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Abstract. Given a set T of rooted triplets with leaf set L, we consider
the problem of determining whether there exists a phylogenetic network
consistent with T , and if so, constructing one. If no restrictions are placed
on the hybrid nodes in the solution, the problem is trivially solved in
polynomial time by a simple sorting network-based construction. For
the more interesting (and biologically more motivated) case where the
solution is required to be a level-1 phylogenetic network, we present
an algorithm solving the problem in O(n6) time when T is dense (i.e.,
contains at least one rooted triplet for each cardinality three subset of L),
where n = |L|. Note that the size of the input is Θ(n3) if T is dense. We
also give an O(n5)-time algorithm for finding the set of all phylogenetic
networks having a single hybrid node attached to exactly one leaf (and
having no other hybrid nodes) that are consistent with a given dense set
of rooted triplets.

1 Introduction

A phylogenetic network is a generalization of a phylogenetic tree in which internal
nodes are allowed to have more than one parent. Phylogenetic networks are
used to represent evolutionary relationships that cannot be adequately described
in a single tree structure due to evolutionary events such as recombination,
horizontal gene transfer, or hybrid speciation which suggest convergence between
objects [8, 9, 17, 18, 20]. In fact, these types of events occur frequently in the
evolutionary history of certain groups of organisms [17], but not much is known
about the combinatorics related to phylogenetic networks [8]. Hence, to develop
conceptual tools and efficient methods for computing with phylogenetic networks
is an important issue.

Some methods for constructing and for comparing phylogenetic networks
have been proposed recently [4, 8, 17, 18, 20]. In this paper, we consider the prob-
lem of constructing a phylogenetic network from a set of rooted triplets (see
below for a formal problem definition). In particular, we assume that the input
forms a dense set, meaning that the input contains at least one rooted triplet for
each cardinality three subset of the objects being studied, and that the under-
lying phylogenetic network is a level-1 network, meaning that each biconnected
component in the undirected version of the network contains at most one node
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which has two parents in the directed version of the network. The biological
significance of level-1 phylogenetic networks, there referred to as galled-trees,
is discussed in [8]. The rationale for assuming the input to consist of rooted
triplets is that although computationally expensive methods for constructing
reliable phylogenetic trees such as maximum likelihood are infeasible for large
sets of objects, they can be applied to infer highly accurate trees for smaller,
overlapping subsets of the objects (see, e.g., [3]). One may thus apply maximum
likelihood to each cardinality three subset L′ of the objects and then select the
most likely rooted triplet for L′ to get a dense input set1. Moreover, in some
applications, the data obtained experimentally may already have the form of
rooted triplets; for example, Sibley-Ahlquist-style DNA-DNA hybridization ex-
periments (see [15]) can yield rooted triplets directly.

1.1 Definitions

A rooted triplet is a binary, rooted, unordered tree with three distinctly labeled
leaves. The unique rooted triplet on leaf set {x, y, z} in which the lowest common
ancestor of x and y is a proper descendant of the lowest common ancestor of x
and z (or equivalently, where the lowest common ancestor of x and y is a proper
descendant of the lowest common ancestor of y and z) is denoted by ({x, y}, z).
A set T of rooted triplets is called dense if for each {x, y, z} ⊆ L, where L is the
set of all leaves occurring in T , at least one of the three possible rooted triplets
({x, y}, z), ({x, z}, y), and ({y, z}, x) belongs to T .

A phylogenetic network is a connected, rooted, simple, directed acyclic graph
in which: (1) each node has outdegree at most 2; (2) each node has indegree 1
or 2, except the root node which has indegree 0; (3) no node has both indegree 1
and outdegree 1; and (4) all nodes with outdegree 0 are labeled by elements from
a finite set L in such a way that no two nodes are assigned the same label. From
here on, nodes of outdegree 0 are referred to as leaves and identified with their
corresponding elements in L. We refer to nodes with indegree 2 as hybrid nodes.
For any phylogenetic network N , let U(N) be the undirected graph obtained
from N by replacing each directed edge by an undirected edge. N is a level-f
phylogenetic network if every biconnected component in U(N) contains at most
f nodes that are hybrid nodes in N . Note that if f = 0 then N is a tree.

