
http://www.aimspress.com/journal/medicalScience/

AIMS Medical Science, 5(2): 181–203
DOI:10.3934/medsci.2018.2.181
Received: 15 May 2017
Accepted: 02 March 2018
Published: 10 May 2018

Research article

Minimal Phylogenetic Supertrees and Local Consensus Trees

Jesper Jansson1, Ramesh Rajaby2, and Wing-Kin Sung3,4,∗

1 Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong;

2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore,
28 Medical Drive, Singapore 117456;

3 School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417;
4 Genome Institute of Singapore, 60 Biopolis Street, Genome, Singapore 138672

* Correspondence: ksung@comp.nus.edu.sg

Abstract: The problem of constructing a minimally resolved phylogenetic supertree (i.e., a rooted
tree having the smallest possible number of internal nodes) that contains all of the rooted triplets from
a consistent set R is known to be NP-hard. In this article, we prove that constructing a phylogenetic
tree consistent with R that contains the minimum number of additional rooted triplets is also NP-hard,
and develop exact, exponential-time algorithms for both problems. The new algorithms are applied to
construct two variants of the local consensus tree; for any set S of phylogenetic trees over some leaf
label set L, this gives a minimal phylogenetic tree over L that contains every rooted triplet present in all
trees in S, where “minimal” means either having the smallest possible number of internal nodes or the
smallest possible number of rooted triplets. (The second variant generalizes the RV-II tree, introduced
by Kannan et al. in 1998.) We also measure the running times and memory usage in practice of the
new algorithms for various inputs. Finally, we use our implementations to experimentally investigate
the non-optimality of Aho et al.’s well-known BUILD algorithm from 1981 when applied to the local
consensus tree problems considered here.

Keywords: Phylogenetic tree; rooted triplet; local consensus; minimal supertree; algorithms;
computational complexity

1. Introduction

Phylogenetic trees are used to describe evolutionary relationships between species [12]. Numer-
ous methods for reconstructing and comparing phylogenetic trees have been developed, fine-tuned

http://www.aimspress.com/journal/medicalScience/
http://dx.doi.org/10.3934/medsci.2018.2.181

182

to different applications and different types of input data [12, 30]. The supertree approach is a rel-
atively new divide-and-conquer-based technique for reconstructing phylogenetic trees that may be
useful when dealing with very large datasets [5]. The general idea behind it is to first infer a set of
highly accurate trees for overlapping subsets of the species (e.g., using a computationally expensive
method such as maximum likelihood [10, 12]) and then combine all the trees into one tree according
to some well-defined rule. An example of a famous phylogenetic supertree for more than 4500 species
can be found in [6]; see also [5, 16] for references to many other supertrees in the biological liter-
ature. One class of supertree methods consists of the BUILD algorithm [2] and its various exten-
sions [11, 14, 15, 19, 25–28, 31] for combining a set of rooted triplets (binary phylogenetic trees with
three leaves each), e.g., inferred by the method in [10].

A consensus tree [1,8,22] can be regarded as the special case of a phylogenetic supertree where all
the trees that are to be combined have the same leaf label set. Such inputs arise when a collection of
alternative datasets, each covering all the species, is available, or when applying bootstrapping or dif-
ferent tree reconstruction algorithms to the same basic dataset [12]. A consensus tree can also measure
the similarity between two identically leaf-labeled trees or identify parts of trees that are similar. Many
different types of consensus trees, whose formal definitions of how to handle conflicts differ, have been
proposed in the last 45 years. See the surveys in [8], Chapter 30 in [12], and Chapter 8.4 in [30] for
more details about different consensus trees and their advantages and disadvantages, and [20, 21] for
some recent algorithmic results.

In situations where more than one phylogenetic tree can explain some given experimental data
equally well, it is natural to select a “minimal” tree that supports the data while making as few extra
statements about the evolutionary history as possible. A minimally resolved phylogenetic supertree [18]
is a supertree that is consistent with all of the input and that has the minimum number of internal nodes.
By minimizing the number of internal nodes, the risk of creating false groupings called “spurious
novel clades” [5] is reduced. Furthermore, such a tree gives a simpler overview of the data than a
tree with many internal nodes and can in general be stored in less memory. This makes it easier for
scientists to exchange information. Another way to define “minimal” above, giving what we call a
minimally rooted-triplet-inducing phylogenetic supertree, instead requires that the supertree contains
the minimum number of rooted triplets. This interpretation of minimal was previously considered in
the definition of the RV-II local consensus tree in [22].

There are a few misunderstandings about minimal phylogenetic supertrees in the literature. The goal
of this article is to correct these issues, to further develop the underlying mathematical framework, and
to design new supertree algorithms that can also be applied to the construction of consensus trees. The
algorithms presented here have been implemented and are publicly available.

1.1. Problem Definitions

A rooted phylogenetic tree is a rooted, unordered, leaf-labeled tree in which all leaf labels are
different and every internal node has at least two children. For example, T1 and T2 in figure 1 are two
rooted phylogenetic trees. In this article, rooted phylogenetic trees are referred to as “trees” and every
leaf in a tree is identified with its unique label.

Let T be a tree. The set of all nodes in T , the set of internal nodes in T , and the set of leaves in T are
denoted by V(T), µ(T), and Λ(T), respectively. For any u, v ∈ V(T), if u is a descendant of v and u , v
then we write u ≺ v. The lowest common ancestor of u and v, or lca(u, v) for short, is the node w such

AIMS Medical Science Volume 5, Issue 2, 181–203

183

T :

d e

g

fa b c

1
T :

d e

g

fa b c

2

Figure 1. An example. Let S = {T1,T2} as above with Λ(T1) = Λ(T2) = {a, b, c, d, e, f , g}.
Then r(T1) ∩ r(T2) = {ab|e, ab| f , ab|g, cd|e, cd| f , cd|g, e f |a, e f |b, e f |c, e f |d, e f |g} and T2

is an optimal solution to MinRLC. On the other hand, |r(T1)| = 15 while |r(T2)| = 23, so T2

cannot be an optimal solution to MinILC.

that both u and v are descendants of w and w ≺ x holds for every other node x which is an ancestor of
both u and v.

A rooted triplet is a binary tree with exactly three leaves. We use the notation xy|z to refer to the
rooted triplet with leaf label set {x, y, z} such that lca(x, y) ≺ lca(x, z) = lca(y, z). Let T be a tree. For
any x, y, z ∈ Λ(T), if lca(x, y) ≺ lca(x, z) = lca(y, z) holds in T then the rooted triplet xy|z and T are said
to be consistent with each other. For example, ab|c is consistent with T1 but not with T2 in figure 1.
Observe that for any {x, y, z} ⊆ Λ(T), exactly zero or one of the three rooted triplets xy|z, xz|y, and yz|x
is consistent with T . The set of all rooted triplets that are consistent with T is denoted by r(T). For
any set R of rooted triplets, if R ⊆ r(T) then R and T are consistent with each other. Finally, a set R of
rooted triplets is consistent if there exists a tree that is consistent with R.

Next, we give the definitions of the minimally resolved phylogenetic supertree consistent with rooted
triplets problem (MinRS) (studied in [18]) and the minimally rooted-triplet-inducing phylogenetic su-
pertree consistent with rooted triplets problem (MinIS). In both problems, the input is a consistent
set R of rooted triplets∗, and the output is a tree T satisfying Λ(T) =

⋃
t∈RΛ(t) and R ⊆ r(T). The

objectives are to minimize the value of |µ(T)| (for MinRS) and to minimize the value of |r(T)| (for
MinIS), respectively.

In the minimally resolved local consensus tree problem (MinRLC) and the minimally rooted-triplet-
inducing local consensus tree problem (MinILC) (introduced in [22] for the special case k = 2), the
input is a set S = {T1,T2, . . . ,Tk} of trees with Λ(T1) = Λ(T2) = . . . = Λ(Tk) = L for some leaf label
set L, and the output is a tree T satisfying Λ(T) = L and

⋂k
i=1 r(Ti) ⊆ r(T). The objectives in MinRLC

and MinILC are, respectively, to minimize the value of |µ(T)| and to minimize the value of |r(T)|.
Note that MinRLC and MinILC admit polynomial-time reductions to MinRS and MinIS, respec-

tively, by setting R =
⋂k

i=1 r(Ti).
See figure 1 for a simple example showing that MinRLC and MinILC are indeed different prob-

lems, and consequently, that MinRS is different from MinIS. From here on, we will use Newick
notation to describe trees compactly. E.g., in figure 1, we have T1 = ((a, b), (c, d), (e, f), g);
and T2 = ((a, b, c, d), (e, f), g);. (For details about Newick notation, the reader is referred to
http://evolution.genetics.washington.edu/phylip/newicktree.html.)

