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THE COMPLEXITY OF INFERRING A MINIMALLY RESOLVED
PHYLOGENETIC SUPERTREE∗
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Abstract. A recursive algorithm by Aho et al. [SIAM J. Comput., 10 (1981), pp. 405–421]
forms the basis for many modern rooted supertree methods employed in Phylogenetics. However, as
observed by Bryant [Building Trees, Hunting for Trees, and Comparing Trees: Theory and Methods
in Phylogenetic Analysis, Ph.D. thesis, University of Canterbury, Christchurch, New Zealand, 1997],
the tree output by the algorithm of Aho et al. is not always minimal; there may exist other trees which
contain fewer nodes yet are still consistent with the input. In this paper, we prove strong polynomial-
time inapproximability results for the problem of inferring a minimally resolved supertree from a given
consistent set of rooted triplets (MinRS). Furthermore, we show that the decision version of MinRS

is NP-hard for any fixed positive integer q ≥ 4, where q is the number of allowed internal nodes, but
linear-time solvable for q ≤ 3. In contrast, MinRS becomes polynomial-time solvable for any q when
restricted to caterpillars. We also present an exponential-time algorithm based on tree separators
for solving MinRS exactly. It runs in 2O(n log p) time when every node may have at most p children
that are internal nodes and where n is the cardinality of the leaf label set. Finally, we demonstrate
that augmenting the algorithm of Aho et al. with an algorithm for optimal graph coloring to help
merge certain blocks of leaves during the execution does not improve the output solution much in
the worst case.
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1. Introduction. Phylogenetic trees are leaf-labeled trees that are used to rep-
resent tree-like evolutionary history. To infer a reliable phylogenetic tree containing
a large number of leaves is often a difficult task because of the computational com-
plexity of the underlying optimization problems. One approach which has become
increasingly popular in recent years is the divide-and-conquer-based supertree ap-
proach [2, 6, 9, 16, 19, 20], which first uses a computationally intense method to
reconstruct highly accurate trees for small, partially overlapping subsets of the leaf
label set, and then applies a combinatorial algorithm to merge the small trees into
one large tree called a supertree.

Many alternative supertree methods whose properties differ have been developed;
see, e.g., the survey paper by Bininda-Emonds [2], the introduction of [19], or Chap-
ter 3.3 in [20] for an extensive list of references. A classic algorithm by Aho et al. [1]
named BUILD (see section 2.2 for a short description) can be used to merge a given
set of nonconflicting rooted phylogenetic trees. Due to its simplicity and efficiency,
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it is used as a starting point in several rooted supertree methods such as the one
presented by G ↪asieniec et al. in [8] for combining a set of conflicting trees.1 Similar
ideas were employed in later methods such as [18, 22, 23], and although they use
slightly different rules for how to split a connected component of the auxiliary graph,
typically, these methods all yield the same output as BUILD in the ideal case where
the input set of trees contains no conflicts. Hence, to understand these methods, it is
important to fully understand the properties of the trees constructed by BUILD.

A surprising fact about BUILD is that it does not always produce a tree with
the minimum possible number of internal nodes. This was first observed by Bryant
in [4]. We generalize Bryant’s example in section 2.3 to show that BUILD can, in
fact, output a tree containing Ω(n) times more internal nodes than necessary, where
n is the cardinality of the leaf label set of the input trees.

One of the common criticisms of supertrees is that they may suggest evolutionary
relationships among leaves that are not directly supported by any one of the input
trees, which can create false groupings in the form of “spurious novel clades” [2]. See
also the discussion in [19]. Therefore, it is reasonable to try to avoid making more
such statements about the evolutionary history than necessary to obtain a supertree,
and thus to introduce as little unsupported branching information as possible. For
this reason, minimally resolved supertrees, i.e., trees that contain as few internal nodes
as possible while still being consistent with all of the input, are important in Bioinfor-
matics. Furthermore, a minimally resolved supertree gives a simpler overview of the
observed data than a supertree containing many internal nodes, which in itself is a de-
sirable property as it makes it easier for researchers to represent relationships among
nodes and to organize the data. However, the computational aspects of inferring
minimally resolved supertrees have been overlooked until now.

A binary phylogenetic tree with exactly three leaves is called a rooted triplet.
Rooted triplets are a special case of phylogenetic trees, so hardness results concerning
the computational complexity of inferring supertrees from rooted triplets will directly
carry over to the corresponding problems for general inputs. Moreover, as explained
in [9], the branching information contained in any rooted, binary phylogenetic tree
with m leaves can be represented by a set of O(m) rooted triplets (one rooted triplet
per edge in the tree). From here on, we therefore focus on inputs which consist of
rooted triplets.

1.1. Our results and organization of the paper. We study the computa-
tional complexity of the problem of inferring a minimally resolved supertree from a
given consistent set of rooted triplets over a leaf label set of cardinality n, called
MinRS for short. We present several new negative and positive results.

The paper is organized as follows. Section 2 defines the MinRS problem formally,
surveys previous work, and exhibits an example for which the BUILD algorithm of
Aho et al. [1] produces an extremely poor solution to MinRS. Section 3 proves
two strong negative results: (1) the decision version of MinRS is NP-hard for any
fixed number of internal nodes larger than or equal to 4; and (2) MinRS cannot be
approximated within n1−ε for any constant 0 < ε < 1 in polynomial time, unless
P = NP. Next, section 4 presents some exact algorithms for MinRS. More precisely,
section 4.1 gives a recursive, polynomial-time algorithm for solving MinRS when the

1The method, named “Heuristic 2” in [8], imitates the behavior of BUILD until a conflict occurs,
at which point the so-called auxiliary graph consists of a single connected component which is sub-
sequently forced to split into smaller components by deleting the edges in a minimum weight edge
cut. Then, the method applies itself recursively to each newly created component.
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output tree is required to be a caterpillar. Then, section 4.2 uses the algorithm from
section 4.1 to solve MinRS in linear time when q = 2 or q = 3, where q is the number
of allowed internal nodes in the output tree. Section 4.3 describes a simple algorithm
for the decision version of MinRS which runs in O∗(f(q) · qn) time, where f(q) is
the number of rooted, unlabeled trees with q nodes. Section 4.4 presents a more
sophisticated exponential-time exact algorithm based on tree separators that runs in
2O(n log p) time, where every node is restricted to have at most p children which are
internal nodes. Finally, section 5 disproves a conjecture from the conference version
of this paper [13] concerning the optimality of BUILD when augmented with an
algorithm for optimal graph coloring and section 6 contains some concluding remarks.

