Phase (I) can be done using the Y(F , T) data structure in O (1+occ) time. Phase (II) can be done by decoding the general

FM-index with Y(F , T) in O (1 + occ · log m/ log s) time.
Phase (III) is described next. The idea is to compute the position of Sij in the string that is the concatenation of S1, . . . , St

and then convert it to the position in Si . Let L[1..s] be an array storing the lengths of all factors in the order of occurrences
in the concatenated string, that is, the length of factor Sij is stored in entry L[∑i−1

i′=1 ci′ + j]. Let C[0..s] be a bit vector where

C[0] is set to 1, and C[∑i
i′=1 ci′] are set to 1 for all i = 1, . . . , N where ci′ is the number of factors in Si′ . (Thus, C encodes

the indices in L of heads of factors.)
To implement phase (III), we store: the prefix sum data structure for L and the select data structure for C . The lo-

cation of Sij in Si is obtained as follows. First, compute s = selectC (i). Then, the value of 1 + ∑ j−1
q=1 |Siq| is given by

1 + prefix _ sumL(s + j − 1) − prefix _ sumL(s).

Lemma 7.1. Phase (III) runs in O (occ · log log n) time and uses O (m logn) bits.

Proof. The array L has m elements and the sum of all of them is at most mn. Based on [11], the space for the prefix
sum data structure of L is O (m log(mn/m)) + O (m) = O (m log n) bits. Because the length of C is at most m, the select data
structure for C uses at most O (m) bits. Therefore, the total size of this data structure is O (m log n) bits.

The prefix _ sumL operation in L takes O (log log n) time, and the selectC operation in C takes O (1) time. �
Acknowledgements

J.J., K.S., and W.K.S. were supported in part by The Hakubi Project at Kyoto University, KAKENHI 23240002, and the MOE’s
AcRF Tier 2 funding R-252-000-444-112, respectively.

References

[1] The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing, Nature 467 (7319) (2010) 1061–1073.
[2] A. Apostolico, S. Lonardi, Compression of biological sequences by greedy off-line textual substitution, in: DCC, 2000, pp. 143–152.
[3] D. Arroyuelo, G. Navarro, K. Sadakane, Reducing the space requirement of LZ-index, in: CPM, in: LNCS, vol. 4009, 2006, pp. 318–329.
[4] P. Bille, G.M. Landau, R. Raman, K. Sadakane, S.R. Satti, O. Weimann, Random access to grammar-compressed strings, in: SODA, 2011, pp. 373–389.
[5] P. Bose, M. He, A. Maheshwari, P. Morin, Succinct orthogonal range search structures on a grid with applications to text indexing, in: WADS, in: LNCS,

vol. 5664, 2009, pp. 98–109.
[6] M.D. Cao, T.I. Dix, L. Allison, C. Mears, A simple statistical algorithm for biological sequence compression, in: DCC, 2007, pp. 43–52.
[7] T.M. Chan, K.G. Larsen, M. Pătraşcu, Orthogonal range searching on the RAM, revisited, in: SoCG, 2011, pp. 1–10.
[8] X. Chen, S. Kwong, M. Li, A compression algorithm for DNA sequences and its applications in genome comparison, in: RECOMB, 2000, p. 107.
[9] S. Christley, Y. Lu, C. Li, X. Xie, Human genomes as email attachments, Bioinformatics 25 (2) (2009) 274–275.

[10] F. Claude, G. Navarro, Self-indexed text compression using straight-line programs, in: MFCS, in: LNCS, vol. 5734, 2009, pp. 235–246.
[11] O. Delpratt, N. Rahman, R. Raman, Compressed prefix sums, in: SOFSEM, 2007.
[12] P. Ferragina, G. Manzini, Compression boosting in optimal linear time using the Burrows–Wheeler Transform, in: SODA, 2004, pp. 655–663.
[13] P. Ferragina, G. Manzini, Indexing compressed text, Journal of the ACM 52 (4) (2005) 552–581.
[14] J. Fischer, Wee LCP, Information Processing Letters 110 (2010) 317–320.
[15] J. Fischer, Combined data structure for previous- and next-smaller-values, Theoretical Computer Science 412 (2011) 2451–2456.
[16] J. Fischer, V. Heun, A new succinct representation of RMQ-information and improvements in the enhanced suffix array, in: ESCAPE, in: LNCS, vol. 4614,