Throughout the article, the size of the input to MinRS/MinIS is expressed in terms of k = |R| and

∗This article assumes without loss of generality that the input R to MinRS/MinIS is consistent. The reason is that given an arbitrary R,
one can check whether R is consistent or not in polynomial time using the BUILD algorithm [2] described below.

AIMS Medical Science Volume 5, Issue 2, 181–203

184

n = |L|, where L =
⋃

t∈RΛ(t). For MinRLC/MinILC, k = |S| and n = |L|, where L = Λ(T1) = Λ(T2) =

. . . = Λ(Tk).

1.2. Previous Work

Here, we give an overview of some relevant results from the literature.

BUILD: Aho et al. [2] presented a polynomial-time algorithm called BUILD for determining if an
input set R of rooted triplets is consistent, and if so, constructing a tree T with Λ(T) =

⋃
t∈RΛ(t) and

R ⊆ r(T). (When the input R is not consistent, one can for example look for a tree T that maximizes
|r(T) ∩ R|; cf. Section 2 in [9] for a survey on this problem variant.) BUILD is summarized in
Section 2.1 below. Henzinger et al. [16] gave a faster implementation of BUILD, and substituting the
data structure for dynamic graph connectivity used in the proof of Theorem 1 in [16] by the one in [32]
yields a time complexity of min{O(n + k log2 n

log log n), O(k + n2 log n)}, where k = |R| and n = |
⋃

t∈RΛ(t)|.
Importantly, BUILD does not solve MinRS and MinIS. This was first observed by Bryant [7, Sec-

tion 2.5.2], who gave the following counterexample: R = {bc|a, bd|a, e f |a, eg|a}. Given R as input,
BUILD constructs the tree TB = (a, (b, c, d), (e, f , g));, which has three internal nodes and 24 rooted
triplets. In contrast, the optimal solution to both MinRS and MinIS is the tree TO = (a, (b, c, d, e, f , g));,
which has two internal nodes and 15 rooted triplets. As pointed out in [18], the claim by Henzinger
et al. in [16] that their Algorithm A’ always constructs a minimal tree is therefore false. In another
highly cited article, Ng and Wormald [25] presented an extension of BUILD named OneTree to so-
called fans; however, Note 2 in Section 4 of [25] incorrectly states that OneTree outputs a tree with the
minimum number of nodes. Finally, the authors of the textbook [17] seem to have been unaware of
Bryant’s example, as p. 302 of [17] says it is not known if the tree output by BUILD always contains
the minimum number of rooted triplets.

MinRS: For MinRS, the following strong negative result is known: MinRS cannot be approximated
within n1−ε for any constant ε > 0 in polynomial time, unless P = NP [18]. An algorithm named
AllMinTrees in [26] outputs all minor-minimal trees consistent withR, where a tree T is minor-minimal
if it is consistent with R and it is not possible to obtain a tree consistent with R by contracting any edges
of T , and this algorithm can be used to solve MinRS. However, it runs in Ω((n

2)n/2) time [18], which
is self-exponential in n/2. Some special cases of MinRS can be solved in polynomial time; e.g., if the
output tree has at most three internal nodes or if it is a caterpillar (a tree in which every node has at
most one child that is an internal node) [18]. Also, for any positive integer p, if every node in the output
tree has at most p children which are internal nodes then MinRS can be solved in pO(n) time [18].

MinIS: To determine the computational complexity of MinIS was listed as an open problem in Sec-
tion 6 in [18]. As far as we know, it has not been studied previously.

MinRLC, MinILC, and local consensus trees: Finding a tree T that satisfies
⋂k

i=1 r(Ti) ⊆ r(T) is
trivial since one can just select T = T1, but imposing additional conditions makes the output more
informative and meaningful. MinRLC and MinILC provide two natural ways to do it. The MinILC
problem originates from Kannan et al. [22], who gave several alternative definitions of a “local con-
sensus tree”. They called a tree T an RV-II (“relaxed version II”) tree of two trees T1 and T2 with
identical leaf label sets if r(T1)∩ r(T2) ⊆ r(T) and |r(T)| is minimized. Thus, an RV-II tree is a solution
to MinILC when k = 2. In Section 5.4 of [22], the authors suggested that applying BUILD to the set

AIMS Medical Science Volume 5, Issue 2, 181–203

185

Problem Positive result Negative result
MinRS O(2.733n) time NP-hard

(Theorem 1, Section 3) (Theorem 3.3 in [18])
MinRLC O(kn3 + 2.733n) time NP-hard

(Corollary 1, Section 3) (Theorem 3, Section 5)
MinIS O∗(4n) time NP-hard

(Theorem 2, Section 4) (Corollary 4, Section 6)
MinILC O(kn3 + 4n · poly(n)) time NP-hard

(Corollary 2, Section 3) (Theorem 4, Section 6)

Table 1. Overview of the computational complexity of the four studied problems.

r(T1)∩ r(T2) always produces an RV-II tree, but this is not correct. A counterexample, analogous to the
one for MinRS and MinIS above, is obtained by letting T1 and T2 be the two trees TB and TO, which
gives r(T1) ∩ r(T2) = {bc|a, bd|a, cd|a, e f |a, eg|a, f g|a}. Then, BUILD’s output is TB but this cannot
be a solution to MinRLC or MinILC because TO has fewer internal nodes and fewer rooted triplets
than TB. This shows that one cannot solve MinRLC/MinILC by taking R =

⋂k
i=1 r(Ti) and applying

BUILD directly.
In the consensus tree survey by Bryant [8], “the local consensus tree” is defined as the output of

BUILD when given
⋂k

i=1 r(Ti) as input. The algorithm in Section 5.4.1 of [22] constructs such a tree
in O(n2) time for the case k = 2, while the O(kn3)-time algorithm in Theorem 7 in [16] by Henzinger
et al. can be used for unbounded k. The advantages of Bryant’s BUILD-based local consensus tree are
that it is unique and can be computed efficiently. The disadvantages are that it does not minimize the
number of nodes or induced rooted triplets and that it is defined in terms of the output of an algorithm
and not axiomatically.

1.3. New Results and Organization of the Article

Section 2 reviews the BUILD algorithm from [2] and an enlightening result by Semple in [26] that
characterizes all trees consistent with the input R. Based on Semple’s characterization, Section 3 gives
an O∗((1 +

√
3)n) = O(2.733n)-time algorithm† for MinRS and an O(kn3 + 2.733n)-time algorithm for

MinRLC. Section 4 then describes an O∗(4n)-time algorithm for MinIS and an O(kn3 + 4n · poly(n))-
time algorithm for MinILC. All four problems are NP-hard; MinRS was shown to be NP-hard in [18],
and we complement this result by establishing the NP-hardness of MinRLC in Section 5 and the NP-
hardness of MinIS and MinILC in Section 6. See Table 1 for a summary of the theoretical results.

Next, Section 7 presents a publicly available implementation of our algorithms and experimental
results demonstrating how the running times and memory usage increase as the inputs grow larger.
Equipped with these implementations, in Section 8 we then investigate a fundamental question: Is
Bryant’s BUILD-based local consensus tree (see Section 1.2), which can be computed in polynomial
time, a good approximation to MinRLC and MinILC? Our experiments indicate that although the
former is not optimal most of the time even for small randomly generated inputs (e.g., for k = 4
and n = 12), the ratio between the number of internal nodes or the number of rooted triplets in the

†The notation O∗(f (n)) means O(f (n) · poly(n)).

AIMS Medical Science Volume 5, Issue 2, 181–203

186

BUILD-based local consensus tree and in an optimal solution is not far from 1 on average for small
inputs.

2. Preliminaries

2.1. Aho et al.’s BUILD Algorithm [2]

The BUILD algorithm [2] is a recursive, top-down algorithm that takes as input a set R of rooted
triplets and a leaf label set L such that

⋃
t∈RΛ(t) ⊆ L and outputs a tree T with Λ(T) = L that is

consistent with all of the rooted triplets in R, if such a tree exists; otherwise, it outputs fail. The time
complexity of BUILD is polynomial (q.v., Section 1.2).