2. Preliminaries.

2.1. Basic definitions. We will use the following definitions and notation.
To simplify the presentation, every node in a tree is considered to be both an

ancestor and a descendant of itself. For any nodes u, v in a tree, in case u is a
descendant of v and u �= v, then we write u ≺ v and call u a proper descendant of v.
The lowest common ancestor of u and v, denoted by lca(u, v), is the node w such that
both u and v are descendants of w and w ≺ x holds for every other node x which is
an ancestor of both u and v. The set of leaves in a tree T is denoted by Λ(T ).

A phylogenetic tree is a rooted, unordered tree whose leaves are distinctly labeled.
Since the leaves in a phylogenetic tree are uniquely labeled, we will refer to them by
referring to their labels. A rooted triplet is a phylogenetic tree with exactly three
leaves in which every internal node has exactly two children, and we let xy|z denote
the rooted triplet having leaf label set {x, y, z} that satisfies lca(x, y) ≺ lca(x, z) =
lca(y, z). See Figure 1 (a).
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Fig. 1. (a) The rooted triplet xy|z. (b) A phylogenetic tree consistent with xy|z.

Let T be a phylogenetic tree. For any {x, y, z} ⊆ Λ(T ), if the relation lca(x, y) ≺
lca(x, z) = lca(y, z) holds in T , then the rooted triplet xy|z and T are said to be
consistent with each other. See Figure 1 (b). A given set R of rooted triplets and a
given phylogenetic tree T are consistent if every t ∈ R is consistent with T . Lastly,
any given set R of rooted triplets is called consistent if there exists a tree which is
consistent with R (otherwise, R is called inconsistent).

When R is given, we denote the set of all leaf labels which occur in R by L, i.e.,
we define L =

⋃
t∈R Λ(t). Throughout the paper, we use the notation n = |L| and

k = |R|. Given an input set R of rooted triplets, it is possible to efficiently check
whether R is consistent and, if so, construct a phylogenetic tree consistent with R,
by a classic algorithm of Aho et al. [1] named BUILD. The algorithm is described in
section 2.2.
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Finally, for any consistent set R of rooted triplets, we say that a phylogenetic
tree which is consistent with R and contains as few internal nodes as possible is a
minimally resolved supertree for R.

2.2. The algorithm of Aho et al. [1] (BUILD). In this subsection, we briefly
review the algorithm of Aho et al. [1]. It was initially invented to solve a problem
from the theory of relational databases, and a decade later, it was realized that the
algorithm can be applied to Phylogenetics as well [24].

The algorithm, referred to as BUILD, constructs a phylogenetic tree consistent
with an input set R of rooted triplets over a leaf label set L, if such a tree exists. In
case such a tree does not exist, the algorithm outputs fail.

BUILD is a top-down, recursive algorithm. The main idea of the algorithm is to
first partition the leaf set L into blocks according to the rooted triplets in R; then,
the algorithm outputs a tree consisting of a root node whose children are the roots
of the trees obtained by recursing on each block. When recursing on a block B, only
those rooted triplets in R whose three leaves belong to B are considered. The base
case of the recursion is when the leaf set consists of a single leaf.

To perform the partitioning into blocks for any subset L′ ⊆ L with |L′| > 1,
BUILD uses an auxiliary graph G(L′). The auxiliary graph for any L′ ⊆ L is defined
as G(L′) = (L′, E), where E contains the edge {x, y} if and only if there is some
rooted triplet of the form xy|z in R with x, y, z ∈ L′. After constructing G(L′), the
algorithm computes the connected components in G(L′) and lets each such connected
component define one block of L′. If, at any point of its execution, |L′| > 1 yet L′

contains just one block, then BUILD terminates and outputs fail. This approach is
motivated by Proposition 2.1 below together with the key observation that for any
rooted triplet xy|z consistent with a phylogenetic tree T , the leaves labeled by x and y
cannot descend from two different children of the root of T , i.e., x and y must belong
to the same block. (For a formal proof of correctness, see [1].)

Proposition 2.1 (Aho et al. [1]). If G(L) has only one connected component
and |L| > 1, then R is not consistent with any phylogenetic tree.

An example of BUILD’s execution can be found in section 2.3 below. Also see
the beginning of section 5.2 for another example.

The running time of the original implementation of BUILD [1] was O(nk), where
n = |L| and k = |R|. Henzinger, King, and Warnow [9] later presented a faster
implementation of BUILD that avoids recomputing the connected components of the
auxiliary graphs from scratch on each recursion level by employing special dynamic
data structures for keeping track of the connected components in a graph under
edge deletions. Replacing the data structures used in [9] by a more recent one [10]
further reduces the complexity of the BUILD algorithm to min{O(n+k log2 n), O(k+
n2 log n)} time [14].

2.3. A bad example for BUILD. Bryant [4] noted that the BUILD algo-
rithm of Aho et al. [1] does not always produce a minimally resolved supertree consis-
tent with a given set of rooted triplets. In the example provided in Chapter 2.5.2
of [4], Bryant considered the set R = {bc|a, bd|a, ef |a, eg|a}. As demonstrated
in Figure 13 in [4], BUILD will construct a tree consistent with R which contains
three internal nodes (a root node along with two internal nodes which are the par-
ents of the leaves b, c, d and e, f, g, respectively), whereas the minimally resolved
supertree contains two internal nodes (a root node and an internal node to which the
leaves b, c, d, e, f, g are directly attached).
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We can simplify Bryant’s example to {bc|a, ef |a}. After that, if we extend the
example as follows:

Re = {x1x2|x0, x3x4|x0, . . . , x2i−1x2i|x0},

where i is any positive integer, we then obtain a consistent set of rooted triplets for
which BUILD first partitions the leaves into the blocks {x0}, {x1, x2}, {x3, x4}, . . . ,
{x2i−1, x2i} and subsequently outputs a tree having i + 1 internal nodes, as shown
in Figure 2 (a). However, the tree in Figure 2 (b) consisting of a root node with
two children, one being a leaf labeled x0 and the other being an internal node with
2i children that are leaves labeled x1, x2, . . . , x2i, contains exactly two internal nodes
and is also consistent with Re.

x4

x0

3xx2x1 x2ix2i−1

x0

x2ix2i−13x x4x2x1

(a) (b)

Fig. 2. (a) The tree constructed by BUILD on input Re has i + 1 internal nodes. (b) A tree
consistent with Re having 2 internal nodes.

This proves the following theorem.
Theorem 2.2. The BUILD algorithm of Aho et al. [1] may produce a tree with

Ω(n) times more internal nodes than a minimally resolved supertree, where n is the
cardinality of the leaf label set.

2.4. Definition of MINRS. From the observation in section 2.3, a natural
question arises: When a consistent set of rooted triplets R is given, how efficiently
can one construct a minimally resolved supertree consistent with R? Formally, we
define the following problem.

The Minimally Resolved Supertree Consistent with Rooted Triplets

Problem (MinRS)

Instance: A set R of rooted triplets over a leaf label set L.
Output: A rooted, unordered tree whose leaves are distinctly labeled by L which

has as few internal nodes as possible and which is consistent with every
rooted triplet in R, if such a tree exists; otherwise, fail.