2007, pp. 459–470.
[17] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, S.J. Puglisi, A faster grammar-based self-index, in: LATA, in: LNCS, vol. 7183, Springer, 2012,

pp. 240–251.
[18] A. Golynski, J.I. Munro, S.S. Rao, Rank/select operations on large alphabets: a tool for text indexing, in: SODA, 2006, pp. 368–373.
[19] R. Grossi, A. Gupta, J.S. Vitter, High-order entropy-compressed text indexes, in: SODA, SIAM, 2003, pp. 841–850.
[20] S. Grumbach, F. Tahi, Compression of DNA sequences, in: DCC, 1993, pp. 340–350.
[21] S. Huang, T.W. Lam, W.-K. Sung, S.-L. Tam, S.-M. Yiu, Indexing similar DNA sequences, in: AAIM, in: LNCS, vol. 6124, 2010, pp. 180–190.
[22] S. Kreft, G. Navarro, LZ77-like compression with fast random access, in: DCC, 2010, pp. 239–248.
[23] S. Kreft, G. Navarro, Self-indexing based on LZ77, in: CPM, in: LNCS, vol. 6661, 2011, pp. 41–54.
[24] S. Kuruppu, B. Beresford-Smith, T. Conway, J. Zobel, Repetition-based compression of large DNA datasets, 2009, Poster at RECOMB.
[25] S. Kuruppu, S.J. Puglisi, J. Zobel, Relative Lempel–Ziv compression of genomes for large-scale storage and retrieval, in: SPIRE, in: LNCS, vol. 6393, 2010,

pp. 201–206.
[26] S. Kuruppu, S.J. Puglisi, J. Zobel, Reference sequence construction for relative compression of genomes, in: SPIRE, in: LNCS, vol. 7024, 2011, pp. 420–425.
[27] T.W. Lam, R. Li, A. Tam, S. Wong, E. Wu, S.M. Yiu, High throughput short read alignment via bi-directional BWT, in: BIBM, IEEE, 2009, pp. 31–36.
[28] N.J. Larsson, A. Moffat, Offline dictionary-based compression, in: DCC, 1999, pp. 296–305.
[29] V. Mäkinen, G. Navarro, Implicit compression boosting with applications to self-indexing, in: SPIRE, in: LNCS, vol. 4726, 2007, pp. 229–241.
[30] V. Mäkinen, G. Navarro, J. Sirén, N. Välimäki, Storage and retrieval of highly repetitive sequence collections, Journal of Computational Biology 17 (3)

(2010) 281–308.
[31] S. Muthukrishnan, Efficient algorithms for document retrieval problems, in: SODA, 2002, pp. 657–666.
[32] G. Navarro, V. Mäkinen, Compressed full-text indexes, ACM Computing Surveys 39 (1) (2007).
[33] M. Pătraşcu, Succincter, in: FOCS, 2008, pp. 305–313.
[34] E. Rivals, J.-P. Delahaye, M. Dauchet, O. Delgrange, A guaranteed compression scheme for repetitive DNA sequences, in: DCC, 1996, p. 453.
[35] L.M.S. Russo, A.L. Oliveira, A compressed self-index using a Ziv–Lempel dictionary, in: SPIRE, in: LNCS, vol. 4209, 2006, pp. 163–180.
[36] W. Rytter, Application of Lempel–Ziv factorization to the approximation of grammar-based compression, Theoretical Computer Science 302 (2003)

211–222.