A summary of how BUILD works is given here. It first partitions the leaf label set L into blocks
according to the information contained in R. More precisely, BUILD constructs an auxiliary graph,
defined as the undirected graph G(L) = (L, E) where for any x, y ∈ L, the edge {x, y} belongs to E
if and only if R contains at least one rooted triplet of the form xy|z with z ∈ L. It then computes
the connected components in G(L) and assigns the leaf labels in each connected component to one
block. (Henceforth, the set of leaf labels belonging to any connected component C in G(L) is denoted
by Λ(C), and for every L′ ⊆ L, we define R|L′ = {t ∈ R : Λ(t) ⊆ L′}.) Next, for each block Λ(C),
BUILD builds a tree TC by calling itself recursively using R|Λ(C) together with Λ(C) as input. Finally,
BUILD returns a tree consisting of a newly created root node whose children are the roots of all the
recursively constructed TC-trees. The recursion’s base case is when the leaf label set consists of one
element x, in which case the algorithm just returns a tree with a single leaf labeled by x. If any auxiliary
graph G(L′) constructed during BUILD’s execution has only one connected component and |L′| > 1
holds then the algorithm terminates and outputs fail. See, e.g., [2] for the correctness proof and further
details.

Returning to the example in Section 1.2 where we had R = {bc|a, bd|a, e f |a, eg|a} and L =

{a, b, c, d, e, f , g}, the blocks in the auxiliary graph G(L) are {a}, {b, c, d}, and {e, f , g}. The aux-
iliary graphs on the successive recursive levels contain no edges, so BUILD outputs the tree
(a, (b, c, d), (e, f , g));.

2.2. Semple’s Characterization

In [26], Semple clarified the relationship between the auxiliary graph G(L) used in the BUILD
algorithm and the trees consistent with R. For any tree T , define π(T) as the partition of Λ(T)
whose parts are the leaves in the different subtrees attached to the root of T . As an example,
π(T1) = {{a, b}, {c, d}, {e, f }, {g}} in figure 1. With this notation, Semple’s characterization can be
expressed as:

Lemma 1. (Corollary 3.3 in [26]) Let T be any tree that is consistent with R. For each connected
component C in G(L), Λ(C) ⊆ B for some B ∈ π(T).

Lemma 1 implies that if T is any tree consistent with R then the partition π(T) can be obtained
by performing zero or more mergings of G(L)’s connected components. Thus, every tree consistent
with R can be recovered by trying all possible mergings of the connected components in G(L) at each
recursion level.‡

‡This technique was actually used even earlier than [26]; the SUPERB algorithm in [11] outputs all binary trees consistent with R by

AIMS Medical Science Volume 5, Issue 2, 181–203

187

We remark that Lemma 1 is very useful. For example, it can be employed to prove the non-
uniqueness of solutions to MinRLC and MinILC (and hence, MinRS and MinIS). To illustrate,
consider the following instance: S = {T1,T2,T3} with T1 = ((1, 2, 3, 4, 5, 6), (7, 8), (9, 10), 11);,
T2 = ((1, 2, 3, 4, 5, 6, 7, 8), (9, 10), 11);, and T3 = ((1, 2, 3, 4, 5, 6, 9, 10), (7, 8), 11);. The connected
components in G(L), where R =

⋂3
i=1 r(Ti), consist of {1, 2, 3, 4, 5, 6}, {7, 8}, {9, 10}, and {11}. By

Lemma 1, we only need to check a few possible candidate trees (corresponding to the different ways of
merging these connected components), and we find that each of T1, T2, and T3 is an optimal solution
to MinILC since |r(T1)| = |r(T2)| = |r(T3)| = 93. Furthermore, each of T2 and T3 is an optimal solution
to MinRLC.

3. Exponential-Time Algorithms for MinRS and MinRLC

This section presents an exact O(2.733n)-time algorithm for MinRS. As a consequence, MinRLC
can be solved in O(kn3 + 2.733n) time.

The main idea is to use Lemma 1 together with dynamic programming. For every L′ ⊆ L, let
opt(L′) be the number of internal nodes in an optimal solution to MinRS for R|L′. Clearly, if |L′| = 1
then opt(L′) = 0. To compute opt(L′) when |L′| ≥ 2, observe that if T ′ is any optimal solution for R|L′

then T ′ consists of a root node whose children are the roots of the optimal solutions for R|P1, R|P2,
. . ., R|Pt, where {P1, P2, . . . , Pt} is equal to π(T ′). The partition π(T ′) can be found by enumerating the
partitions of L′ and using dynamic programming to identify the best one; by Lemma 1, only partitions
corresponding to the different ways of merging connected components in the auxiliary graph G(L′)
need to be considered.

The details are explained next. Suppose L′ ⊆ L is given. Let CL′ be the set of connected com-
ponents in G(L′). For every subset D ⊆ CL′ , define Merge(D) as the set of all leaf labels belonging
to components in D, i.e., Merge(D) =

⋃
Q∈DΛ(Q). Also define DP(D) for every D ⊆ CL′ to be the

minimum value of
∑
X∈Q opt(Merge(X)) taken over all possible true partitions Q of D, where we say

that a partition Q of a set X is a true partition of X if |X| ≥ 2 and Q , {X} (i.e., if |Q| > 1), or if
|X| = |Q| = 1. Then:

Lemma 2. For every L′ ⊆ L with |L′| ≥ 2, it holds that opt(L′) = DP(CL′) + 1.

Proof. Let T ′ be any optimal tree for R|L′. The children of the root of T ′ are the roots of the optimal
solutions for R|P1, R|P2, . . ., R|Pt, where each Pi equals Merge(D) for some D ⊆ CL′ because of
Lemma 1. By definition, DP(CL′) is the minimum value of

∑
X∈P opt(X) over all true partitions P of L′

such that each X ∈ P equals Merge(D) for some D ⊆ CL′ . Together with the common root node, this
gives opt(L′) = DP(CL′) + 1. �

Lemma 3. For every D ⊆ CL′ with |D| ≥ 2, DP(D) = min
∅,X(D

{
opt(Merge(X)) + min{DP(D \

X), opt(Merge(D \ X))}
}
.

Proof. DP(D) = min
{∑
X∈Q opt(Merge(X)) : Q is a true partition ofD

}
=

min
{
opt(Merge(X)) + min{DP(D \ X), opt(Merge(D \ X))} : X ∈ Q, Q is a true partition

ofD
}

= min
{
opt(Merge(X)) + min{DP(D \ X), opt(Merge(D \ X))} : ∅ , X (D

}
. �

considering all ways of merging the connected components of G(L) into exactly two connected components at each recursion level.

AIMS Medical Science Volume 5, Issue 2, 181–203

188

Algorithm MinRS exact
Input: A consistent set R of rooted triplets over a leaf label set L.
Output: The number of internal nodes in a minimally resolved supertree consistent with R and
leaf-labeled by L.

1: For every x ∈ L, initialize opt({x}) := 0;
2: for i := 2 to n do
3: for every cardinality-i subset L′ of L do
4: Construct G(L′). Let C andU be the set of connected components and the set of singleton

components, respectively, in G(L′);
5: Let DP(∅) := 0. For every X ∈ C \ U, let DP({X}) := opt(Λ(X));
6: for j := 2 to |C| − |U| do
7: for every cardinality- j subsetD of C \ U do
8: DP(D) :=

min
∅,X(D

{
opt(

⋃
Q∈XΛ(Q)) + min{DP(D \ X), opt(

⋃
Q∈D\XΛ(Q))}

}
;

9: end for
10: end for
11: opt(L′) := DP(C \ U) + 1;
12: end for
13: end for
14: return opt(L);

Figure 2. Algorithm MinRS exact.

Lemmas 2 and 3 suggest the following strategy: Compute opt(L′) for all subsets L′ of L in order
of increasing cardinality by evaluating the formula in Lemma 2, while using dynamic programming
to compute and store the relevant DP-values. To do this, for each L′, we first construct G(L′) in
polynomial time. We then enumerate all subsets D of CL′ in a loop having |CL′ | iterations in which
iteration j uses Lemma 3 to compute all DP(D)-values where |D| = j. Each application of Lemma 3
takes O∗(2|D|) time, so this takes a total of O∗(

∑|CL′ |

j=2

(
|CL′ |

j

)
2 j) = O∗((2 + 1)|CL′ |) = O∗(3|CL′ |) time for

each L′ by binomial expansion. To obtain opt(L), we iterate over all subsets L′ of L of cardinality
i = 2, 3, . . . , n; iteration i computes opt(L′) for each L′ with |L′| = i in O∗(3|CL′ |) time as just described.
The total running time becomes O∗(

∑n
i=2

(
n
i

)
3i) = O∗((3 + 1)n) = O∗(4n).

To reduce the time complexity, we will reduce the number of applications of Lemma 3 in the main
loop that computes opt(L′) for any L′ ⊆ L. We rely on the following simple observation, which
essentially tells us that the singleton components of G(L′) can be ignored.