We will also address the decision version of MinRS, in which the input consists
of a set R of rooted triplets with a leaf set L together with a positive integer q, and
the objective is to determine whether there exists a phylogenetic tree leaf-labeled by L
having q internal nodes that is consistent with R.

2.5. Related work. Besides Bryant [4], other authors such as Henzinger, King,
and Warnow [9] have also previously considered the problem of inferring a minimally
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resolved supertree from a set of rooted triplets. Unfortunately, Henzinger, King, and
Warnow [9] incorrectly assumed that the BUILD algorithm of Aho et al. [1] always
constructs a minimally resolved supertree. Thus, the claim on page 7 in [9] which
says:

“If we use the version of the batch deletion algorithm which discovers
all newly created components, the consensus tree with the minimal
number of nodes (the minimal tree) is returned.”

is false. In particular, according to the proof of Theorem 4 in [9], the tree con-
structed by Algorithm A’ of Henzinger, King, and Warnow [9] is identical to the tree
constructed by the BUILD algorithm; therefore, the minimality claim in Theorem 4
in [9] is not correct and our example from section 2.3 implies that Algorithm A’
may output a tree with Ω(n) times more internal nodes than a minimally resolved
supertree.

In another related paper, Semple [21] presented an algorithm named ALL-MIN-
TREES that enumerates all minor-minimal phylogenetic trees consistent with a given
set R of rooted triplets. (If T is a phylogenetic tree consistent with R and it is
not possible to obtain a tree consistent with R by contracting an internal edge
of T , then T is called minor-minimal with respect to R.) For example, according
to Proposition 4.1 in [21], the tree output by the BUILD algorithm [1] is always
minor-minimal with respect to R, which also proves that a minor-minimal tree is
not necessarily a minimally resolved supertree. On the other hand, by definition,
any minimally resolved supertree for R must be minor-minimal, so one way to solve
MinRS is by running ALL-MIN-TREES to find all minor-minimal trees and then
selecting a tree with the smallest number of internal nodes. The worst-case running
time of this particular approach to solving MinRS depends on that of Semple’s algo-
rithm, which is Ω(2n) according to Example 4.7 in [21]. Actually, the lower bound on
the worst-case running time of ALL-MIN-TREES can be strengthened to Ω((n

2 )n/2),
i.e., a self-exponential function in n/2. To see this, modify Example 4.7 in [21] to
L = {a1, a2, . . . , ax, g1, g2, . . . , gy}, where x and y are two positive integers satisfying
x + y = n, and let R1 = {aiai+1|ai+2 : 1 ≤ i ≤ x − 2}, R2 = {a1a2|gi : 1 ≤ i ≤ y},
and R = R1∪R2. Then, by an argument analogous to the one in Example 4.7 of [21],
there are at least (x − 2)y = (x − 2)n−x minor-minimal trees consistent with R, and
taking x = n

3 + 2 gives

(x − 2)n−x =
(n

3

)(2n/3)−2

=
(n/3)2n/3 · (3/2)2n/3

(n/3)2 · (3/2)2n/3

=
(n

2

)n/2

· (n/2)n/6

(n/3)2 · (3/2)2n/3
>

(n

2

)n/2

· 1 =
(n

2

)n/2

for large enough n.
Corollary 2.3. The algorithm ALL-MIN-TREES in [21] solves MinRS, but

its worst-case running time is Ω((n
2 )n/2), where n is the number of leaf labels in R.

A kind of “dual” problem to MinRS called Most Resolved Compatible Tree

was studied by Bryant in Chapter 2.6.3 in [4]. It is defined next. A fan triplet is a
phylogenetic tree consisting of a root node to which three leaves are directly attached.
For any phylogenetic tree T and any {x, y, z} ⊆ Λ(T ), if lca(x, y) = lca(x, z) =
lca(y, z) holds in T , then the fan triplet with leaves x, y, z is consistent with T . In
the Most Resolved Compatible Tree problem, the input is a consistent set R of
(rooted and fan) triplets on a leaf set L, and the objective is to construct a phylogenetic
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tree leaf-labeled by L with the largest possible number of internal edges which is
consistent with R. (Here, trees containing an internal node with a single child are not
allowed.) Note that if R contains rooted triplets only, then the problem is trivial since
any binary tree which is consistent with R will give an optimal solution. However,
in the general case, Most Resolved Compatible Tree is NP-hard [4], and this
result holds even if R consists entirely of fan triplets.

For a recent survey of other optimization problems related to rooted triplets con-
sistency (for example, computing a maximum cardinality subset R′ of an inconsistent
set R of rooted triplets such that R′ is consistent), see section 2 in [5].

3. Polynomial-time inapproximability of MINRS. In this section, we es-
tablish a strong polynomial-time inapproximability result for MinRS, namely that
MinRS cannot be approximated within n1−ε for any constant 0 < ε < 1 in polyno-
mial time, unless P = NP. We will obtain this result by reducing the Chromatic

Number problem to MinRS.
First, recall that for any undirected graph G = (V, E) and any positive inte-

ger K, a K-coloring of G is a partition of V into (possibly empty) disjoint sub-
sets V1, V2, . . . , VK called color classes such that for any {v, w} ∈ E, it holds that v
and w belong to different color classes. A graph G is called K-colorable if there exists
a K-coloring of G. The Chromatic Number problem is defined as follows:

Chromatic Number

Instance: An undirected graph G = (V, E).
Output: The smallest integer K such that G is K-colorable.

Zuckerman [25] proved that Chromatic Number is NP-hard to approximate
within |V |1−ε for every 0 < ε < 1. Moreover, the decision version of the problem,
i.e., to determine if an undirected graph G is K-colorable for a specific value of K,
is easily solvable in polynomial time when K = 2 but known to be NP-hard for any
fixed positive integer K ≥ 3; see, e.g., [7].

We now describe the reduction. Let G = (V, E) be any given instance of Chro-

matic Number. Without loss of generality, we assume that V contains at least two
vertices and that G is connected. Construct an instance of MinRS as follows:

• Let L = {v1, v2 : v ∈ V } be a set of 2|V | new leaf labels.
• Define R = {v1v2|w1, v1v2|w2, w1w2|v1, w1w2|v2 : {v, w} ∈ E}.

Clearly, the reduction can be carried out in polynomial time.
The given graph G and the constructed set R are related as stated in the next

two lemmas.
Lemma 3.1. If G is K-colorable, then there exists a tree which is consistent

with R and contains K + 1 internal nodes.
Proof. Since G = (V, E) is K-colorable, we can partition the vertex set V of G

into K disjoint color classes V1, V2, . . . , VK . Order the color classes so that V1, V2,
. . . , Vj are nonempty and Vj+1 = · · · = VK = ∅, where j ≤ K. Define a tree T having
exactly K +1 internal nodes as follows (see Figure 3 for an illustration). Let the root
of T be one end of a path of length K − j and let a0 be the other end of the path. Let
a0 have j children a1, a2, . . . , aj. Then, for each i ∈ {1, 2, . . . , j} and each v ∈ Vi,
attach two leaves labeled by v1 and v2 to the node ai.