We denote the set of leaves in a rooted triplet t or a phylogenetic network N
by Λ(t) or Λ(N), respectively. A rooted triplet t is consistent with the phyloge-
netic network N if t is an induced subgraph of N . See Fig. 1 for an example. A
set T of rooted triplets is consistent with N if every ti ∈ T is consistent with N .

The problem we consider in this paper is: Given a set T = {t1, . . . , tk}
of rooted triplets, construct a level-1 phylogenetic network N with Λ(N) =

1 A similar approach is used in the quartet method paradigm [14, 16] for reconstructing
unrooted phylogenetic trees: first infer the unrooted topology of each cardinality four
subset of the leaf set to obtain a complete set of quartets (unrooted, distinctly leaf-
labeled trees each having four leaves and no nodes of degree two), then combine the
quartets into an unrooted tree.
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Fig. 1. Let N be the phylogenetic network on the left. The rooted triplet ({b, c}, e)
shown on the right is consistent with N . Note that ({c, e}, b) is also consistent with N .

⋃
ti∈T Λ(ti) such that T is consistent with N , if such a network exists; otherwise,

output null. Throughout this paper, L represents the leaf set
⋃

ti∈T Λ(ti) in
the problem definition above, and we write n = |L| and k = |T |. Note that(
n
3

)
≤ k ≤ 3 ·

(
n
3

)
, i.e., k = Θ(n3) if the input is dense.

Finally, for any set T of rooted triplets and L′ ⊆ L, we define T |L′ as the
subset of T consisting of all rooted triplets ({x, y}, z) with {x, y, z} ⊆ L′.

1.2 Related Work

Aho, Sagiv, Szymanski, and Ullman [1] presented an O(kn)-time algorithm for
determining whether a given set of k rooted triplets on n leaves is consistent
with some rooted, distinctly leaf-labeled tree (i.e., a level-0 phylogenetic net-
work), and if so, returning such a tree. Several years later, Henzinger, King, and
Warnow [10] showed how to implement the algorithm of Aho et al. to run in
min

{
O(kn0.5), O(k + n2 log n)

}
time. Ga̧sieniec, Jansson, Lingas, and Östlin [6]

considered a version of the problem where the leaves in the output tree are re-
quired to comply with a left-to-right leaf ordering given as part of the input.
Related optimization problems where the objective is to construct a rooted tree
consistent with the maximum number of rooted triplets in the input or to find
a maximum cardinality subset L′ of L such that T |L′ is consistent with some
tree have been studied in [2, 6, 7, 12] and [13], respectively.

The analog of the problem considered by Aho et al. for unrooted trees is NP-
hard, even if all of the input trees are quartets [19]. Fortunately, certain useful
optimization problems involving quartets can be approximated efficiently [14,
16]. For a survey on quartet-based methods for inferring unrooted phylogenetic
trees and related computational complexity results, see [16].

Nakhleh, Warnow, and Linder [17] gave an algorithm for reconstructing a
level-1 phylogenetic network from two distinctly leaf-labeled, binary, rooted, un-
ordered trees with identical leaf sets. It runs in time which is polynomial in the
number of leaves and the number of hybrid nodes in the underlying phylogenetic
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network. They also considered the case where the two input trees may contain
errors but where only one hybrid node is allowed.

We remark that the deterministic algorithm for dynamic graph connectivity
employed in the algorithm of Henzinger et al. [10] mentioned above can in fact be
replaced with a more recent one due to Holm, de Lichtenberg, and Thorup [11]
to yield the following improvement.

Lemma 1. [13] The algorithm of Aho et al. can be implemented to run in
min

{
O(k log2 n), O(k + n2 log n)

}
time.