Lemma 4. LetU be the set of singleton components in G(L′). DP(CL′) = DP(CL′ \ U).

Proof. Consider any x ∈ U. By the construction of G(L′) and U, there are no rooted triplets of the
form xy|z for any y, z ∈ L′ in the set R|L′. Hence, there exists a minimally resolved supertree consistent
with R|L′ in which x is attached directly to the root. The lemma follows. �

The resulting algorithm, called MinRS exact, is summarized in figure 2.

Theorem 1. Algorithm MinRS exact solves MinRS in O∗((1 +
√

3)n) time.

AIMS Medical Science Volume 5, Issue 2, 181–203

189

Proof. First note that CL′ \ U contains no singleton components. Therefore, the number of connected
components in CL′ \ U is at most |L

′ |

2 , i.e., |CL′ | − |U| ≤
|L′ |
2 . Now, when computing opt(L′) for any

subset L′ of L, the number of applications of the formula in Lemma 3 is reduced since there no are
subsets D of cardinality larger than |CL′ | − |U|. More precisely, the time for each L′ is reduced to
O∗(

∑|CL′ |−|U|

j=2

(
|CL′ |−|U|

j

)
2 j) = O∗((2+1)|CL′ |−|U|) = O∗(3|CL′ |−|U|) = O∗(

√
3|L

′ |). Finally, replacing O∗(3|CL′ |) by

O∗(
√

3|L
′ |) in the analysis of computing opt(L) above gives a total time complexity of O∗(

∑n
i=2

(
n
i

)√
3i)

= O∗((
√

3 + 1)n). �

Remark 1: The algorithm as presented here returns opt(L). An optimal tree with this number of
internal nodes can be obtained by standard traceback techniques.

Remark 2: For each L′ ⊆ L, the algorithm needs to store the value of opt(L′) and there are Ω(2n) such
subsets. Therefore, the space complexity of the algorithm is also exponential in n.

Corollary 1. MinRLC can be solved in O(kn3 + (1 +
√

3)n · poly(n)) time.

Proof. First construct R =
⋂k

i=1 r(Ti) in O(kn3) time, e.g., by preprocessing each Ti in O(n) time so
that any query of the form lca(x, y) in Ti with x, y ∈ L can be answered in O(1) time [4] and then, for
every L′ ⊆ L with |L′| = 3, doing 3k lca-queries to see if L′ induces the same rooted triplet in all of
the k trees. Next, run MinRS exact on R. �

In Section 7, we shall refer to the algorithm in Corollary 1 as MinRLC exact.

4. Exponential-Time Algorithms for MinIS and MinILC

We now describe an O∗(4n)-time algorithm for MinIS based on the technique from Section 3. Ap-
plying it to MinILC yields an O(kn3 + 4n · poly(n))-time algorithm for the latter.

Lemma 1 guarantees that every valid solution to MinIS can be discovered by trying all ways of
merging connected components in the auxiliary graphs G(L′). As in Section 3, we use dynamic pro-
gramming to compute and store optimal values to subproblems but make the following modifications.
First of all, redefine opt so that opt(L′) for every L′ ⊆ L means the value of |r(T ′)| for an optimal solu-
tion T ′ to MinIS for R|L′. Secondly, redefine DP(D) for everyD ⊆ CL′ to mean the minimum value of∑
X∈Q(opt(Merge(X))+

(
|Merge(X)|

2

)
· |L′ \Merge(X)|), taken over all possible true partitions Q ofD. With

the new definitions of opt and DP, the analogues of Lemmas 2 and 3 become:

Lemma 5. For every L′ ⊆ L with |L′| ≥ 2, it holds that opt(L′) = DP(CL′).

Proof. DP(CL′) counts the minimum number of rooted triplets in a tree consistent with R|L′ among all
partitions Q of CL′ . Hence, opt(L′) = DP(CL′). �

Lemma 6. For everyD ⊆ CL′ with |D| ≥ 2, DP(D) = min
∅,X(D

{
opt(Merge(X))+

(
|Merge(X)|

2

)
·|L′\Merge(X)|

+ min{DP(D \ X), opt(Merge(D \ X)) +
(
|Merge(D\X)|

2

)
· |L′ \Merge(D \ X)|}

}
.

Proof. DP(D) = min
{∑
X∈Q(opt(Merge(X))+

(
|Merge(X)|

2

)
·|L′\Merge(X)|) : Q is a true partition ofD

}
=

min
{
opt(Merge(X)) +

(
|Merge(X)|

2

)
· |L′ \Merge(X)| + min{DP(D \ X),

opt(Merge(D \ X)) +
(
|Merge(D\X)|

2

)
· |L′ \ Merge(D \ X)|} : X ∈ Q, Q is a true partition ofD

}
=

AIMS Medical Science Volume 5, Issue 2, 181–203

190

min
{
opt(Merge(X)) +

(
|Merge(X)|

2

)
· |L′ \Merge(X)| + min{DP(D\ X), opt(Merge(D\X)) +

(
|Merge(D\X)|

2

)
·

|L′ \Merge(D \ X)|} : ∅ , X (D
}
. �

The new algorithm, called MinIS exact, is obtained by modifying Algorithm MinRS exact as
follows:

• Change the last part of Step 5 so that it assigns DP({X}) := opt(Λ(X)) +
(
|Λ(X)|

2

)
· |L′ \ Λ(X)|,

according to the new definition of DP.
• Change Step 8 so that it computes DP(D) using Lemma 6 instead of Lemma 3.
• Change Step 11 so that it assigns opt(L′) := DP(CL′), in accordance with Lemma 5.
• Change Step 4 so that it always setsU to ∅.

The reason why we force U = ∅ is that we do not have an analogue of Lemma 4 for MinIS that
would allow us to ignore the singleton components. The algorithm therefore spends O∗(

∑|CL′ |

j=2

(
|CL′ |

j

)
2 j)

= O∗((2 + 1)|CL′ |) = O∗(3|CL′ |) time for each L′, just like the slower version of Algorithm MinRS exact
in Section 3, and the total running time is O∗(

∑n
i=2

(
n
i

)
3i) = O∗((3 + 1)n) = O∗(4n).

Theorem 2. Algorithm MinIS exact solves MinIS in O∗(4n) time.

Corollary 2. MinILC can be solved in O(kn3 + 4n · poly(n)) time.

Section 7 refers to the algorithm in Corollary 2 as MinILC exact.

5. NP-Hardness of MinRLC

Section 3 in [18] proved that MinRS is NP-hard. It follows from the proof in [18] that MinRS
remains NP-hard even if restricted to a particular special case which we now describe.

Suppose that L0 = {v1, v2, . . . , vq} is a set of elements. Define L′0 = {v1′ , v1′′ , v2′ , v2′′ , . . . , vq′ , vq′′},
and for any integers i, j with 1 ≤ i < j ≤ q, define R(vi, v j) as the set of four rooted triplets {vi′vi′′ |v j′ ,

vi′vi′′ |v j′′ , v j′v j′′ |vi′ , v j′v j′′ |vi′′} over L′0. For any set S , let
(

S
2

)
denote the set of all subsets of S of cardi-

nality 2. According to Section 3 in [18], MinRS is NP-hard even if restricted to instances where R has
the form R =

⋃
{vi,v j}∈Z R(vi, v j) for some set L0 and some Z ⊆

(
L0
2

)
.

Theorem 3. MinRLC is NP-hard.

Proof. We reduce from the above variant of MinRS. Let R be any given instance of the problem. Let P
be the set of pairs of indices that form rooted triplets in R, i.e., P =

{
{i, j} : vi′vi′′ |v j′ , vi′vi′′ |v j′′ , v j′v j′′ |vi′ ,

v j′v j′′ |vi′′ ∈ R
}
, and let Q =

(
{1,2,...,q}

2

)
\ P.