Consider any rooted triplet in R. It is of the form v1v2|w1, where {v, w} ∈ E;
furthermore, since {v, w} ∈ E, both of the vertices v and w cannot belong to the
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v21v

T:

a0

a1 ai aj

Fig. 3. Illustrating the proof of Lemma 3.1. In this example, there is one empty color class
(i.e., K − j = 1), so the path from the root of T to the internal node a0 has length 1. For each
vertex v ∈ V , where v belongs to the color class Vi, the leaves v1, v2 in T are directly attached to
the internal node ai.

same color class Vi. Thus, the parent of the leaves v1 and v2 in T is different from
the parent of the leaves w1 and w2, and so v1v2|w1 is consistent with T . Therefore,
R is consistent with T .

Lemma 3.2. If there exists a tree which is consistent with R and contains K + 1
internal nodes, then G is K-colorable.

Proof. Let T be a tree with K + 1 internal nodes which is leaf-labeled by L
and consistent with R. Let c0 be the root of T and denote the other internal nodes
of T by c1, c2, . . . , cK arbitrarily. For every i ∈ {0, 1, . . . , K}, associate a (possibly
empty) subset Ci ⊆ V with the internal node ci, defined as follows: for each v ∈ V , if
lca(v1, v2) = ci in T , then let v ∈ Ci. It follows directly that for any i, j ∈ {0, 1, . . . , K}
with i �= j, the subsets Ci and Cj are disjoint.

Observe that every v ∈ V belongs to at least one edge in E of the form {v, w} (oth-
erwise, the graph G would not be connected), and thus, by the construction of R, the
rooted triplets v1v2|w1, v1v2|w2, w1w2|v1, and w1w2|v2 belong to R. Since v1v2|w1

is consistent with T , it holds that lca(v1, v2) is a proper descendant of lca(v1, w1),
i.e., lca(v1, v2) cannot be the root of T . We have just shown that C0 = ∅.

Next, we claim that for any two vertices v, w ∈ V , if {v, w} ∈ E, then v and w
cannot belong to the same subset Ci. For the purpose of obtaining a contradiction,
suppose that v, w ∈ Ci. Then lca(v1, v2) and lca(w1, w2) are the same node in T ac-
cording to the definition of Ci. By transitivity, at least one of lca(v1, w1), lca(v1, w2),
lca(v2, w1), or lca(v2, w2) is also equal to this node. However, since T is consistent
with the rooted triplets v1v2|w1, v1v2|w2, w1w2|v1, and w1w2|v2, it follows from the
definition of “consistent with” that the node lca(v1, v2) is a proper descendant of (and
hence different from) lca(v1, w1) as well as of lca(v1, w2), and in the same way that
lca(w1, w2) is a proper descendant of lca(v2, w1) and of lca(v2, w2). This yields a
contradiction, so the claim must hold.

Thus, the partition of V into disjoint subsets C1, C2, . . . , CK gives a K-coloring
of G, and so G is K-colorable.

Theorem 3.3. MinRS cannot be approximated within n1−ε for any constant
0 < ε < 1 in polynomial time, unless P = NP.

Proof. The proof follows from Lemmas 3.1 and 3.2 together with the fact that
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Chromatic Number is NP-hard to approximate within |V |1−ε for every 0 < ε <
1 [25].

Since the decision version of Chromatic Number is NP-hard for any fixed posi-
tive integer K ≥ 3 (see, e.g., [7]), using the above reduction and applying Lemmas 3.1
and 3.2 also yields the following corollary.

Corollary 3.4. The decision version of MinRS is NP-hard for any fixed pos-
itive integer q ≥ 4, where q is the allowed number of internal nodes.

4. Exact algorithms for MINRS. This section presents several algorithms for
solving MinRS exactly. First, section 4.1 gives an algorithm for MinRS restricted to
caterpillars. Then, section 4.2 shows how to solve MinRS in linear time when q = 2
or q = 3. Section 4.3 describes a brute-force algorithm, and section 4.4 shows that
MinRS under the restriction that each node has at most p nonleaf children, where
p ≥ 2, is solvable in 2O(n log p) time.

Let R be a given set of rooted triplets with leaf set L. For any x ∈ L, x is said to
have a lower occurrence in R if there exist b, c ∈ L such that xb|c ∈ R. If there exist
a, b ∈ L such that ab|x ∈ R, then x is said to have an upper occurrence in R.

4.1. MINRS restricted to caterpillars. A caterpillar is a phylogenetic tree in
which every node has at most one child that is an internal node. (For an example of a
caterpillar, see, e.g., Figure 6 (a).) This subsection gives an algorithm for determining
if R is consistent with a caterpillar, and if so, constructing such a tree having the
smallest possible number of internal nodes. To describe the algorithm, we introduce
some additional notation.

Define X as the subset of leaves in L that have upper occurrences but no lower
occurrences in R. Let R′ be the subset of rooted triplets in R that do not contain
any leaves from X , and let L′ be the set of leaves appearing in R′. Finally, define
Y = L \ (X ∪ L′) (note that Y may be empty). Intuitively, after attaching all leaves
in X directly to the root node of the output tree, we may safely remove all rooted
triplets that contain leaves from X , obtaining a smaller instance R′ of MinRS which
can be solved recursively. The leaves in Y only appear in rooted triplets that will be
removed so we have to be careful to attach them to an internal node below the root
in the output tree. See Figure 4 for an illustration.

∈Y

∈X

T’
∈L’

u

v

T:

Fig. 4. The strategy of Algorithm MinRS caterpillar is to attach the leaves of X and Y to the
root and a child of the root, respectively, and recursively compute a caterpillar T ′ for L′.

The next elementary lemma characterizes three key properties of caterpillar con-
sistency. The lemma leads to a natural top-down algorithm for recursively building a
caterpillar, named MinRS caterpillar and listed in Figure 5.
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Algorithm MinRS caterpillar(R)
Input: A nonempty set R of rooted triplets.
Output: A caterpillar consistent with R having the smallest possible number
of internal nodes, if such a tree exists; otherwise, fail.
1. Compute the sets X , R′, L′, and Y .
2. if X = ∅ then

Let T := fail.
3. else do begin
3.1 Create a root node u of T and create an internal node v that is a child

of u.
Attach each leaf x ∈ X as a child of u and each y ∈ Y as a child of v.

