
Approximation Algorithms for
the Graph Orientation Minimizing

the Maximum Weighted Outdegree�

Yuichi Asahiro1 , Jesper Jansson2,�� , Eiji Miyano3 , Hirotaka Ono2,
and Kouhei Zenmyo3

1 Department of Social Information Systems,
Kyushu Sangyo University, Fukuoka 813-8503, Japan

asahiro@is.kyusan-u.ac.jp
2 Department of Computer Science and Communication Engineering,

Kyushu University, Fukuoka 812-8581, Japan
{jj@tcslab.,ono@}csce.kyushu-u.ac.jp

3 Department of Systems Innovation and Informatics,
Kyushu Institute of Technology, Fukuoka 820-8502, Japan

{miyano@,kouhei@theory.}ces.kyutech.ac.jp

Abstract. Given an undirected graph G = (V, E) and a weight function
w : E → Z

+, we consider the problem of orienting all edges in E so
that the maximum weighted outdegree among all vertices is minimized.
In this paper (1) we prove that the problem is strongly NP-hard if all
edge weights belong to the set {1, k}, where k is any integer greater
than or equal to 2, and that there exists no pseudo-polynomial time
approximation algorithm for this problem whose approximation ratio is
smaller than (1 + 1/k) unless P=NP; (2) we present a polynomial time
algorithm that approximates the general version of the problem within
a factor of (2 − 1/k), where k is the maximum weight of an edge in G;
(3) we show how to approximate the special case in which all edge weights
belong to {1, k} within a factor of 3/2 for k = 2 (note that this matches
the inapproximability bound above), and (2 − 2/(k + 1)) for any k ≥ 3,
respectively, in polynomial time.

1 Introduction

1.1 Problems and Summary of Results

Let G = (V, E, w) be a simple, undirected and weighted graph, where V , E
and w denote the set of nodes, the set of edges and a positive integral weight
function w : E → Z

+, respectively. Throughout the paper, let |V | = n and
|E| = m for the graph. An orientation Λ of the graph G is an assignment of a
� This work is partially supported by Grant-in-Aid for Scientific Research on Priority

Areas No. 16092223, and by Grant-in-Aid for Young Scientists (B) No. 17700022,
No. 18700014 and No. 18700015.

�� Supported by JSPS (Japan Society for the Promotion of Science).

M.-Y. Kao and X.-Y. Li (Eds.): AAIM 2007, LNCS 4508, pp. 167–177, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

168 Y. Asahiro et al.

direction to each edge {u, v} ∈ E, i.e., Λ({u, v}) is either (u, v) or (v, u). The
weighted outdegree of u is d+

Λ(u), where d+
Λ(u) denotes

∑
{u,v}∈E

Λ({u,v})=(u,v)
w({u, v}).

We consider the problem of finding an orientation such that the maximum
weighted outdegree is minimum. This basic problem has several applications.
For example, such orientations can be used to construct efficient dynamic data
structures for graphs that support fast vertex adjacency queries under a series
of edge insertions and edge deletions [3]. Also, it can be considered a variation
of art gallery problems (e.g., [4,11]) and unrelated parallel machine scheduling
(e.g., [10]). Especially, the polynomial time (in)approximability of the latter
problem has been intensively studied, as discussed in the next subsection.

Previous studies show that our problem can be solved in polynomial time if
all the edge weights are identical [1,9,15], while it is NP-hard in general [1].
Also, a (2 − 1/�L(G)�)-approximation algorithm with O(m2) running time was
presented in [1], where L(G) = maxH⊆G {

∑
{u,v}∈E(H) w({u, v})/|V (H)|}.

In this paper, we consider the problem from the viewpoint of polynomial time
approximability and inapproximability. Our results are summarized as follows:

− We present a (2−1/k)-approximation algorithm with running time O(m3/2 ·
log m · log k · log Δ∗ + m2), where k, m and Δ∗ denote the maximum weight
of the edges, the number of the edges and the optimal value, respectively.

− For special cases in which the weight of each edge is either 1 or k, a refined
algorithm achieves a better approximation factor, 2 − 2/(k + 2), also with
running time O(m3/2 · log m · log k · log Δ∗ + m2).