Define a tree T0 = ((v1′ , v1′′), (v2′ , v2′′), . . . , (vq′ , vq′′)); and for every f = {x, y} ∈ Q, define
a tree T f by taking a copy of T0 and merging the two subtrees (vx′ , vx′′) and (vy′ , vy′′) so that
T f = ((vx′ , vx′′ , vy′ , vy′′), (v1′ , v1′′), (v2′ , v2′′), . . . , (vn′ , vn′′));. Let S = {T0} ∪ {T f : f ∈ Q}. Note
that R =

⋂
Ti∈S

r(Ti). This is because for any {x, y} ∈ P, the four rooted triplets vx′vx′′ |vy′ , vx′vx′′ |vy′′ ,

vy′vy′′ |vx′ , vy′vy′′ |vx′′ appear inR as well as in r(Ti) for every Ti ∈ S. On the other hand, for any {x, y} ∈ Q,
vx′vx′′ |vy′ , vx′vx′′ |vy′′ , vy′vy′′ |vx′ , vy′vy′′ |vx′′ do not appear in R or in r(T{x,y}). Thus, there exists a tree T
with

⋂
Ti∈S

r(Ti) ⊆ r(T) having x internal nodes if and only if there exists a tree T ′ with R ⊆ r(T ′)
having x internal nodes. �

AIMS Medical Science Volume 5, Issue 2, 181–203

191

v
1 2

vv
21

v
n n

ww
2

z

vv ’ ’’w
1 n2

T :
0

v
2

v
1

1
v ’ v ’

2
vv v

n n

z

v’ ’

{1,2}
T :

3 3

ww
2

w
1 n2

Figure 3. The tree T∅ defined in the reduction from Maximum Clique and a tree T{1,2}.

6. NP-Hardness of MinILC and MinIS

To prove the NP-hardness of MinILC, we give a polynomial-time reduction from the Maximum
Clique problem, which is NP-hard [13]. MaximumClique takes as input an undirected graph G = (V, E)
and asks for a largest clique in G, where X ⊆ V is a clique in G if every two vertices belonging to X
are adjacent in G.

The reduction is as follows. Let n = |V | and write V = {1, 2, . . . , n}. Create a set L of leaf la-
bels such that L = {vi, v′i : i ∈ V} ∪ {z,w1,w2, . . . ,wn2}. Let T∅ be the tree (z, (w1,w2, . . . ,wn2),
(v1, v′1), (v2, v′2), . . . , (vn, v′n)); with Λ(T∅) = L. For any nonempty subset X = {i1, i2, . . . , ip} ⊆ V , define
TX as the tree with Λ(TX) = L obtained by taking a copy of T∅, deleting the subtrees (vi, v′i) for all
i ∈ X, and replacing the subtree (w1,w2, . . . ,wn2) by ((w1,w2, . . . ,wn2 , vi1 , vi2 , . . . , vip), v′i1 , v′i2 , . . . , v

′
ip

).
See figure 3 for an illustration. Finally, let S = {T∅} ∪ {T{i} : i ∈ V} ∪ {T{i, j} : {i, j} ∈ E}.

Section 6.1 first states some general properties satisfied by the trees defined above. Then, Sec-
tion 6.2 establishes some specific properties satisfied by any local consensus tree of S. After that, we
will prove that for any X ⊆ V , X is a maximum clique in G if and only if TX is a local consensus tree
of S with the smallest possible number of rooted triplets, giving the main result of this section.

6.1. General Properties

The following additional notation is used. For any tree H, Child(H) is the set of children of the root
of H. For any u ∈ V(H), the subtree of H induced by u and all proper descendants of u is called the
subtree of H rooted at u and is denoted by Hu. For any L′ ⊆ Λ(H), H|L′ is the tree obtained from H by
deleting all nodes with no descendants in L′ and their incident edges, and then contracting every edge
between a node having one child and its child. Finally, for every positive integer n, define a function
fn(k) = n5 − k−1

2 n4 + 4kn3 − 6k2−3k−3
2 n2 + (4k2 − 4k − 1)n − 7k3−7k2

2 . We immediately have:

Lemma 7. For any tree H, |r(H)| =
∑

u∈Child(H)

(
|r(Hu)| +

(
|Λ(Hu)|

2

)
· (|Λ(H)| − |Λ(Hu)|)

)
.

Lemma 8. Let X be any subset of the given V. Write k = |X|. Then |r(TX)| = fn(k).

Proof. By Lemma 7, the number of rooted triplets consistent with TX is
(

n2+k
2

)
· k +

(
n2+2k

2

)
· (2n − 2k +

1) + (n − k) · (n2 + 2n − 1). Expanding this expression yields the formula. �

Corollary 3. For any fixed n ≥ 8, fn(k) is strictly decreasing as k increases.

AIMS Medical Science Volume 5, Issue 2, 181–203

192

Proof. By Lemma 8, fn(k + 1) − fn(k) = −1
2n4 + 4n3 − 12k+3

2 n2 + 8kn − 7
2 (3k2 + k). Since n ≥ 8,

−1
2n4 + 4n3 ≤ 0 holds. Also, 12k+3

2 n > 8k for n ≥ 8 and −7
2 (3k2 + k) ≤ 0. The corollary follows. �

Lemma 9. Consider any u ∈ Child(H) in a tree H. Suppose that Λ(Hu) = α∪β for some α, β , ∅ with
α ∩ β = ∅. Let H′ be the tree obtained from H by deleting Hu and its parent edge and attaching the
roots of H|α and H|β as children of the root of H. If |α| + |β| ≤ 2|Λ(H)|

3 then |r(H′)| < |r(H)|.

Proof. Define m = |Λ(H)|. Lemma 7 gives |r(H)| − |r(H′)| = |r(Hu)| +
(
|α|+|β|

2

)
· (m − |α| − |β|) −

|r(H|α)| −
(
|α|
2

)
· (m − |α|) − |r(H|β)| −

(
|β|
2

)
· (m − |β|). Noting that |r(Hu)| ≥ |r(H|α)| + |r(H|β)|, we have

|r(H)| − |r(H′)| ≥
(
|α|+|β|

2

)
·(m− |α| − |β|)−

(
|α|
2

)
·(m− |α|)−

(
|β|
2

)
·(m− |β|) = |α|·|β|·(m + 1− 3

2 ·(|α|+ |β|)) ≥
|α|·|β|·(m + 1 − m) = |α|·|β| > 0. �

6.2. Properties of a Local Consensus Tree of S

By the definition of S, we have the next lemma.

Lemma 10. The set
⋂

Ti∈S
r(Ti) consists of the following rooted triplets:

• wiw j|z for all 1 ≤ i < j ≤ n2 and viv′i |z for all 1 ≤ i ≤ n;
• wiw j|v′k for all 1 ≤ i < j ≤ n2 and 1 ≤ k ≤ n;
• viv′i |v j, viv′i |v

′
j, v jv′j|vi, and v jv′j|v

′
i for all 1 ≤ i < j ≤ n with {i, j} < E.

Let T be any local consensus tree of S, i.e., any tree T such that Λ(T) = L and
⋂

Ti∈S
r(Ti) ⊆ r(T).

According to Lemma 10, r(T) contains viv′i |z for all 1 ≤ i ≤ n, so the two leaves vi and v′i must belong
to the same subtree attached to the root of T for all 1 ≤ i ≤ n. Similarly, all leaves in {w1,w2, . . . ,wn2}

must belong to one subtree attached to the root of T . The core of T , denoted by γT , is the subtree of T
rooted at the node lca(w1,w2, . . . ,wn2). The path from the root of T to the parent of γT is called the
core path of T . For any node u ∈ V(T), if u is a child of the core path of T that does not belong to the
core path itself and u , lca(w1,w2, . . . ,wn2), the subtree of T rooted at u is called a secondary subtree
of T . Note that the secondary subtrees of T are disjoint. Define CT = {i : vi ∈ Λ(γT)}.

Lemma 11. Let T be a local consensus tree of S. T has the following properties:

1. The core γT does not contain the leaf v′i for any 1 ≤ i ≤ n.
2. CT forms a clique in G.
3. For any i ∈ {1, 2, . . . n}, if CT ∪ {i} is not a clique in G then vi and v′i belong to the same secondary

subtree of T .

Proof.

1. Suppose v′i ∈ Λ(γT). Let wa, wb be any two leaves such that lca({wa,wb}) = lca({w1,w2, . . . ,wn2}).
Then, wawb|v′i < r(T), contradicting Lemma 10.

2. Consider any i, j ∈ CT with i , j. By point 1., viv j|v′i ∈ r(T), so viv′i |v j < r(T). According to
Lemma 10, {i, j} < E does not hold, which means that {i, j} ∈ E.

3. Since CT ∪ {i} is not a clique, there exists some j ∈ CT where {i, j} < E. By Lemma 10, viv′i |v j ∈

r(T). Thus, vi and v′i are in the same subtree attached to the core path.

�

AIMS Medical Science Volume 5, Issue 2, 181–203

193

T:

ρ
2

ρρ
3 4

z

ρ
5

P

ρ
1

ρe

z

ρρ
2 3

ρ
4

ρ
1

ρ
5

ρe

T :
1

Figure 4. Illustrating the first part of the proof of Lemma 12. Any local consensus tree T
of S can be transformed into a tree of the form shown in T 1 without losing any of the rooted
triplets specified in Lemma 10. P is the path in T from the root to the leaf z, to which the
subtrees ρ1, ρ2, . . . , ρe are attached. For each i ∈ {1, 2, . . . , n}, the two leaves vi and v′i belong
to the same ρ j-subtree by Lemma 10. Also, all leaves in {w1,w2, . . . ,wn2} are in a single
ρ j-subtree.