1.3 Our Results and Organization of the Paper

We observe that if no restriction is placed on the level of the phylogenetic net-
work, then the problem can be trivially solved using a sorting network-based con-
struction in Section 2. Next, in Section 3, we present an O(n5)-time algorithm
called OneHybridLeaf for inferring all phylogenetic networks with one hybrid
node to which exactly one leaf is attached that are consistent with a given dense
set of rooted triplets. This algorithm is subsequently used in Section 4, where we
give a more general algorithm called LevelOne for constructing a level-1 phylo-
genetic network consistent with T (if one exists) in O(n6) time when T is dense.

2 Constructing an Unrestricted Phylogenetic Network

Given a set T of rooted triplets, we can always construct a level-f phylogenetic
network N where f is unrestricted such that N is consistent with T . Moreover,
the construction can be carried out in time which is polynomial in the size of T
as follows. Let P be any sorting network (see, e.g., [5]) for n elements with
a polynomial number p of comparator stages. Build a directed acyclic graph Q
from P with (p+1) ·n nodes {Qi,j | 1 ≤ i ≤ p+1, 1 ≤ j ≤ n} such that there is a
directed edge (Qi,j , Qi+1,j) for every 1 ≤ i ≤ p and 1 ≤ j ≤ n, and two directed
edges (Qi,j , Qi+1,k) and (Qi,k, Qi+1,j) for every comparator (j, k) at stage i in P
for 1 ≤ i ≤ p. Then, for 1 ≤ j ≤ n− 1, add the directed edge (Q1,j , Q1,j+1). See
Fig. 2. Finally, distinctly label the nodes {Qp+1,j | 1 ≤ j ≤ n} by L, and for each
node in Q having indegree 1 and outdegree 1 (if any), contract its outgoing edge
to obtain N . It is easy to show that for any {x, y, z} ⊆ L, all three of ({x, y}, z),
({x, z}, y), and ({y, z}, x) are consistent with N .

3 Constructing All Phylogenetic Networks
Having One Hybrid Node with One Attached Leaf

This section presents an algorithm called OneHybridLeaf for inferring the set
of all phylogenetic networks having a single hybrid node attached to exactly
one leaf (and having no other hybrid nodes) which are consistent with a given
set T of rooted triplets. This algorithm is later used as a subroutine by the main
algorithm in Section 4. OneHybridLeaf assumes that its given set T of rooted
triplets is dense. We first note the following.
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Fig. 2. The sorting network P on the left yields a directed acyclic graph Q.

Lemma 2. Let N be any phylogenetic network consistent with a set T of rooted
triplets with leaf set L such that N has a hybrid node h to which exactly one
leaf c is attached and N has no other hybrid nodes. If h and c and all their
incident edges are deleted and then, for every node with outdegree 1 and indegree
less than 2, its outgoing edge is contracted, then the resulting graph is a binary
tree consistent with T | (L \ {c}).

Lemma 3. Let T be a dense set of rooted triplets and let L be the leaf set of T .
There is at most one rooted, unordered tree distinctly leaf-labeled by L which is
consistent with T . Furthermore, if such a tree R exists then it must be binary.

Proof. Suppose there exist two unordered, distinctly leaf-labeled trees R and R′

consistent with T such that R �= R′. Then, for some x, y, z ∈ L, ({x, y}, z) is con-
sistent with R while ({x, z}, y) is consistent with R′. Since T ′ is dense, at least
one of ({x, y}, z), ({x, z}, y), and ({y, z}, x) belongs to T . This yields a contradic-
tion in all cases because R cannot be consistent with ({x, z}, y) or ({y, z}, x) and
R′ cannot be consistent with ({x, y}, z) or ({y, z}, x) since R and R′ are trees.