− We prove that there is no polynomial time approximation algorithm whose
factor is smaller than 3/2, unless P=NP. (More precisely, in case where
weights of all the edges are either 1 or a positive integer k ≥ 2, no pseudo-
polynomial time algorithm achieves an approximation ratio smaller than
1 + 1/k.) That is, for k = 2, the above algorithm is best possible with
respect to the approximation ratio.

Note that the new 2 − 1/k-approximation ratio in this paper and the previous
2 − 1/�L(G)� one in [1] are incomparable; sometimes the former is better than
the latter, and vice versa. For example, we have an instance for which the latter
algorithm outputs 5/3-factor solution, while the former achieves approximation
ratio 1.5 (see Figure 6 in [1]). Due to space limitations, the formal proofs have
been omitted in this paper. Please refer to the full paper for a complete version.

1.2 Related Work

Graph orientation itself is a quite basic, natural and important problem in graph
theory and combinatorial optimization (see Chapter 61 of [13]). However, most
of the studies consider the problems of finding an orientation with lower outde-
gree satisfying some special graph properties, such as high connectivity, small
diameter, no-cycle and so on [2,5,8], and very few studies consider just the min-
imization of the maximum outdegree (or indegree) [1,15].

As mentioned in the previous subsection, another aspect of the minimization
of the maximum outdegree is scheduling. For an undirected graph, let us consider

Approximation Algorithms for the Graph Orientation Minimizing 169

the vertices as the machines and the edges as the jobs. Then our orientation
problem can be regarded as a special case of the job assignment problem, in which
the minimization of the maximum outdegree means to minimize the finishing
time of all the jobs [12]. From the viewpoint of scheduling, our problem has some
restriction, that is, 1) each job must be assigned to exactly one of pre-determined
two machines, and 2) the processing time of each job does not depend on the
machines. Therefore, our problem is a special case of scheduling on unrelated
parallel machines (R||Cmax in the now-standard notation), given a set J of jobs,
a set M of machines, and the time pij ∈ Z

+ taken to process job j ∈ J on machine
i ∈ M , its goal is to find a job scheduling so as to minimize the makespan, i.e.,
the maximum processing time of any machine. In [10], Lenstra, et al. gave a
polynomial time 2-approximation algorithm that is based on the LP-formulation
for the general R||Cmax and its 3/2 inapproximability result (see also [14].)

Note that the 3/2 inapproximability result of Lenstra, et al. cannot be directly
applied to the restricted assignment variant in which every job can be processed
on a constant number of machines. In our problem, each job associated with
an edge can be assigned only to one of the two machines associated with the
two nodes of the edge, which means that their proof is not applicable to our
case. Also note that their proof of inapproximability uses the assumption that
the processing time of each job may vary depending on which machine it is
processed on. Thus, our result provides a stronger inapproximability bound to
the problem.

2 Preliminaries

2.1 Definitions

Let G = (V, E, w) be a simple, undirected, weighted graph, where V , E, and
w denote a set of vertices, a set of edges, and an integral weight function, w :
E → Z

+, respectively. Let wmax and W be the maximum weight of edges and
the total weight of edges, respectively. We denote the undirected edge whose
endpoints are u and v where u < v in lexicographic order by eu,v, or simply
{u, v}, and denote the directed edge (or arc) from u toward v, by (u, v). An
orientation Λ of the undirected graph G is an assignment of direction to each
edge {u, v} ∈ E, i.e., (u, v) or (v, u). A directed path P of length l from a vertex
v0 to a vertex vl in a directed graph G = (V, A, w) is a set {(vi−1, vi) | (vi−1, vi) ∈
A, i = 1, 2, . . . , l and vi �= vj for any i and j} of arcs, which is also denoted by
a sequence 〈v0, v1, . . . , vl〉 for simplicity. For the path P , the path of its reverse
order is denoted by P , i.e., P = 〈vl, vl−1, . . . , v0〉. Especially, a directed path P
satisfying vl = v0 is called an l-directed cycle.