Observe that Lemma 11.1 implies Λ(γT) = {w1,w2, . . . ,wn2} ∪ {vp | p ∈ CT }. Moreover, by
Lemma 11.3, for any i ∈ {1, 2, . . . n}, if vi and v′i belong to subtrees attached to different nodes on
the core path then CT ∪ {i} is a clique in G.

Lemma 12. Let n ≥ 10 and let T be a local consensus tree of S. T can be transformed into a local
consensus tree of S of the form TX for some X ⊆ V where X is a clique in G and |r(TX)| ≤ |r(T)|.

Proof. We describe a sequence of transformations that can be applied to T without increasing the
number of rooted triplets consistent with it. After each transformation, the resulting tree still contains
all of the rooted triplets listed in Lemma 10, so it is still a local consensus tree of S.

First, consider the leaf z in T . Let P be the path from the root of T to z, and let ρ1, ρ2, . . . , ρe (where
possibly e = 0) be the subtrees of T attached to P whose roots do not belong to P themselves. Let T 1

be the tree formed by removing P and attaching z and the roots of ρ1, ρ2, . . . , ρe as children of the root.
See figure 4. Then |r(T 1)| ≤ |r(T)|, and T 1 has the property that z is a child of the root of T 1.

Secondly, transform T 1 to T 2 by contracting the core γT 1 , i.e., by replacing γT 1 by a single node to
which all leaves in Λ(γT 1) are directly attached. See figure 5. Clearly, |r(T 2)| ≤ |r(T 1)|.

Thirdly, suppose that for some s ∈ {1, 2, . . . , n}, it holds that s < CT 2 while CT 2 ∪ {s} is a clique in G.
Let T 3 be the tree formed by removing the leaf vs from its location in T 2 and attaching it to the root
of γT 2 , and moving the leaf v′s so that it becomes a sibling of the root of γT 2 . (If, as a result, any node
has only one child left then contract its outgoing edge.) See figure 6. There are two types of rooted
triplets involving vs: (i) xvs|y and (ii) xy|vs. For (i), T 3 has at most (n2 + n − 1) · 2n more rooted triplets
than T 2 of this form because there are at most n2 + n − 1 choices of x by Lemma 11.1 and at most
2n choices of y. For (ii), there are at least

(
n2

2

)
rooted triplets in T 2 but not in T 3, corresponding to pairs

of the form (wi,w j), and at most
(

2n
2

)
such rooted triplets in T 3 that are not present in T 2. Similarly,

there are two types of rooted triplets involving v′s: (iii) xv′s|y and (iv) xy|v′s. As above, T 3 has at most
(n2 + n − 1) · 2n more rooted triplets than T 2 of the form (iii) and at most

(
2n
2

)
more rooted triplets of

AIMS Medical Science Volume 5, Issue 2, 181–203

194

T :1 T :2

n
w 2

n
w 2 v

p q
v

r
v

γ
T
1

v

v
q

v
p

r
w
1

w
2

w
3

w
4

w
1

w
2

w
4

w
3

Figure 5. Transforming T 1 to T 2.

n
w 2w

2 r
v

q
vv

p n
w 2w

2 r
v

q
vv

p

γ
T
2

s
v’

s
v

s
v’

2T :

w
1

w
1

v
s

3T :

Figure 6. Transforming T 2 to T 3.

the form (iv). Hence, by transforming T 2 to T 3, the number of rooted triplets is reduced by at least(
n2

2

)
− 2 ·

(
2n
2

)
− 2 · (n2 + n − 1) · (2n), which is larger than 0 when n ≥ 10. We repeat this step until T 3

has no leaf vs such that s < CT 3 and CT 3 ∪ {s} is a clique. This gives |r(T 3)| ≤ |r(T 2)|.
Next, transform T 3 to a tree T 4 in which every secondary subtree contains at most two leaves and,

furthermore, the leaves in any secondary subtree with precisely two leaves are of the form {vq, v′q}
where CT 4 ∪ {q} is not a clique in G. To do this, consider any secondary subtree σ of T 3. By the
definition of T 3 in the previous paragraph, CT 3 ∪ {q} is not a clique in G for any vq ∈ Λ(σ). Recall
from Lemma 11.3 that any two leaves of the form vq and v′q must belong to the same secondary subtree.
While |Λ(σ)| > 2, extract any pair of leaves {vq, v′q} from σ and create a new secondary subtree with
the leaves {vq, v′q} attached to the core path as a sibling of σ. (As above, if any node has only one child
left after these operations then contract its outgoing edge.) See figure 7. Every secondary subtree σ
satisfies |Λ(σ)| ≤ 2n ≤ 2n2

3 ≤
2|Λ(H)|

3 , where H is the subtree rooted at the parent of the root of σ, so we
get |r(T 4)| ≤ |r(T 3)| by Lemma 9.

Lastly, transform T 4 to a tree T 5 whose core path consists of a single edge (u0, u1), where u0 is the

AIMS Medical Science Volume 5, Issue 2, 181–203

195

q
v v’

q
v
p

v’
p

v
p

v’
pq

vv’
q

3 4T :T :

σ σ

Figure 7. Transforming T 3 to T 4.

r
v’

r
v

γ
T
4

c
v’

b
v’

p
v’

q
v’

p
v’

q
v’

r
v’

c
v’

b
v’v

a
’

u
1

0
u4T :

z

v
p

5T :

z

v
p

v
r

v
q

a
v’

v
q

γ
T
4

Figure 8. Transforming T 4 to T 5.

root of T 5, as follows. Attach every secondary subtree of T 4 having two leaves as a child of u0, and
attach every secondary subtree of T 4 having one leaf as a child of u1. Attach z as a child of u0 and
the core γT 4 as a child of u1. See figure 8. Note that this will not destroy any of the rooted triplets in
Lemma 10 and that |r(T 5)| ≤ |r(T 4)|.

By the definition of TX, T 5 is equal to TX if we select X = CT 5 . Finally, CT 5 is a clique in G by
Lemma 11.2. �

Lemma 13. Let n ≥ 10. X ⊆ V is a maximum clique in G if and only if TX is a local consensus tree
of S that minimizes the number of rooted triplets.

Proof. (→) For the purpose of obtaining a contradiction, suppose there exists a local consensus tree T ′

of S with |r(T ′)| < |r(TX)|. Apply Lemma 12 to T ′ to get a tree TQ that is also a local consensus tree
of S with |r(TQ)| ≤ |r(T ′)| and where Q is a clique in G. Then |Q| > |X| by Lemma 8 and Corollary 3,
which is impossible.

(←) Suppose X′ is a larger clique in G than X. Lemma 8 and Corollary 3 imply |r(TX′)| < |r(TX)|,
contradicting that TX is a local consensus tree of S minimizing the number of rooted triplets. �

Now, assuming without loss of generality that n ≥ 10 in the reduction from Maximum Clique above,
Lemma 13 gives:

Theorem 4. MinILC is NP-hard.

AIMS Medical Science Volume 5, Issue 2, 181–203

196

Finally, by the reduction from MinILC to MinIS mentioned in Section 1.1:

Corollary 4. MinIS is NP-hard.

7. Implementations

We have implemented the algorithms from Sections 3 and 4 above in C++. The source code can be
downloaded from:

https://github.com/Mesh89/FACT2

(This package also contains an algorithm for computing another type of consensus tree called the
frequency difference consensus tree, described in detail in [20].) Subsets, as well as components,
were represented as bitsets and implemented as unsigned 32-bit integers. This means that the current
implementation can deal with up to 32 leaves; it can be extended by using 64-bit integers or a proper
bitset, in which case the memory usage will increase accordingly.

Since the computational complexity of the new algorithms is exponential, we do not expect them
to be efficient for large inputs. Nevertheless, it would be useful to know how far they can be pushed.
We therefore conducted several experiments to test their running times and memory usage for various
inputs. Sections 7.1 and 7.2 below describe the experiments and the results, respectively. In short, the
algorithms can be considered “practical” for n ≤ 16.

7.1. Experimental Setup

The experiments were done on a computer equipped with an Intel i7-2600 processor (3.4 GHz) and
8 Gb of memory, running Ubuntu 16.04. The source code was compiled using g++, version 5.4.0.
Running times were measured using the time command, and the memory usage was measured using
Valgrind [24] and its heap profiling tool Massif.