Next, suppose R is not binary. Then R has a node u with degree greater than
two. Let x, y, and z be leaves from three different subtrees rooted at children of u.
T is dense, so at least one of ({x, y}, z), ({x, z}, y), and ({y, z}, x) belongs to T .
But none of these three rooted triplets is consistent with R. Contradiction. ��

Our algorithm OneHybridLeaf is shown in Fig. 3. It tests every c ∈ L as
the leaf attached to the hybrid node. For each such candidate c, it first calls a
procedure BuildTree to obtain a binary tree R which is consistent with all rooted
triplets in T that do not involve the leaf c, if such a tree exists. (T is dense, so
the set T | (L \ {c}) is also dense. Thus, Lemma 3 ensures that if R exists then it
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Algorithm OneHybridLeaf

Input: A dense set T of rooted triplets with leaf set L.

Output: The set of all phylogenetic networks which are consistent with T having
exactly one hybrid node to which there is exactly one leaf attached.

1 Set N = ∅.
2 for each c ∈ L do

2.1 Let R = BuildTree(T | (L \ {c})).
2.2 if R �= null then

2.3 for every pair of nodes u and v in R, where u �= v and v is not the
root of R do

2.3.1 Form a phylogenetic network N from R as follows. Create three
new internal nodes p, q, and h, insert the four edges (p, u), (p, h),
(q, v), and (q, h), and attach a leaf child labeled by c to h. Replace
the edge (v0, v) leading to v by the edge (v0, q). If u is not the root
then replace u’s incoming edge (u0, u) by the edge (u0, p).

2.3.2 If N is consistent with all rooted triplets in T involving the leaf c
then let N = N ∪ {N}.

endfor

endfor

3 return N .

End OneHybridLeaf

Fig. 3. Constructing phylogenetic networks with one hybrid node.

is uniquely determined and binary.) Then, it tries all possible ways to obtain a
phylogenetic network from R by inserting a hybrid node h attached to the leaf c,
and keeps all resulting networks which are also consistent with the rest of T . By
Lemma 2, all valid networks will be found by OneHybridLeaf.

To implement BuildTree, we use the fast version of the algorithm of Aho et al.
referred to in Lemma 1. If L contains at least four elements then BuildTree(T |(L\
{c})) is the algorithm of Aho et al. applied to T | (L \ {c}) (we may assume it
returns null if it fails). For the case |L| = 3, the set T | (L\{c}) is empty and we
simply let BuildTree(T | (L \ {c})) return a tree with the two leaves in L \ {c}.
Lemma 4. The time complexity of Algorithm OneHybridLeaf is O(n5).

Proof. Step 2 iterates Steps 2.1–2.3 n times. In each iteration, Step 2.1 takes
O(k+n2 log n) time by Lemma 1. The inner for-loop (Step 2.3) considers O(n2)
pairs of nodes of R; for each such node pair, Step 2.3.1 takes O(1) time and
Step 2.3.2 takes O(n2) time. In total, Step 2.3 uses O(n2 · (1 + n2)) = O(n4)
time, so Step 2 takes O(n·(k+n2 log n+n4)) time. Furthermore, k = |T | = O(n3).
Thus, the total running time of Algorithm OneHybridLeaf is O(n5). ��

4 Constructing a Level-1 Phylogenetic Network

Here, we present an algorithm called LevelOne for inferring a level-1 phylogenetic
network (if one exists) consistent with a given dense set T of rooted triplets. The
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basic idea of our algorithm is to partition the leaf set of T into disjoint subsets
which we call SN -sets, run LevelOne recursively to construct a level-1 network
for each SN -set, and then apply Algorithm OneHybridLeaf from Section 3 to
combine the computed networks for the SN -sets into one level-1 network.

We first introduce the concept of an SN -set. Let L be the leaf set of T . For
any X ⊆ L, define the set SN(X) recursively as SN(X ∪ {c}) if there exists
some c ∈ L \X and x1, x2 ∈ X such that ({x1, c}, x2) ∈ T , and as X otherwise.
Below, we study some properties of the SN -sets.

Lemma 5. SN({x, y}) for any x, y ∈ L is computable in O(n3) time.