Let d+
Λ(v) and d−Λ(v) under an orientation Λ denote the total weight of outgo-

ing arcs and that of incoming arcs of a vertex v in the weighted directed graph
G(V, A, w), which we call the weighted outdegree and the weighted indegree of v,
respectively. Throughout the paper, we use the words “outdegree” and “inde-
gree” to represent these weighted degrees. Then the cost of an orientation Λ for
a graph G is defined to be ΔΛ(G) = maxv∈V {d+

Λ(v)}. For an undirected graph

170 Y. Asahiro et al.

G = (V, E) and a node u ∈ V , we define Γ (u) = {v | {u, v} ∈ E}, the set of
neighbors of u. Given an orientation Λ of G, we define ΓΛ(u) = {v | {u, v} ∈
E and Λ({u, v}) = (u, v)}, the set of neighbors of u on G under Λ.

Every orientation has the following trivial lower bound caused by the maxi-
mum weight of edges:

Proposition 1. ([1]) For a graph G and any orientation Λ, ΔΛ(G) ≥ wmax.
�

2.2 Problem and Basic Operations

The problem that we consider in this paper is the minimization of the maximum
outdegree of a given undirected weighted simple graph. To specify the class of
weight function of the graph, we formally define our problem as follows.

Problem: S-Minimum Maximum Outdegree (S-MMO)

Input: An undirected graph G = (V, E) and a weight function w : E → S,
where S is a set of weights.

Output: An orientation Λ that minimizes max{d+
Λ(u) | u ∈ V }.

Namely, if we have no restriction about the weight function (just it should be a
positive integral function), our problem is Z

+-MMO. In this paper, we mainly
consider the problem for the case of S = {1, 2, . . . , k}. We also consider a special
case in which the range of w is restricted to S = {1, k} with k ≥ 2.

Let OPT denote an optimal orientation. We say a graph orientation algo-
rithm is a σ-approximation algorithm if ALG(G)/OPT (G) ≤ σ holds for any
undirected graph G, where ALG(G) is the objective value of a solution obtained
by the algorithm for G, and OPT (G) is that of an optimal solution. In the
following we use OPT (G) or Δ∗ to denote the optimal value.

Here we introduce three basic operations; Reverse, Up-To-Roots and
Solve-1-MMO.

– Reverse does the following: Given an orientation Λ of graph G and a di-
rected path P = 〈u0, u2, . . . , ul〉 in G under Λ, update Λ by replacing P with
P , i.e., let Λ(eui,ui+1) = (ui+1, ui) for i = 0, . . . , l − 1. Note that the outde-
gree for each vertex remains the same after the operation if P is a directed
cycle and w(eui,ui+1)’s are all identical. We call this operation ReverseCy-

cle if u0 = ul.

– Up-To-Roots determines an orientation Λ for a given simple forest G, in the
following manner: First fix an arbitrary root for each connected component
of G (it is a tree). Then for every edge e, orient Λ(e) towards the root of the
tree containing e. Note that for a forest with weighted edges Up-To-Roots

operation returns an optimal solution, whose value is wmax [1].

– Solve-1-MMO outputs an optimal orientation Λ for a given undirected
graph G with identical weights. It is shown in [1] that the running time of
Solve-1-MMO is O(m3/2 ·log(Δ∗/k)) for {k}-MMO, in which the log factor
comes from the binary search.

Approximation Algorithms for the Graph Orientation Minimizing 171

3 Approximation Algorithms

In this section, we present three pseudo-polynomial time approximation algo-
rithms for the S-MMO problem. The first and the second algorithms (in Sections
3.1 and 3.2) work for S-MMO with S = {1, 2, . . . , k}, both of which are based
on the replication of weighted edges, and their approximation ratios are 2 and
2 − 1/k, respectively. The third algorithm (in Section 3.3) for {1, k}-MMO is a
refined version of the second one, and its approximation ratio is 2−2/(k+1) for
k ≥ 3. In Section 3.4, we show how to improve the running times of the three
approximation algorithms to polynomial time.

3.1 Majority Voting Algorithm

We first present a basic 2-approximation algorithm, named Majority. Al-
though Majority can be considered a variation of Lenstra-Shmoys-Tardos al-
gorithm [10] (LST, for short), which is based on the LP-rounding and has ap-
proximation factor 2, Majority is combinatorial and provides basic ideas for
the algorithms presented later. Also it is much faster than LST, by Corollary 1.