To generate simulated inputs, we used two different approaches:

• Approach 1 aimed at generating a set of unrelated trees. For each specified value of (k, n), we
repeated the following procedure k times to obtain a set of k non-binary trees with leaf label set
{1, 2, . . . , n}: First, generate a binary tree in the uniform model.§ Then, for each internal node,
contract it with probability 0.2.
• Approach 2 aimed at generating a set of related trees. For each specified value of (k, n), we first

generated a single master tree T0 using the method described in Approach 1. We then created a
set of k non-binary trees by doing the following k times: Take a copy of T0 and for each non-
root node v, with probability 0.1 move the subtree rooted at v by selecting a node u uniformly at
random that is not a descendant of v and letting v become a child of u instead (nodes that end up
with a single child are contracted to preserve the property that every internal node has at least two
children).

§The uniform model [23] starts with a tree consisting of a single leaf labeled by 1, and then for i from 2 to n, inserts a leaf labeled
by i by selecting an existing edge f in the tree uniformly at random (here, the root is regarded to be attached to an imaginary parent node
via an edge that belongs to the tree as well), breaking f into two edges by inserting a new internal node x into f , and creating an edge
from x to a leaf labeled by i.

AIMS Medical Science Volume 5, Issue 2, 181–203

197

(a) Running time, unrelated trees, k = 8. (b) Memory usage, unrelated trees, k = 8.

(c) Running time, unrelated trees, n = 16. (d) Memory usage, unrelated trees, n = 16.

Figure 9. Plots of the average running times of MinRLC exact and MinILC exact in sec-
onds (left) and their memory usage (right) as a function of increasing n (with fixed k = 8)
and increasing k (with fixed n = 16) on unrelated trees.

In the experiments, for various values of (k, n), we generated 50 independent inputs at random
following Approach 1, and measured the average running times of Algorithms MinRLC exact
and MinILC exact for these inputs. The average memory usage was also measured, but taken over
20 runs only because of the slowdown caused by Valgrind. The experiments were repeated for inputs
generated according to Approach 2.

To test the algorithms on real datasets, we also downloaded a set of trees from the 10kTrees web-
site [3], Primates, for varying k and n. In order to obtain trees with a specified value of n, we manually
selected n species from the Colobinae subcategory. The 10kTrees website produces a number of trees
between 10 and 10, 000 so we tested the algorithms on a more limited range of values of k here (i.e.,
k ≤ 10, 000). To obtain instances with k = 8, we generated 10 trees and subsequently removed two of
them selected at random.

The results are reported in the next subsection.

AIMS Medical Science Volume 5, Issue 2, 181–203

198

(a) Running time, related trees, k = 8. (b) Memory usage, related trees, k = 8.

(c) Running time, related trees, n = 16. (d) Memory usage, related trees, n = 16.

Figure 10. Plots of the average running times of MinRLC exact and MinILC exact in
seconds (left) and their memory usage (right) as a function of increasing n (with fixed k = 8)
and increasing k (with fixed n = 16) on related trees.

AIMS Medical Science Volume 5, Issue 2, 181–203

199

(a) 10kTrees website trees, k = 8. (b) 10kTrees website trees, n = 16.

Figure 11. Plots of the average running times of MinRLC exact and MinILC exact in
seconds as a function of increasing n (with fixed k = 8) and increasing k (with fixed n = 16).

7.2. Experimental Results

The plots in figures 9 and 10 show how the average running times (in seconds) and the average
memory usage (in Mb) of Algorithms MinRLC exact and MinILC exact increase for fixed k and in-
creasing n, and for fixed n and increasing k. In figure 9, inputs were generated according to Approach 1
(“unrelated trees”), while in figure 10, they were generated according to Approach 2 (“related trees”).
As a fixed value of k, we selected k = 8 because using a larger number of trees resulted in

⋂k
i=1 r(Ti)

being almost empty most of the time, leading to a trivial scenario. As a fixed value of n, we selected
n = 16 because it fell safely within the practical limit of our algorithms yet it was large enough to yield
informative results. In general, MinRLC exact is more efficient than MinILC exact.

The behavior of MinRLC exact is as one might expect. Its average running time is essentially
independent of k, with a slight increase when k gets huge due to the added cost of parsing the input.
Its average memory usage also appears to be linear in the size of the input. On the other hand, as n
increases, the average running time follows a typical exponential-growth pattern.

The performance of MinILC exact is more curious and worthy of some additional comments.
Firstly, figures 9 (a), (b) and figures 10 (a), (b) show that its running time becomes an issue earlier than
its memory usage does. (In fact, in figures 9 (b) and 10 (b), we had to end the experiments at n = 16
because n = 18 required hours to finish a single run.) Secondly, observe MinILC exacts’s behavior
in figure 9 (c) and figure 10 (c). In both cases, the average running time increases rapidly as more trees
are added and stabilizes after a certain value. However, the average running time grows much faster
for unrelated trees than related trees. In contrast, MinRLC exact seems to do better on unrelated trees
than related trees; compare, e.g., figure 9 (a) to figure 10 (a). Our hypothesis is that this is due to the
different impact that the singleton components have on the two algorithms: MinRLC exact is allowed
to ignore singleton components but MinILC exact cannot. When there are few shared rooted triplets,
most components in the auxiliary graph will be singleton components, meaning that MinRLC exact
will perform very well while MinILC exact will perform poorly as it has to consider a larger number
of connected components. In other words, MinRLC exact prefers inputs consisting of dissimilar trees
whereas MinILC exact prefers inputs where the trees are similar. This hypothesis is reinforced by
the results for the trees from the 10kTrees website; these trees are expected to be very similar as they
are highly correlated [3]. Figure 11 shows that in this case, the running times of MinILC exact and
MinRLC exact are roughly the same.

AIMS Medical Science Volume 5, Issue 2, 181–203

200

n
6 8 10 12 14 16 18 20 22 24

k

2 1.00 1.00 1.00 0.96 0.94 0.96 0.92 0.94 0.84 0.80
4 1.00 1.00 0.98 0.96 0.90 0.94 0.86 0.74 0.72 0.68
8 1.00 0.98 0.92 0.94 0.92 0.68 0.58 0.56 0.52 0.32
16 1.00 1.00 0.98 0.90 0.74 0.92 0.68 0.30 0.46 0.30

Table 2. The suboptimality of the BUILD-based local consensus tree as a solution to Min-
RLC. For different values of k (rows) and n (columns), the table shows the number of times
that the BUILD-based local consensus tree was an optimal solution to MinRLC divided by
the number of cases tested.

8. An Experimental Investigation of the Non-Minimality of BUILD

In this section, we use the implementations from Section 7 to experimentally investigate whether
applying the BUILD algorithm [2] to the set

⋂k
i=1 r(Ti), i.e., computing Bryant’s BUILD-based local

consensus tree [8], yields close approximations to MinRLC and MinILC in practice. This would be
significant because it would provide a good polynomial-time heuristic for MinRLC and MinILC, which
are NP-hard according to Theorems 3 and 4.

We generated sets of “related trees” of various sizes using Approach 2 in Section 7.1, and for each
such input set, we extracted the shared rooted triplets and fed them to BUILD. We then counted the
number of internal nodes and rooted triplets in BUILD’s output as well as in the optimal solutions to
MinRLC and MinILC, obtained by running our algorithms MinRLC exact and MinILC exact.

Tables 2 and 3 report the fraction of times that the solution reported by BUILD was optimal for
MinRLC and MinILC, respectively, over 50 runs. Unfortunately, even for small values of n, BUILD
often returns a non-optimal solution. For example, when k = 4 and n = 12, the BUILD-based solution
was suboptimal compared to MinILC in more than half of the cases. Next, Tables 4 and 5 show how
wrong BUILD usually is, which may be more relevant. On the positive side, our experiments indicate
that the ratio between the number of internal nodes or the number of rooted triplets in the BUILD-based
local consensus tree and in an optimal solution is fairly close to 1 on average; in the example above
with k = 4 and n = 12, the BUILD-based solution was only 8% worse than the optimal solution to
MinILC on average. However, the errors seem to increase with n and it may be the case that BUILD
becomes less and less optimal as n grows larger, thus motivating the need for either faster optimal
algorithms or better polynomial-time heuristics.

9. Concluding Remarks

The main open problem is to obtain faster exponential-time algorithms than the ones presented here.
In particular, can MinRS be solved in O∗(2n) time?

According to the experiments in Section 7, the implemented algorithms have different bottlenecks.
For MinRLC, the memory usage of our algorithm becomes problematic before the running time does,
hence requiring a more memory-efficient solution, but for MinILC, developing a faster solution is more
critical.