Proof. If x = y then SN({x, y}) = {x} can be obtained in O(1) time. If x �= y
then SN({x, y}) can be computed by calling Algorithm ComputeSN(x, y) shown
in Fig. 4. Initially, the algorithm sets X = {x} and Z = {y}. Then, while Z
is nonempty, it selects any z ∈ Z, augments Z with all leaves c not already
in X ∪ Z such that ({a, c}, z) or ({z, c}, a) ∈ T for some a ∈ X , and finally
removes z from Z and inserts z into X . To analyze the time complexity of
Algorithm ComputeSN, observe that one leaf is transferred from Z to X in each
iteration of the while-loop and that a leaf which has been moved to X can
never be moved back to Z, so Steps 2.1–2.3 are iterated at most n − 1 times.
Inside the while-loop, the algorithm scans O(n2) rooted triplets at most once
to augment Z. The total running time of ComputeSN is therefore O(n3). ��

Algorithm ComputeSN

Input: A dense set T of rooted triplets with leaf set L. Two leaves x, y ∈ L.

Output: SN({x, y}).

1 Set X = {x} and Z = {y}.
2 while Z �= ∅ do

2.1 Let z be any element in Z.

2.2 for every a ∈ X do

If there exists some c ∈ L \ (X ∪ Z) such that ({a, c}, z) ∈ T or
({z, c}, a) ∈ T then Z = Z ∪ {c}.

endfor

2.3 Set X = X ∪ {z} and Z = Z \ {z}.
endwhile

3 return X.

End ComputeSN

Fig. 4. Computing SN({x, y}).

Lemma 6. If T is dense then for any A, B ⊆ L, SN(A) ∩ SN(B) equals ∅,
SN(A), or SN(B).

Proof. Suppose on the contrary that z1, z2 ∈ SN(A), z2, z3 ∈ SN(B), z3 �∈
SN(A), and z1 �∈ SN(B). Consider the rooted triplet on the three leaves z1, z2,
and z3. Since T is dense, at least one of the following three cases must occur:
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– Case 1: ({z2, z3}, z1) ∈ T . Then, by definition, z3 ∈ SN(A).
– Case 2: ({z1, z3}, z2) ∈ T . Then, by definition, z3 ∈ SN(A).
– Case 3: ({z1, z2}, z3) ∈ T . Then, by definition, z1 ∈ SN(B).

In each of the three cases, we have a contradiction. Thus, the lemma follows. ��

In particular, Lemma 6 holds for all subsets of L of cardinality one or two.
For any x1, x2 ∈ L (possibly with x1 = x2), SN({x1, x2}) is called trivial if

SN({x1, x2}) = L, and SN({x1, x2}) is called maximal if it is nontrivial and not
a proper subset of any nontrivial SN({y1, y2}), where y1, y2 ∈ L. Let SN be the
set of all maximal SN -sets of the form SN({x1, x2}), where possibly x1 = x2.
Since T is dense, SN forms a partition of the set L by Lemma 6. Furthermore,
SN is uniquely determined. Write SN = {SN1, SN2, . . . , SNq} and introduce
q new symbols α1, α2, . . . , αq. (Observe that q ≥ 2 if |L| ≥ 2.) We define a
function f as follows. For every x ∈ L, let f(x) = αi if x ∈ SNi. Let T ′ be the
set

{
({f(x), f(y)}, f(z)) : ({x, y}, z) ∈ T and f(x), f(y), f(z) all differ

}
.

Lemma 7. Suppose T is consistent with a level-1 phylogenetic network. If q = 2
then the tree distinctly leaf-labeled by α1 and α2 is consistent with T ′. If q ≥ 3
then there exists a phylogenetic network having a single hybrid node attached to
exactly one leaf (and having no other hybrid nodes) that is consistent with T ′.