The idea of the algorithm is as follows: We replace each edge e = {u, v}
in G with w(e) edges of weight 1 between u and v, and then we obtain an
undirected multi-graph G′ with W =

∑
e∈E w(e) edges. We find an optimal

MMO orientation Λ′ for G′, and then we decide an orientation of each weighted
edge on G according to Λ′ by the majority voting manner; in Λ′, for each eu,v ∈
E, some of replicated edges of eu,v are oriented from u to v and the others
from v to u. Let us denote the number of edges from u to v (resp., from v to
u) in Λ′ by fu→v (resp., fv→u). Since we assume the original graph is simple,
fu→v +fv→u = w(eu,v) holds. By using these, we decide the orientation Λ of the
original G by the following manner: For eu,v ∈ E,

Λ(eu,v) :=

{
(u, v) if fu→v ≥ fv→u,

(v, u) otherwise.
(1)

In the case of a tie the direction is determined according to a lexicographic order.
We call this algorithm Majority.

Algorithm Majority

1. For graph G, construct G′ by replacing each edge e with w(e) edges.
2. Find an optimal orientation Λ′ of G′ by using Solve-1-MMO.
3. Decide the orientation Λ of G according to (1).
4. Return Λ.

Theorem 1. For S = {1, . . . , k}, Algorithm Majority approximates S-MMO

within a factor of 2 and runs in O(W 3/2 · log Δ∗) time.

Proof. Since Steps 1, 2 and 3 take O(W), O(W 3/2 log Δ∗) and O(W) time,
respectively, the running time of Majority is O(W 3/2 log Δ∗), in total. The
approximation factor 2 is immediately obtained by the result of [10].
�

172 Y. Asahiro et al.

3.2 Cycle Canceling Algorithm

Here, we describe a new algorithm named Cycle-Canceling, which improves
Majority; the approximation ratio is 2 − 1/k.

Algorithm Cycle-Canceling

1. For graph G, construct G′ by replacing each edge e with w(e) edges.
2. Find an optimal orientation Λ′ of G′ by using Solve-1-MMO.
3. Decide the (partial) orientation Λ of G according to (2) and obtain,

GΛ′ = (V, FΛ′) as described later.
4. If GΛ′ has an l-directed cycle with l ≥ 3, apply ReverseCycle

and go to 3.
5. For undecided edges of Λ, apply Up-To-Roots.
6. Return Λ.

In the first and second steps of the algorithm, do as Majority; construct
G′ (replicate each edge) and then find an optimal orientation Λ′. After that we
decide the orientation of the original problem by

Λ(eu,v) :=

⎧
⎪⎨

⎪⎩

(u, v) if fv→u = 0,
(v, u) if fu→v = 0,
− otherwise,

(2)

where − means “not decided yet.” Note that the direction of the edges decided
by this operation is essentially same as the one of Λ′; the cost of the orientation
does not change.

Here, we introduce a new operation, cycle cancellation, which updates the
orientation to more desirable orientation without changing the outdegrees of all
the nodes. To this end, we construct another undirected graph GΛ′ = (V, FΛ′),
where FΛ′ = {eu,v ∈ E | fu→v �= 0 and fv→u �= 0 in Λ′}. From GΛ′ , we find
an l-cycle with l ≥ 3, say C = 〈v1, v2, . . . , vl, v1(≡ vl+1)〉, if exists. (From here,
when we mention l-cycles with l ≥ 3, we just use “cycles” for simplicity, because
we do not consider 2-cycles in this paper.) Let c = min{fvi→vi+1 | i = 1, . . . , l},
which is a positive integer, by the definition of FΛ′ . We then go back to G′

and Λ′ and apply ReverseCycle with size c to C; since there exist c cycles
of 〈v1, v2, . . . , vl, v1(≡ vl+1)〉 on G′ under Λ′, we can reverse the direction of
the edges along the c cycles. Note that the outdegree (or the indegree) of each
node in the resulting directed graph is equal to the one under Λ′; it is still an
optimal orientation in G′ and can be updated as Λ′. For this new Λ′, we apply
the equation (2), then go back to the beginning of this paragraph. Since at least
one edge on the cycle C satisfies fvi→vi+1 = 0 by the ReverseCycle, the new
FΛ′ is strictly smaller than the old FΛ′ ; this step ends in at most m−2 iterations.