AIMS Medical Science Volume 5, Issue 2, 181–203

201

n
6 8 10 12 14 16

k

2 0.94 0.88 0.74 0.72 0.50 0.62
4 0.88 0.78 0.72 0.46 0.34 0.32
8 0.94 0.78 0.78 0.72 0.56 0.58
16 1.00 0.96 0.74 0.72 0.78 0.56

Table 3. The fraction of times that the BUILD-based local consensus tree was an optimal
solution to MinILC, analogous to Table 2.

n
6 8 10 12 14 16 18 20 22 24

k

2 1.00 1.00 1.00 1.01 1.01 1.00 1.01 1.00 1.01 1.01
4 1.00 1.00 1.00 1.01 1.02 1.01 1.02 1.03 1.03 1.03
8 1.00 1.01 1.02 1.03 1.02 1.07 1.09 1.10 1.10 1.16
16 1.00 1 .00 1.01 1.03 1.08 1.03 1.15 1.24 1.19 1.32

Table 4. The average ratio between the number of internal nodes in the BUILD-based local
consensus tree and in an optimal solution to MinRLC.

n
6 8 10 12 14 16

k

2 1.00 1.01 1.02 1.01 1.04 1.02
4 1.01 1.02 1.04 1.08 1.08 1.10
8 1.01 1.04 1.03 1.07 1.09 1.13
16 1.00 1.01 1.08 1.10 1.10 1.22

Table 5. The average ratio between the number of rooted triplets in the BUILD-based local
consensus tree and in an optimal solution to MinILC, analogous to Table 4.

Another task is to extend the algorithms in this article to unrooted phylogenetic trees. This would be
interesting because many existing methods for inferring phylogenetic trees produce unrooted trees [12].
The unrooted case appears to be much harder than the rooted case, as the basic problem of determining
the consistency of an input set of rooted triplets is solvable in polynomial time (see Section 1.2), while
the corresponding problem for unrooted quartets (unrooted, distinctly leaf-labeled trees with exactly
four leaves each and in which every internal node has at least three neighbors) is already NP-hard [29].

Acknowledgments

The authors would like to thank Andrzej Lingas and Richard S. Lemence for some inspiring dis-
cussions. J.J. was partially funded by The Hakubi Project at Kyoto University and KAKENHI grant
number 26330014.

AIMS Medical Science Volume 5, Issue 2, 181–203

202

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1.Adams III EN (1972) Consensus techniques and the comparison of taxonomic trees. Systematic
Zoology 21: 390–397.

2.Aho AV, Sagiv Y, Szymanski TG, et al. (1981) Inferring a tree from lowest common ancestors with
an application to the optimization of relational expressions. SIAM J Comput 10: 405–421.

3.Arnold C, Matthews LJ, Nunn CL (2010) The 10kTrees website: A new online resource for primate
phylogeny. Evolutionary Anthropology 19: 114–118.

4.Bender MA, Farach-Colton M (2000) The LCA problem revisited. In Proceedings of the 4 thLatin
American Symposium on Theoretical Informatics (LATIN 2000), volume 1776 of LNCS, pages 88–94.
Springer-Verlag.

5.Bininda-Emonds ORP (2004) The evolution of supertrees. TRENDS Ecol Evolution 19: 315–322.

6.Bininda-Emonds ORP, Cardillo M, Jones KE, et al. (2007) The delayed rise of present-day mammals.
Nature 446: 507–512.

7.Bryant D (1997) Building Trees, Hunting for Trees, and Comparing Trees: Theory and Methods in
Phylogenetic Analysis. PhD thesis, University of Canterbury, Christchurch, New Zealand.

8.Bryant D (2003) A classification of consensus methods for phylogenetics. In Janowitz MF, Lapointe
FJ, McMorris FR, et al., editors, Bioconsensus, volume 61 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 163–184. American Mathematical Society.

9.Byrka J, Guillemot S, Jansson J (2010) New results on optimizing rooted triplets consistency. Dis-
crete Applied Mathematics 158: 1136–1147.

10.Chor B, Hendy M, Penny D (2007) Analytic solutions for three taxon ML trees with variable rates
across sites. Discrete Applied Mathematics 155: 750–758.

11.Constantinescu M, Sankoff D (1995) An efficient algorithm for supertrees. J Classification 12:
101–112.

12.Felsenstein J (2004) Inferring Phylogenies. Sinauer Associates, Inc., Sunderland, Massachusetts.

13.Garey M, Johnson D (1979) Computers and Intractability – A Guide to the Theory of NP-
Completeness. Freeman WH and Company, New York.

14.Ga̧sieniec L, Jansson J, Lingas A, et al. (1999) On the complexity of constructing evolutionary
trees. J Combinatorial Optimization 3: 183–197.

15.He YJ, Huynh TND, Jansson J, et al. (2006) Inferring phylogenetic relationships avoiding forbidden
rooted triplets. J Bioinformatics Comput Bio 4: 59–74.

16.Henzinger MR, King V, Warnow T. (1999) Constructing a tree from homeomorphic subtrees, with
applications to computational evolutionary biology. Algorithmica 24: 1–13.

17.Huson DH, Rupp R, Scornavacca C (2010) Phylogenetic Networks: Concepts, Algorithms and
Applications. Cambridge University Press, Cambridge, U.K.

AIMS Medical Science Volume 5, Issue 2, 181–203

203

18.Jansson J, Lemence RS, Lingas A (2012) The complexity of inferring a minimally resolved phylo-
genetic supertree. SIAM J Comput 41: 272–291.

19.Jansson J, Lingas A, Rajaby R, et al. (2017) Determining the consistency of resolved triplets and
fan triplets. In Proceedings of the 21st Annual International Conference on Research in Computational
Molecular Biology (RECOMB 2017), volume 10229 of LNCS, pages 82–98. Springer-Verlag.

20.Jansson J, Rajaby R, Shen C, et al. (to appear). Algorithms for the majority rule (+) consensus tree
and the frequency difference consensus tree. IEEE/ACM Transactions Computational Bio Bioinfor-
matics.

21.Jansson J, Shen C, Sung WK (2016) Improved algorithms for constructing consensus trees. J ACM
63.

22.Kannan S, Warnow T, Yooseph S (1998) Computing the local consensus of trees. SIAM J Computing
27: 1695–1724.

23.McKenzie A, Steel M (2000) Distributions of cherries for two models of trees. Mathematical
Biosciences 164: 81–92.

24.Nethercote N, Seward J (2007) Valgrind: a framework for heavyweight dynamic binary instrumen-
tation. In Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation (PLDI 2007), pages 89–100. ACM.

25.Ng MP, Wormald NC (1996) Reconstruction of rooted trees from subtrees. Discrete Applied
Mathematics 69: 19–31.

26.Semple C (2003) Reconstructing minimal rooted trees. Discrete Applied Mathematics 127: 489–
503.

27.Semple C, Daniel P, Hordijk W, et al. (2004) Supertree algorithms for ancestral divergence dates
and nested taxa. Bioinformatics 20: 2355–2360.

28.Snir S, Rao S (2006) Using Max Cut to enhance rooted trees consistency. IEEE/ACM Transactions
Comput Bio Bioinformatics 3: 323–333.

29.Steel M (1992) The complexity of reconstructing trees from qualitative characters and subtrees. J
Classification 9: 91–116.

30.Sung WK (2010) Algorithms in Bioinformatics: A Practical Introduction. Chapman & Hall/CRC,
Boca Raton, Florida.

31.Willson SJ. (2004) Constructing rooted supertrees using distances. Bulletin Mathematical Bio 66:
1755–1783.

32.Wulff-Nilsen C (2013) Faster deterministic fully-dynamic graph connectivity. In Proceedings of the
24 th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), pages 1757–1769. SIAM.

c© 2018, the authors, licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Medical Science Volume 5, Issue 2, 181–203

http://creativecommons.org/licenses/by/4.0

	Introduction
	Problem Definitions
	Previous Work
	New Results and Organization of the Article

	Preliminaries
	Aho et al.'s BUILD Algorithm ASSU81
	Semple's Characterization

	Exponential-Time Algorithms for MinRS and MinRLC
	Exponential-Time Algorithms for MinIS and MinILC
	NP-Hardness of MinRLC
	NP-Hardness of MinILC and MinIS
	General Properties
	Properties of a Local Consensus Tree of S

	Implementations
	Experimental Setup
	Experimental Results

	An Experimental Investigation of the Non-Minimality of BUILD
	Concluding Remarks