3.2 if R′ �= ∅ then
Let T ′ := MinRS caterpillar(R′).
If T ′ = fail, then let T := fail ; otherwise, merge the root of T ′ and v
into one node of T (e.g., delete the root of T ′ while letting all its
children become children of v instead).

4. return T .

Fig. 5. The pseudocode for Algorithm MinRS caterpillar.

Lemma 4.1. Suppose that R �= ∅. The following holds:
1. If X = ∅, then R is not consistent with any caterpillar.
2. If X �= ∅ and R′ = ∅, then R is consistent with a caterpillar containing two

internal nodes.
3. If X �= ∅ and R′ �= ∅, then R is consistent with a caterpillar if and only if R′

is consistent with a caterpillar.
Proof.
1. Suppose there exists a caterpillar T consistent with R. We shall prove that

X �= ∅. Consider any leaf w ∈ L at minimum distance from the root of T .
Then R cannot contain any rooted triplets of the form wa|b with a, b ∈ L,
i.e., w has no lower occurrences in R. By definition, w belongs to X .

2. In this case, Y cannot be empty. Construct a caterpillar with two internal
nodes u, v, where u is the root and v a child of u, and attach each x ∈ X to u
and each y ∈ Y to v. Obviously, the resulting tree is consistent with R.

3. First, suppose that R is consistent with a caterpillar T ∗. Since R′ ⊆ R, all
rooted triplets in R′ are also consistent with T ∗. Taking the subtree of T ∗

induced by leaves appearing in R′ and then contracting each edge incident to
an internal node with outdegree 1 yields a caterpillar consistent with R′.
Next, suppose that R′ is consistent with a caterpillar T ′. Attach every y ∈ Y
as a child of the root of T ′, and denote the resulting caterpillar by T ′′. Let T
be a caterpillar such that the children of the root node of T are the following:
(1) the root of T ′′; and (2) every element in X . Then T is consistent with all
rooted triplets in R′ as well as with every rooted triplet from R that involves
a leaf from X , i.e., T is consistent with R.

The optimality and time complexity of Algorithm MinRS caterpillar are ad-
dressed by the next theorem.

Theorem 4.2. Algorithm MinRS caterpillar solves the MinRS problem re-
stricted to caterpillars. It can be implemented to run in O((n + k) · q) time when a
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solution having q internal nodes exists, and in O((n + k) · n) time when no solution
exists.

Proof. By Lemma 4.1, the algorithm correctly returns a caterpillar consistent
with R whenever such a tree exists and fail otherwise. It remains to show the mini-
mality of the returned solutions for the nonfail case.

Our proof is by induction over the number of internal nodes in an optimal solu-
tion. Let H(i) be the statement that Algorithm MinRS caterpillar always returns a
minimal solution when a minimal solution contains exactly i internal nodes. The base
case H(2) (i.e., two internal nodes) holds according to Lemma 4.1.2. Next, assume
that H(i) is true for some positive integer i ≥ 2. Let R∗ be any set of rooted triplets
for which an optimal caterpillar T ∗ contains i + 1 internal nodes. We shall show that
the caterpillar output by Algorithm MinRS caterpillar is as good as T ∗. Consider
the set X∗ of leaves that have upper occurrences but no lower occurrences in R∗.
Every leaf x that is a child of the root u∗ of T ∗ must belong to X∗ (otherwise, if
x �∈ X∗, x would have some lower occurrence in R∗ and then x could not be a child
of u∗). On the other hand, not all leaves belonging to X∗ must be children of u∗. Let
T # be the caterpillar obtained by removing all leaves in X∗ from T ∗ and reattaching
them as children of u∗. Note that T # is still a caterpillar consistent with R∗, and
that T # still has i + 1 internal nodes. Furthermore, the subtree rooted at the inter-
nal node v# that is a child of the root of T # has i internal nodes and is consistent
with (R∗)′, where (R∗)′ is defined as the set of all rooted triplets from R∗ that do not
involve leaves from X∗; this subtree must be optimal because if there were such a tree
with fewer internal nodes, then it would directly yield a solution for R∗ having fewer
than i + 1 internal nodes, contradicting the minimality of T ∗. Let T ′ be the output
of Algorithm MinRS caterpillar on input (R∗)′. By assumption H(i), T ′ has the
fewest possible number of internal nodes, i.e., i. If we replace the subtree rooted at v#

in T # by T ′, we obtain another caterpillar that is consistent with R∗ with i + 1 in-
ternal nodes, and the result is precisely the output of Algorithm MinRS caterpillar
on input R∗. Therefore, H(i + 1) holds.

To implement the algorithm so that any level of the recursion uses O(n+k) time,
use two bit vectors Lower and Upper, each of size n, to indicate lower and upper
occurrences of the leaves in L. Initially, set all bits in Lower and Upper to 0. Next,
for each ab|c ∈ R, set Lower[a] = 1, Lower[b] = 1, and Upper[c] = 1. Then, it is
straightforward to identify the sets X , R′, L′, and Y in linear time.

For any given q ≥ 2, if at most q internal nodes are permitted, the algorithm can
be modified to run in O((n + k) · q) time by terminating its execution and returning
fail if it ever reaches q recursion levels.

4.2. MINRS with q = 2 or q = 3. Corollary 3.4 states that MinRS (in its
unrestricted form) is NP-hard for every fixed q ≥ 4, where q is the allowed number
of internal nodes. We now turn our attention to MinRS with q ∈ {2, 3}. We have
seen that when restricted to caterpillars, the problem becomes solvable in polynomial
time for any q (Theorem 4.2). Noting that a tree with exactly two internal nodes is
always a caterpillar, Theorem 4.2 immediately gives us the next corollary.

Corollary 4.3. MinRS restricted to q = 2 can be solved in O(n + k) time.
For q = 3, there are two possible tree topologies, as shown in Figure 6. (Observe

that one of them is also a caterpillar.) To solve MinRS for q = 3, it therefore suffices
to check if there exists a tree of one of the two types that is consistent with R; if so, we
output it and otherwise we output fail. In this subsection, we refer to the structures
in Figure 6 (a) and (b) as type 3A and type 3B, respectively.
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u

v

w

u

v w

(a) (b)

Fig. 6. The two different types of trees having three internal nodes: (a) type 3A tree;
(b) type 3B tree. Note that a type 3A tree is a caterpillar.

Algorithm MinRS type 3B tree

1. Compute the sets X and R′.
2. Construct the auxiliary graph G(L) as in the BUILD algorithm [1] de-

scribed in section 2.2. Let C be the set of all nonsingleton connected
components of G(L). (Note that {x} is a singleton connected component
in G(L) if and only if x ∈ X .)