After the several (or possibly no) iterations of the above procedure, GΛ′ be-
comes a forest, and set F := GΛ′ . Note that all the edges of F are not decided yet
by (2). The cycle cancellation itself implies that there always exists an optimal
solution Λ′ for the relaxed problem such that Λ′ has no cycles in F . Then, we

Approximation Algorithms for the Graph Orientation Minimizing 173

have the nice tree structure, for which we can apply Up-To-Roots operation
that decides the orientation of all the remaining edges.

Theorem 2. For S = {1, . . . , k}, Algorithm Cycle-Canceling approximates
S-MMO within a factor of (2 − 1

k) and runs in O(W 3/2 log Δ∗ + m2) time.

Proof. We first consider the running time. Steps 1 and 2 require the same time
complexity as Majority, i.e., O(W 3/2 log Δ∗) time. Each iteration of Steps 3
takes O(m) time, and also each iteration of Steps 4 takes O(m) time by the
depth first search, and these steps can be iterated at most m − 2 times. Step 5
takes O(m) time. In total, the running time is O(W 3/2 log Δ∗ + m2).

Next, we analyze the approximation factor. Let u∗ be any critical node in G
with respect to Λ, i.e., a node with maximum weighted outdegree under Λ. We
now prove that d+

Λ(u∗) ≤ (2− 1
k) ·OPT (G). First of all, note that OPT (G) ≥ k

by Proposition 1 and also that OPT (G) ≥ OPT (G′) = d+
Λ′(x∗) ≥ d+

Λ′(u∗),
where x∗ is any critical node with respect to Λ′. Let F∗ be the forest of rooted
trees produced by Up-To-Roots in Step 5. There are two possible cases to
consider after the iterations of Steps 3 and 4:

1. u∗ is a root in F∗: 1 In this case, we immediately have d+
Λ(u∗) ≤ d+

Λ′(u∗)
because zero or more of u∗’s outgoing edges in Λ′ are reversed to obtain Λ,
but none of its incoming edges in Λ′ is reversed in Step 5. Then, recall that
d+

Λ′(u∗) ≤ OPT (G) by the above.
2. u∗ is not a root in F∗: In this case, let p denote the parent of u∗ and C the

set of children of u∗ in F∗, respectively. Clearly, we have

d+
Λ(u∗) = d+

Λ′ (u∗) + fp→u∗ −
∑

v∈C
fu∗→v ≤ d+

Λ′(u∗) + fp→u∗ ,

which yields

d+
Λ(u∗)

OPT (G)
≤ d+

Λ′ (u∗) + fp→u∗

OPT (G)
≤ d+

Λ′(u∗)
d+

Λ′(u∗)
+

fp→u∗

k
≤ 1 +

k − 1
k

= 2 − 1
k

,

where the last inequality holds since fp→u∗ + fu∗→p ≤ k and fu∗→p ≥ 1.

In both cases, d+
Λ(u∗) is within the desired bound. The theorem follows.
�

Note that the analysis of Theorem 2 is tight; we can construct a worst-case
example of Cycle-Canceling for {1, 3}-MMO (see the full-length version of
our paper).

Remark: According to Theorem 2, the approximation factor of Algorithm
Cycle-Canceling for k = 2 is 3/2. This is actually the best possible in poly-
nomial time for k = 2 (unless P=NP), as we shall see in Section 4.
1 This case also handles the possibility that u∗ is disconnected from all other vertices

in GΛ′ .

174 Y. Asahiro et al.

3.3 Refined Cycle Canceling Algorithm

We now consider the special case of S-MMO in which S = {1, k} for k ≥ 3, and
show that it can be approximated more efficiently than by Theorem 2. The key
idea is to show that if all edge weights in G are either 1 or k, a slight modification
to Algorithm Cycle-Canceling allows us to compute a stronger lower bound
on an optimal solution which then yields an improved approximation factor.