We also have:

Lemma 8. Suppose T ′ is consistent with a level-1 phylogenetic network N ′ with
leaf set {α1, . . . , αq}. Let N be a level-1 network obtained from N ′ by replacing
each αi by a level-1 network Ni with leaf set SNi consistent with T |SNi. Then
N is consistent with T .

Proof. Let t be any rooted triplet in T and write t = ({x, y}, z). If x ∈ SNi, y ∈
SNj , and z ∈ SNk, where i, j, k all differ, then t is consistent with N (otherwise,
t′ = ({f(x), f(y)}, f(z)) = ({αi, αj}, αk) cannot be consistent with N ′ which is
a contradiction since t′ ∈ T ′). If x, y ∈ SNi and z ∈ SNj with i �= j then t is
consistent with N by the construction of N . The case x, z ∈ SNi and y ∈ SNj

(or symmetrically, y, z ∈ SNi and x ∈ SNj) with i �= j is not possible since
x, z ∈ SNi implies y ∈ SNi. If x, y, z belong to the same SNi then t is consistent
with Ni and therefore with N . In all cases, t is consistent with N . ��

Our main algorithm LevelOne is listed in Fig. 5. Its correctness follows from
Lemmas 7 and 8.

Theorem 1. When T is dense, we can determine if there exists a level-1 phy-
logenetic network consistent with T , and if so construct one, in O(n6) time.

Proof. Apply Algorithm LevelOne to T . For any L′ ⊆ L, let g(L′) be the running
time of LevelOne(T |L′). In Step 1 of the algorithm, we compute SN({x1, x2})
for the n2 pairs (x1, x2) in L×L. By Lemma 5, Step 1 takes O(n5) time. Step 2
can be performed in O(n3) time, and Step 3 takes

∑
SNi∈SN g(SNi) time. Step 5

can be done in O(n5) time according to Lemma 4. In total, we have g(L) =∑
SNi∈SN g(SNi) + O(n5). Since all sets in SN are disjoint, g(L) = O(n6). ��
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Algorithm LevelOne

Input: A dense set T of rooted triplets with leaf set L.

Output: A level-1 network N consistent with T , if one exists; otherwise, null.

1 for every x1 ∈ L and x2 ∈ L (including x1 = x2) do

Compute SN({x1, x2}.
endfor

2 Let SN = {SN1, SN2, . . . , SNq} be the set of all maximal SN({x1, x2}).
3 for every SNi ∈ SN do

If |SNi| ≥ 3 then Ni = LevelOne(T |SNi); else, let Ni be a tree distinctly
leaf-labeled by SNi.

endfor

4 If Ni for any i ∈ {1, . . . , q} equals null then return null.

5 If q = 2 then let N be a network with a root node connected to N1 and N2.
Otherwise (q ≥ 3), build T ′ from T , compute N = OneHybridLeaf (T ′), and
check if N is empty; if yes then let N = null, else select any N ′ ∈ N and form
a network N by replacing each αi in N ′ with Ni.

6 return N .

End LevelOne

Fig. 5. Constructing a level-1 phylogenetic network.

Algorithm LevelOne can be modified to return all level-1 phylogenetic net-
works consistent with T by utilizing all the possible topologies returned by One-
HybridLeaf. However, the running time may then become exponential since some
inputs are consistent with an exponential number of different level-1 networks.
(At each recursion level, although the partition of the leaves into SN is unique
when the input is dense, there may be more than one way to merge the recur-
sively computed subnetworks for the SN -sets into a valid network.)

5 Conclusion

This paper presents a polynomial-time algorithm for inferring a level-1 phylo-
genetic network from a dense set of rooted triplets. This problem is not only
interesting from a combinatorial point of view, but also biologically sound since
rooted triplets can be obtained accurately by using maximum likelihood or di-
rectly through experiments. In the future, we plan to further improve the time
complexity of our main algorithm and to investigate the computational com-
plexity of the problem when T is not dense. Also, we would like to know if it is
possible to construct a level-f phylogenetic network from a dense set of rooted
triplets in polynomial time for any constant f > 1.
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