3. Construct an undirected graph H with vertex set C and where {I, J}
is an edge in H if and only if R′ contains some rooted triplet of the
form xy|z where either x, y ∈ I and z ∈ J , or x, y ∈ J and z ∈ I.2

4. Try to compute a 2-coloring of H .
5. If no 2-coloring exists, then let T = fail. Otherwise, let V1

and V2 be the two color classes of H and define Mi = {z ∈ L \
X : z belongs to some connected component in color class Vi} for i ∈
{1, 2}. Create a root node u of T with two children v, w which are
internal nodes, then attach the leaves in L to T by letting each x ∈ X
be a child of u, each z ∈ M1 be a child of v, and each z ∈ M2 a child
of w.

6. Return T .

Fig. 7. The pseudocode for Algorithm MinRS type 3B tree.

4.2.1. Constructing a tree of type 3A. Type 3A trees are caterpillars with
exactly 3 internal nodes; therefore, this case is also covered by Theorem 4.2.

Lemma 4.4. It is possible to check if there exists a type 3A tree consistent with R
(and if so, construct it) in O(n + k) time.

4.2.2. Constructing a tree of type 3B. In the same way as in section 4.1,
define X to be the subset of leaves in L that have upper occurrences but no lower
occurrences in R. Let R′ be the subset of rooted triplets in R that do not contain
any leaves from X . Build a tree T of type 3B as in Figure 6 (b) according to Al-
gorithm MinRS type 3B tree listed in Figure 7. Here, the basic idea is to attach all
leaves in X directly to the root of the output tree and to determine where all other
leaves in L \ X should be attached by using a 2-coloring of a graph whose edges rep-
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resent pairs of leaves that are required to have different parents in the output tree.
The next lemma shows the correctness of this approach.

Lemma 4.5. If R is consistent with a tree of type 3B, then the tree T output by
Algorithm MinRS type 3B tree is also a type 3B tree consistent with R.

Proof. We first show that the graph H is 2-colorable. By the lemma statement,
there exists at least one tree T ∗ of type 3B consistent with R (and thus consistent
with R′). Consider any ab|c ∈ R′. Leaves a and b cannot be children of the root
of T ∗. In addition, we have c �∈ X , and by the definition of X , c has at least one
lower occurrence in R. It follows that c cannot be a child of the root of T ∗ either.
In the same way, for any ab|x ∈ R with x ∈ X , it holds that a and b cannot be
children of the root of T ∗. Therefore, L \ X can be partitioned into two disjoint
subsets Mv∗ and Mw∗ , each consisting of the children of one nonroot, internal node
of T ∗. Now, the partition {Mv∗ , Mw∗} induces a valid 2-coloring of H because for each
edge {I, J} in H , there exists some ab|c ∈ R′ with either a, b ∈ I, c ∈ J or a, b ∈ J ,
c ∈ I; moreover, T ∗ is consistent with ab|c, which means that either a, b ∈ Mv∗ and
c ∈ Mw∗ or a, b ∈ Mw∗ and c ∈ Mv∗ , so I and J will never receive the same color.

Since H is 2-colorable, the above procedure will find a valid 2-coloring and par-
tition L \ X into M1 and M2 accordingly. Finally, we show that each ab|c ∈ R is
consistent with T . Leaves a and b belong to the same connected component of G(L)
and are therefore always placed together in one of M1 and M2. There are two cases:

• c ∈ X : Then c is a child of u in T while a and b are children of one of v and w
in T . Hence, ab|c is consistent with T .

• c ∈ L\X : Then H contains an edge {I, J} with a, b ∈ I and c ∈ J , or a, b ∈ J
and c ∈ I. Because of the 2-coloring, components I and J belong to different
color classes so either a, b ∈ M1 and c ∈ M2, i.e., a and b are children of v in T
and c is a child of w, or vice versa. Hence, ab|c is consistent with T .

The set X can be computed in O(n + k) time by using two bit vectors of size n.
After that, it is easy to obtain R′ in O(n + k) time. By the definition of G(L′),
the number of edges in G(L′) is at most k and computing the connected components
of G(L′), constructing the graph H , and 2-coloring H can all be done in linear time
using standard breadth-first search techniques. Thus, we have the following lemma.

Lemma 4.6. It is possible to check if there exists a type 3B tree consistent with R
(and if so, construct it) in O(n + k) time.

Now, we can combine Lemmas 4.4 and 4.6.
Theorem 4.7. MinRS restricted to q = 3 can be solved in O(n + k) time.

4.3. A brute-force algorithm. The decision version of MinRS can be solved
with a naive brute-force algorithm as follows.

• Let q be the allowed number of internal nodes.
• Generate all possible trees having q nodes and for each one try all qn ways of

attaching the n leaves in L to the q different nodes. For each obtained tree,
check if it is consistent with R in polynomial time. If at least one such tree
exists, then output “yes”; otherwise, output “no.”

This yields the following theorem.
Theorem 4.8. For any given positive integer q, the decision version of MinRS

can be solved in O∗(f(q) ·qn) time, where f(q) is the number of rooted, unlabeled trees
with q nodes.

2By the construction, H might contain loops of the form {I, I}. In this case, H will never be
2-colorable.
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It is known that f(q) ∼ c ·dq · q−3/2, where c = 0.439924 . . . and d = 2.955765 . . .
[17]. Thus, the algorithm runs in exponential time for q = O(1).

4.4. An exponential-time algorithm for a restricted case of MINRS. A
leaf child of a node v in a tree is a child of v which is a leaf, and a nonleaf child of v
is a child of v which is an internal node. For any rooted tree T and node v in T , the
notation Tv means the subtree of T rooted at v. Every leaf that belongs to Tv is called
a leaf descendant of v. This subsection develops an exact algorithm for MinRS whose
running time depends exponentially on n and a parameter p which specifies an upper
bound on the number of nonleaf children that every node may have. The derivation
of our main result relies on the following variant of the tree separator theorem.

Lemma 4.9. Let T be a rooted tree with n leaves. There exists a node v such that
the subtree Tv contains strictly greater than n

2 leaves but for each child w of v, the
subtree Tw has at most n

2 leaves.
Proof. Start from the root of T and perform the following procedure: If the root

satisfies the condition, then set v to it and stop; otherwise, set v to the child of the
root with the largest number of leaf descendants and iterate the procedure for Tv.

Note that whenever a new iteration is applied to Tv, Tv must have more than
n
2 leaves. It follows from the finiteness of T that eventually a node v satisfying the
condition will be found.

We now use Lemma 4.9 to design a 2O(n log p)-time procedure for the variant of
MinRS where every internal node is allowed to have at most p nonleaf children.

The procedure is recursive. We enumerate all partitions of the leaf set L for which
there exists a tree with a node v satisfying the condition in Lemma 4.9. Then, we
apply the procedure recursively on the resulting leaf subsets, possibly augmented by
a dummy leaf, modifying the rooted triplets accordingly.