As mentioned in the previous section, the cycle cancellation itself provides an
optimal solution for the relaxed problem with a tree property. Here, we focus on
Step 5 of the algorithm Cycle-Canceling, in which the naive application of
Up-To-Roots with arbitrary roots gives a worst-case example; this causes the
approximation ratio to be 2 − 1/k. Its reason is that some nodes having large
outdegree under the orientation Λ′ are not suitable for being root; if such a node
is set to be a root, its outdegree will distribute to its neighbors, so that the
neighbors have large outdegree under Λ compared to that under Λ′. To avoid
such a bad situation, we introduce a simple procedure.

In the algorithm, do the same operations as Cycle-Canceling until Step 4,
and obtain a forest F . If there exists a leaf node u in F such that fu→v ≥ fv→u

holds for its neighbor v, we fix the orientation of eu,v as (u, v) and remove eu,v

from F (i.e., Λ(eu,v) := (u, v) and F = (V, F) with F := F \ {eu,v}). We repeat
this operation until no leaf node u satisfies fu→v ≥ fv→u where v is the neighbor
node of u. Then we apply Up-To-Roots.

Algorithm Refined Cycle-Canceling

1-4. (Same as Cycle-Canceling).
4’. While there exists a leaf u connecting to v such that fu→v ≥ fv→u

in F = (V, F), let Λ(eu,v) := (u, v) and remove eu,v from F .
5. For undecided edges of Λ, apply Up-To-Roots to F .
6. Return Λ.

Theorem 3. For any S = {1, k} where k ≥ 3, Algorithm Refined Cycle-

Canceling approximates S-MMO within a factor of (2 − 2
k+1) and runs in

O(W 3/2 log Δ∗ + m2) time.

Proof. It is easy to see that adding Step 4’ to Algorithm Cycle-Canceling

in Section 3.2 does not increase the asymptotic running time. Therefore, the
running time is O(W 3/2 log Δ∗ + m2).

To analyze the approximation factor of Refined Cycle-Canceling, we
proceed similarly as in the proof of Theorem 2. Let u∗ be any critical node in G
with respect to Λ, and let F∗ be the forest of rooted trees produced by Up-To-

Roots in Step 5. Recall that OPT (G) ≥ k and OPT (G) ≥ OPT (G′) ≥ d+
Λ′(u∗).

There are two main cases:

1. u∗ is a node which satisfies the condition in Step 4’: Then, since fp→u∗ ≤ k
2

for the parent p of u∗,

d+
Λ(u∗)

OPT (G)
≤ d+

Λ′(u∗) + fp→u∗

OPT (G)
≤ d+

Λ′ (u∗)
d+

Λ′ (u∗)
+

fp→u∗

k
≤ 1 +

k/2
k

=
3
2
.

Approximation Algorithms for the Graph Orientation Minimizing 175

2. u∗ is a node which did not satisfy the condition in Step 4’:
(a) If u∗ is a root in F∗ then d+

Λ(u∗) ≤ d+
Λ′(u∗) ≤ OPT (G) and we are done

as before.
(b) If not, consider the tree T in F∗ that contains u∗. Let p be the parent

of u∗ in T and let 〈u1, u2, . . . , u�〉 be the path between any two leaves u1
and u� in the undirected version of T . Since u1 and u� satisfy fu1→u2 <
fu2→u1 and fu�→u�−1 < fu�−1→u�

, there must exist an intermediate
node ui such that fui−1→ui < fui→ui−1 and fui→ui+1 ≥ fui+1→ui . Next,
because all edges in T have weight k, we know that fv→w +fw→v = k for
every edge {v, w} in T , which means that fui→ui−1 > k/2 and fui→ui+1 ≥
k/2. Thus, the outdegree of ui is at least fui→ui−1 + fui→ui+1 > k, i.e.,
OPT (G′) ≥ k + 1. Plugging in this stronger lower bound gives us

d+
Λ(u∗)

OPT (G)
≤ d+

Λ′ (u∗) + fp→u∗

OPT (G)
≤ d+

Λ′(u∗)
d+

Λ′(u∗)
+

fp→u∗

k + 1
≤ 1+

k − 1
k + 1

= 2− 2
k + 1

.