http://refhub.elsevier.com/S0304-3975(13)00540-9/bib50726F6A3130303047656E6F6D6573s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib41706F73746F6C69636F32303030636F6D7072657373696F6Es1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4172726F7975656C6F323030367265647563696E67s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib42696C6C653230313172616E646F6Ds1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib426F73653230303973756363696E6374s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib426F73653230303973756363696E6374s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib43616F3230303773696D706C65s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4368616E323031316F7274686F676F6E616Cs1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4368656E32303030636F6D7072657373696F6Es1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4368726973746C65793230303968756D616Es1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib436C617564653230303973656C66s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4F32303037636F6D70726573736564s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib466572726167696E6132303034s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib466572726167696E6132303035696E646578696E67s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4669736368657232303130776565s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4669736368657232303131636F6D62696E6564s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib46697363686572323030376E6577s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib46697363686572323030376E6577s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib476167696532303132466173746572s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib476167696532303132466173746572s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib476F6C796E736B693230303672616E6Bs1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib47726F7373693230303368696768s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4772756D6261636831393933636F6D7072657373696F6Es1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4875616E674C5354594141494D32303130s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4B72656674323031306C7A3737s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4B726566743230313173656C66s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4B7572757070753230313072656C6174697665s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4B7572757070753230313072656C6174697665s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4B757275707075323031317265666572656E6365s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4C616D32303039s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4C617273736F6E313939396F66666C696E65s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4D616B696E656E32303037s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4D4E535632303130s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4D4E535632303130s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4D32303032s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib4E61766172726F32303037636F6D70726573736564s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib5061747261736375464F435332303038s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib526976616C733139393667756172616E74656564s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib527573736F32303036636F6D70726573736564s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib52797474657232303033s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib52797474657232303033s1

30 H.H. Do et al. / Theoretical Computer Science 532 (2014) 14–30
[37] K. Sadakane, Compressed suffix trees with full functionality, Theory of Computing Systems 41 (2007) 589–607.
[38] K. Schneeberger, J. Hagmann, S. Ossowski, N. Warthmann, S. Gesing, O. Kohlbacher, D. Weigel, Simultaneous alignment of short reads against multiple

genomes, Genome Biology 10 (2009) 1–12.
[39] J. Sirén, N. Välimäki, V. Mäkinen, G. Navarro, Run-length compressed indexes are superior for highly repetitive sequence collections, in: SPIRE, in: LNCS,

vol. 5280, 2008, pp. 164–175.
[40] D.E. Willard, Log-logarithmic worst-case range queries are possible in space Θ(N), Information Processing Letters 17 (2) (1983) 81–84.
[41] J. Ziv, A. Lempel, A universal algorithm for sequential data compression, IEEE Transactions on Information Theory 23 (3) (1977) 337–343.

http://refhub.elsevier.com/S0304-3975(13)00540-9/bib536164616B616E6532303037435354s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib5363686E65656265726765724861676D616E6E4F73736F77736B6957617274686D616E6E476573696E674B6F686C62616368657257656967656C32303039s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib5363686E65656265726765724861676D616E6E4F73736F77736B6957617274686D616E6E476573696E674B6F686C62616368657257656967656C32303039s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib536972656E3230303972756Es1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib536972656E3230303972756Es1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib57696C6C617264313938336C6F67s1
http://refhub.elsevier.com/S0304-3975(13)00540-9/bib5A697631393737756E6976657273616Cs1

	Fast relative Lempel-Ziv self-index for similar sequences
	1 Introduction
	1.1 Similar text compression methods
	1.2 Compressed indexes for similar text
	1.3 Our results

	2 Data structure framework
	2.1 The relative Lempel-Ziv (RLZ) compression scheme
	2.2 Pattern searching
	2.3 Overview of our main data structure

	3 Some useful auxiliary data structures
	3.1 rank and select and integer data structures from the literature
	3.2 Sufﬁx array and FM-index
	3.3 Bi-directional FM-index
	3.4 A new data structure for a special case of 2D range queries

	4 The data structure I(T) for case 1
	5 The data structure X(T) and X(T) for case 2
	6 The data structure Y(F,T) for case 2
	7 Decoding the occurrence locations
	Acknowledgements
	References