A partition Q induced by a node v that satisfies the condition in Lemma 4.9 has
two levels. See Figure 8. First, Q splits the set L of leaves into a set L′ (correspond-
ing to the leaves in Tv) of size strictly greater than n

2 and its complement L \ L′

(corresponding to the leaves in T \ Tv) of size strictly less than n
2 . Second, Q further

splits L′ into p′ ≤ p sets L′
1, . . . , L

′
p′ (corresponding to the p′ sets of leaf descendants

of the p′ nonleaf children of v), each of size at most n
2 , plus a number of singletons

(corresponding to the leaf children of v).
Let Q be a candidate partition of L as defined above. If there is a rooted triplet of

the form xy|z where x, z ∈ L′ and y ∈ L \L′, then we can disregard Q. On the other
hand, if x, y ∈ L′ and z ∈ L \ L′, then xy|z is automatically satisfied by Q and the
rooted triplet can be disregarded. As for the subsets L′

1, . . . , L
′
p′ and the remaining

singleton leaves, for each rooted triplet of the form xy|z where x, y, z ∈ L′, if x, y are
not in the same subset L′

l, then we can also disregard Q.
Next, augment L\L′ by a dummy leaf a that represents L′, i.e., all leaf descendants

of the node v. For each rooted triplet of the form xy|z where x, z ∈ L \L′ and y ∈ L′,
create the rooted triplet xa|z, and for each rooted triplet of the form xy|z where
x, y ∈ L \L′ and z ∈ L′, create the rooted triplet xy|a. Run the procedure recursively
on L \ L′ ∪ {a} with the original set R of rooted triplets restricted to L \ L′ and the
set of newly created rooted triplets involving the dummy leaf a. Let T ′′ be the tree
returned by the procedure.

Also run the procedure recursively on each of the subsets L′
1, . . . , L

′
p′ , obtaining

trees T ′
1, . . . , T

′
p′ . Then, let T ′

1, . . . , T
′
p′ as well as the singleton leaves become children

of the leaf a in the tree T ′′, and put the resulting tree on a list of potential solutions.
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Fig. 8. According to Lemma 4.9, T contains a node v whose removal divides the leaf set L into
a subset L′ with |L′| > n

2
and its complement L \ L′ with |L \ L′| < n

2
. In addition, removing v

partitions L′ into subsets L′
1, . . . , L′

p′ with at most n
2

leaves each as well as a number of singletons.

Finally, after all valid candidate partitions of L have been considered, return the
tree on the list (if any) with the minimum number of internal nodes.

The correctness of our procedure follows from Lemma 4.9 and the fact that we
can join T ′′ with T ′

1, . . . , T
′
p′ at the dummy leaf a in the described way.

Let us estimate the time complexity T (n) of our procedure. The number of
partitions considered and the time needed to generate them are trivially O((p+2)n) =
2O(n log p) since each of the n elements of L can belong to either L \ L′, one of the at
most p subsets of the form L′

l, or the set of all singleton leaves in L′. Furthermore,
each of the at most p + 1 recursive calls is applied to a set of leaves of size at most
n
2 . Thus, the total time complexity of processing the partitions is 2O(n log p) · ((p + 1) ·
T (n

2 ) + nO(1)). By the inequality 2αn log p · (2c(n/2) log p + nO(1)) ≤ 2cn log p for c > 2α,
p ≥ 2, and sufficiently large n, we obtain T (n) = 2O(n log p).

Theorem 4.10. The problem of constructing a minimally resolved tree consistent
with a set R of rooted triplets on a leaf set L under the restriction that each node has
at most p nonleaf children, where p ≥ 2, is solvable in 2O(n log p) time.

Any tree with n leaves which is consistent with R can easily be converted into a
tree consistent with R where each node has at most p nonleaf children by increasing
the number of internal nodes by an O(logp n) multiplicative factor. (Simply connect
each internal node v to its nonleaf children Cv via a p-ary tree of depth O(logp n)
having Cv as leaves.) Hence, we obtain the following corollary.

Corollary 4.11. MinRS can be approximated within a ratio of O(logp n) in
2O(n log p) time.

5. A counterexample to a conjecture. Here, we further explore the rela-
tionship between MinRS and Chromatic Number and give a counterexample to a
conjecture from the conference version of this paper [13].

5.1. The idea. Recall that at each recursion level, the BUILD algorithm of
Aho et al. [1] partitions the leaf set into blocks by computing the connected compo-
nents in the auxiliary graph, and then represents each block by one node in the tree.
A simple idea to reduce the number of internal nodes in the tree produced by BUILD
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a1 a2

c1,1 c1,2 dp,1 dp,2cp,1 cp,2 1,1d d1,2

b2b1

Fig. 9. The tree constructed by BUILD on input Rx has 2p + 5 internal nodes.

is to merge blocks while ensuring that no rooted triplets are violated as follows:3

Proceed as in BUILD, but after computing the blocks (i.e., the con-
nected components in G(L′)), construct an undirected graph H whose
vertices are the blocks and where {A, B} is an edge in H if and only if
R contains some rooted triplet of the form xy|z where either x, y ∈ A
and z ∈ B, or x, y ∈ B and z ∈ A. Compute a minimum coloring
of H and merge all blocks whose vertices in H received the same
color. Then, continue the execution of BUILD.

The above step can be implemented in O∗(2j) time by applying an exact algorithm
for Chromatic Number [3], where j is the number of vertices in H . Summation
over all recursive calls yields a total running time of O∗(2n).

An open question from section 5 in [13] was if the BUILD algorithm, modified
as above, minimizes the number of internal nodes in the output tree, i.e., whether or
not it always gives an optimal solution for MinRS. We now show that this is not the
case.

5.2. The counterexample. Let p be any fixed positive integer with p ≥ 2.
Define the following four leaf sets:

LA = {a1, a2},
LB = {b1, b2},
LC = {c1,1, c1,2, c2,1, c2,2, . . . , cp,1, cp,2},
LD = {d1,1, d1,2, d2,1, d2,2, . . . , dp,1, dp,2},

and let L = LA∪LB ∪LC ∪LD. Observe that |L| = 4p+4. Next, define the following
sets of rooted triplets with leaf set L:

R1 = {a1a2|b1, b1b2|a1},
R2 = {ci,1ci,2|cj,1 : 1 ≤ i, j ≤ p, i �= j},
R3 = {ci,1c(i+1),1|a1 : 1 ≤ i ≤ p − 1},
R4 = {di,1di,2|dj,1 : 1 ≤ i, j ≤ p, i �= j},
R5 = {di,1d(i+1),1|b1 : 1 ≤ i ≤ p − 1},

and take Rx = R1 ∪R2 ∪R3 ∪R4 ∪R5.
First, suppose we run the original version of the BUILD algorithm on input Rx.