Since 2− 2
k+1 ≥ 3/2 for k ≥ 3, the approximation is 2− 2

k+1 for k ≥ 3 in total.
Note that the approximation ratio of Refined Cycle-Canceling for k = 2 is
3/2 (same as Cycle-Canceling) because Step 5 is not executed.
�

The analysis of Theorem 3 is also tight; we can construct a worst-case example
of Refined Cycle-Canceling for {1, 3}-MMO.

3.4 Polynomial Time Computation of 1-MMO of G′

In this subsection, we show the technique of making Algorithms Majority,
Cycle-Canceling and Refined Cycle-Canceling into polynomial time al-
gorithms. Recall that in these algorithms, we have to solve 1-MMO for G′, which
is generated from G by replacing each edge e with w(e) edges of weight 1,
as a sub-procedure. Hence, as described in Section 3.1, the algorithm requires
O(W 3/2 · log Δ∗) time only to obtain an optimal solution of 1-MMO. However,
the information that algorithms Majority, Cycle-Canceling and Refined

Cycle-Canceling need is not the orientation itself but the values fu→v and
fv→u, which can be computed in polynomial time.

The idea is as follows: Instead of explicitly constructing G′ and applying
Solve 1-MMO, we solve a relaxed version of the problem by using a maximum
network flow technique. The relaxed version means that for each edge, its ori-
entation may be fractional. For example, edge e = {u, v} with weight 2 may be
oriented as (u, v) with weight 1.5 and (v, u) with weight 0.5. Although the relaxed
optimal solution can contain fractional flows in some edges, the integral maxi-
mum flow problem is known to have an optimal solution of integral flows (flow
integrality) and some standard algorithms find such solutions indeed (for exam-
ple, [7] presents O(m min{m1/2, n2/3} log(n2/m) log U)-time algorithm, where U
is the maximum capacity size). Thus, the solution can be regarded as an opti-
mal solution of 1-MMO for G′. Although we omit the detail, the problem can be
solved by computing O(log Δ∗) times the maximum flow for a network of m+ n
vertices and 3m arcs with the maximum capacity k, which leads the following.

176 Y. Asahiro et al.

Theorem 4. We can compute the fu→v and fv→u values of all the edges for
1-MMO of G′ in O(m3/2 · log m · log k · log Δ∗) time.
�

Corollary 1. (a) The running time of Algorithm Majority can be improved
to O(m3/2 · log m · log k · log Δ∗) time, and also (b) the running time of Algo-
rithms Cycle-Canceling and Refined Cycle-Canceling can be improved
to O(m3/2 · log m · log k · log Δ∗ + m2) time.
�

4 Inapproximability Results

It is shown that S-MMO is weakly NP-hard [1], but no result about the inapprox-
imability is shown. In this section, we provide a proof of the strong NP-hardness
of S-MMO, which also gives inapproximability results. More precisely, we give
a reduction from a variation of 3-SAT problem, At-most-3-SAT(2L), to {1, k}-
MMO. At-most-3-SAT(2L) is a restriction of 3-SAT where each clause includes
at most three literals and each literal (not variable) appears at most twice in a
formula. It can be easily proved that At-most-3-SAT(2L) is NP-hard by using
problem [LO1] on p. 259 of [6].

Given a formula φ of At-most-3-SAT(2L) with n variables {v1, . . . , vn} and m
clauses {c1, . . . , cm}, we construct a graph Gφ including gadgets that mimic (a)
literals, (b) clauses and (c) a special gadget. (a) Each literal gadget consists of
two nodes labeled by vi and vi and one edge {vi, vi} between them, corresponding
to variable vi of φ. The weight of {vi, vi} is k. (b) Each clause gadget is one node
labeled by cj, corresponding to clause cj of φ. The clause gadget cj is connected
to at most three nodes in the literal gadgets that have the same labels as the
literals in the clause cj, by edges of weight 1. For example, if c1 = x ∨ y is
appeared in φ, then node c1 is connected to nodes x and y. (See Figure 1.) (c)
The special gadget is a cycle of k nodes and k edges where each edge of the cycle