On the first level of recursion, the auxiliary graph G(L) is constructed using all rooted

3This is an extension of the technique used to construct type 3B trees in section 4.2.
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L L LDBLA
H:

C

Fig. 10. The graph H whose vertices represent the connected components in G(L) and whose
edges indicate blocks that cannot be immediately merged.

a1 a2 b2b1

1,1d d d d1,2 p,2p,1 c1,1 c c c1,2 p,1 p,2

Fig. 11. The tree output by the modified version of BUILD on input Rx has 2p + 3 internal
nodes.

a1 a2

cp,2 dp,1 dp,2cp,1

b2b1

c c d d1,1 1,2 1,1 1,2

Fig. 12. A tree consistent with Rx having only p + 4 internal nodes.

triplets in Rx and it is easy to see that G(L) contains four connected components,
with vertex sets LA, LB, LC , and LD, respectively. On the second level of recursion,
G(LA) is a graph with two vertices and no edges, and similarly for G(LB); however,
because of R2 and R4, each of G(LC) and G(LD) contains p connected components
consisting of two vertices each. The resulting tree has exactly 2p + 5 internal nodes
and is displayed in Figure 9.

Next, consider the modified version of BUILD described in section 5.1. After
identifying the blocks LA, LB, LC , and LD on the first recursion level, it constructs
the undirected graph H shown in Figure 10 with vertex set {LA, LB, LC , LD} and
the three edges {LC , LA}, {LA, LB}, and {LB, LD} due to R3, R1, and R5. H is a
path graph, and any minimum coloring of H partitions the vertex set into two color
classes: {LA, LD} and {LB, LC}. Hence, the algorithm merges LA with LD, and LB

with LC . On the next level of recursion, the auxiliary graph for LA ∪ LD contains
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two trivial connected components for a1 and a2, along with p connected components
induced by R4 which contribute p internal nodes to the final tree. (The case LB ∪LC

is symmetric.) In summary, the tree output by the modified BUILD algorithm, shown
in Figure 11, contains 2p + 3 internal nodes. We note that the modified version of
BUILD is not much better than the original BUILD algorithm for input Rx.

The main result of this section is as follows.
Theorem 5.1. The modified version of the BUILD algorithm described in sec-

tion 5.1 does not return an optimal solution for MinRS on input Rx.
Proof. We show that there exists a better solution to MinRS on input Rx which

will not be found by taking a minimum coloring of H on the first recursion level.
Proceed as in the modified version of BUILD, but use three colors to color the graph H
by partitioning its vertex set into three color classes {LA}, {LB}, and {LC , LD}, i.e.,
merge LC and LD before recursing. Then, for the second recursion level, there exists a
tree with p+1 internal nodes which is a solution to the subproblem defined by R2∪R4

(a root node with p children, each of which is the parent of four leaves). This yields
the tree in Figure 12, which is consistent with Rx and has p + 4 internal nodes.

6. Concluding remarks. In this paper, we have introduced the MinRS prob-
lem and studied its computational complexity. Significantly, MinRS cannot be ap-
proximated within n1−ε for any constant 0 < ε < 1 in polynomial time, unless P = NP
(Theorem 3.3 in section 3). The following table summarizes the computational com-
plexity of the decision version of MinRS for any fixed positive integer q, where q is
the allowed number of internal nodes.

q Computational complexity of MinRS Reference
2 Solvable in linear time Corollary 4.3 (section 4.2)
3 Solvable in linear time Theorem 4.7 (section 4.2)

≥ 4 NP-hard Corollary 3.4 (section 3)

In addition, caterpillars form a special class of phylogenetic trees for which MinRS

is solvable in polynomial time for any q (Theorem 4.2 in section 4.1). The algorithm in
section 4.1 for constructing caterpillars was employed as a subroutine to solve MinRS

with q = 3 in polynomial time in section 4.2, and it may be useful again for designing
heuristics for MinRS in the future.

Several important questions remain to be answered.
• The major open problem is: Can MinRS be solved exactly in O∗(2n) time?

Section 3 showed that there is a simple reduction from Chromatic Number

to MinRS. Conversely, we do not know if MinRS admits a direct reduction
to Chromatic Number that would allow the O∗(2n)-time algorithm for
Chromatic Number [3] to be used efficiently. The modification to the
BUILD algorithm based on minimum graph coloring described in section 5.1
results in an O∗(2n)-time algorithm, but unfortunately it does not always
give an optimal solution. Is there some better way to apply exact algorithms
for Chromatic Number to solve MinRS?

• We have generalized Bryant’s counterexample (Chapter 2.5.2 in [4]) to show
that the BUILD algorithm may be suboptimal by a linear factor in the in-
put size when applied to MinRS (Theorem 2.2 in section 2.3). In practice,
how often does BUILD not construct a minimally resolved tree? Are these
cases common or rare? MinRS is NP-hard even to approximate efficiently
(Theorem 3.3 in section 3), so is it possible to avoid the MinRS problem
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altogether in real applications by requiring the input set R to contain a pre-
specified number of rooted triplets? For example, certain NP-hard problems
related to rooted triplet consistency for phylogenetic networks become solv-
able in polynomial time when restricted to so-called dense input sets [12, 15],
meaning that R contains at least one rooted triplet for each cardinality-three
subset of L. In fact, since any tree consistent with a dense set of rooted
triplets must be binary [15], MinRS restricted to dense inputs is trivially
solvable by BUILD. On the other hand, due to errors in the data, increas-
ing the number of rooted triplets in the input too much may introduce an
impractically high probability of obtaining one or more “problematic” rooted
triplets that lead to inconsistent sets while being difficult to identify. Some
experimental validation for how many rooted triplets are needed to achieve
a good balance between being able to solve/approximate MinRS efficiently
while keeping the probability of obtaining inconsistent sets of rooted triplets
sufficiently low would be useful here.

• How far from optimal is the solution output by the modified version of BUILD
described in section 5.1 in the worst case? As a straightforward lower bound,
we have seen that the modified BUILD constructs a tree having 2p+3 internal
nodes when given the set Rx defined in section 5.2, while there exists a tree
consistent with Rx having p + 4 internal nodes according to the proof of
Theorem 5.1. Asymptotically, the ratio (2p + 3)/(p + 4) → 2 as p → ∞. Can
Rx be refined to yield instances on which the modified BUILD performs even
worse, or is this bound tight?

• Lastly, p. 302 of [11] states that it is unknown whether the output of BUILD
is consistent with the minimum number of rooted triplets, i.e., consistent with
a smallest possible superset of rooted triplets R′ such that R ⊆ R′. However,
Bryant’s example R = {bc|a, bd|a, ef |a, eg|a} from Chapter 2.5.2 in [4] al-
ready established that this is not always the case. We wonder: What can be
said about the computational complexity and polynomial-time approximabil-
ity of the problem of inferring a tree that is consistent with all of the rooted
triplets in an input set R and as few additional rooted triplets as possible?
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