c1 = x ∨ ȳ

x zȳy z̄x̄

special gadget

clause
gadget

literal
gadget

c2 = x̄ ∨ y ∨ zk + 1 edges

Fig. 1. Reduction from At-Most-3-SAT

Approximation Algorithms for the Graph Orientation Minimizing 177

has weight k.2 If a clause consists of one (two or three, resp.,) variable(s), then
it is connected to k (arbitrary k − 1 or k − 2, resp.,) nodes in the special gadget
by edges of weight 1. Hence, the degree of every clause node is exactly k + 1.

We can prove the following:

Lemma 1. For the above construction of Gφ, the followings hold: (i) If φ is
satisfiable, OPT (Gφ) ≤ k. (ii) If φ is not satisfiable, OPT (Gφ) ≥ k + 1.
�
From Lemma 1, we immediately obtain the following theorem.

Theorem 5. {1, k}-MMO is strongly NP-hard. Consequently, Z
+-MMO is also

strongly NP-hard.
�
Also the (in)satisfiability gap of Lemma 1 yields the following theorem.

Theorem 6. {1, k}-MMO (resp., Z
+-MMO) has no pseudo-polynomial time

algorithm whose approximation ratio is smaller than 1+1/k (resp., 3/2), unless
P=NP.
�

References

1. Y. Asahiro, E. Miyano, H. Ono, and K. Zenmyo, Graph orientation algorithms
to minimize the maximum outdegree, Proceedings of Computing: the Twelfth Aus-
tralasian Theory Symposium (CATS 2006), pp. 11–20, 2006.

2. T. Biedl, T. Chan, Y. Ganjali, M. T. Hajiaghayi and D. R. Wood, Balanced vertex-
orderings of graphs, Discrete Applied Mathematics, 48 (1), pp. 27–48, 2005.

3. G. S. Brodal and R. Fagerberg, Dynamic Representations of Sparse Graphs, Proc.
WADS1999, LNCS 1663, pp. 342–351, 1999.

4. V. Chvátal, A combinatorial theorem in plane geometry, J. Combinatorial Theory,
series B, 18, pp. 39–41, 1975.

5. F. V. Fomin, M. Matamala and I. Rapaport, Complexity of approximating the
oriented diameter of chordal graphs, J. Graph Theory, 45 (4), pp. 255–269, 2004.

6. M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman and Co., New York, 1979.

7. A. V. Goldberg and S. Rao, Beyond the flow decomposition barrier, J. ACM,
45(5)), pp. 783-797, 1998.

8. J. Kára, J. Kratochv́ıl, and D. R. Wood, On the complexity of the balanced vertex
ordering problem, Proc. COCOON2005, LNCS 3595, pp. 849–858, 2005.

9. L. Kowalik, Approximation Scheme for Lowest Outdegree Orientation and Graph
Density Measures, Proc. ISAAC2006, LNCS 4288, pp. 557–566, 2006.

10. J. K. Lenstra, D. B. Shmoys and Tardos, Approximation algorithms for scheduling
unrelated parallel machines, Mathematical Programming, 46 (3), 259–271, 1990.

11. J. O’Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, 1987.
12. M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Prentice Hall, 2nd Ed.,

2002.
13. A. Schrijver, Combinatorial Optimization, Springer, 2003.
14. P., Schuurman and G. J. Woeginger, Polynomial time approximation algorithms

for machine scheduling: Ten open problems, J. Scheduling, 2, pp. 203–213, 1999.
15. V. Venkateswaran, Minimizing maximum indegree, Discrete Applied Mathematics,

143 (1-3), pp. 374–378, 2004.

2 In case of k = 2, we prepare a cycle of 3 nodes as an exception to keep the simple
property of the graph.

	Introduction
	Problems and Summary of Results
	Related Work

	Preliminaries
	Definitions
	Problem and Basic Operations

	Approximation Algorithms
	Majority Voting Algorithm
	Cycle Canceling Algorithm
	Refined Cycle Canceling Algorithm
	Polynomial Time Computation of 1-MMO of G'

	Inapproximability Results

