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Abstract

Given a set\ of phylogenetic networks, the maximum agreement phylotgene
subnetwork problem (MASN) asks for a subnetwork embeddestény N; € A with
as many leaves as possible. MASN can be used to identifydhaaaching structure
among phylogenetic networks or to measure their similahitghis chapter, we prove
that the general case of MASN is NP-hard already for two pdsthetic networks (in
fact, even if one of the two input networks is a binary treei, that the problem can
be solved efficiently if each of the two input phylogenetitwarks exhibits a nested
structure. For this purpose, we introduce the concept osgedghylogenetic network
and study some of its underlying fundamental combinatpriaperties. We first show
that the total number of nodé® (V)| in any nested phylogenetic netwofk with
n leaves and nesting depthis O(n(d + 1)). We then describe a simple algorithm
for testing if a given phylogenetic network is nested, argbifdetermining its nesting
depth inO(|]V(N)| - (d + 1)) time. Next, we present a polynomial-time algorithm for
MASN for two nested phylogenetic networR§ , Ns. Its running time iO(|V (Ny)| -
|[V(N2)|- (dy 4+ 1) - (d2 + 1)), whered; andd, denote the nesting depths &% and
Ns, respectively. In contrast, the previously fastest athamifor this problem runs
in O(|V(Ny)| - [V(Ny)| - 2f1+/2) time, wheref, > d; and f, > d,. Finally, we
prove that if the nodes are allowed to have outdegree griwtee then the problem
becomes NP-hard even if restricted to two phylogenetic ogtswith nesting depth.

*A preliminary version of this chapter has appeare@iaceedings of the 18Annual International Sym-
posium on Algorithms and ComputatiGiSAAC 2004), volume 3341 ofecture Notes in Computer Science
pages 581-593, Springer-Verlag, 2004.
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1. Introduction

Phylogenetic trees are commonly used to describe evolutionary relatiomshpyy a set
of objects (e.g., biological species, proteins, nucleic acids, viruséanguages) believed
to have been produced by an evolutionary process, and can helpstsiemunderstand the
mechanisms of evolution as well as to classify the objects being studied angatoize
information [2, 20, 25, 26]. However, evolutionary events such agtial gene transfer
or hybrid speciation (often referred to @Eombination evenfsvhich suggest convergence
between objects cannot be adequately represented in a single treeretfli2ti 3, 21, 22,
23, 24, 28]. Phylogenetinetworkssolve this shortcoming by allowing internal nodes to
have more than one parent, thereby making it easier for scientists to @esanib complex
evolutionary relationships. Phylogenetic networks can also be used talizesiseveral
conflicting phylogenetic trees at the same time in order to represent ambigulfy, [46].

Various methods for constructing and comparing phylogenetic netwoviesliegen pro-
posed recently [4, 6, 12, 16, 17, 21, 22, 23, 24, 28]. Phylogenetigark comparisorhas
many uses; one application described in [22] is to assess the topologicaaeyg of dif-
ferent phylogenetic network construction methlod&nother application for phylogenetic
network comparison is to identify a subnetwork with as many leaves as pogsilik is
contained in all of the networks in a given set (obtained, for examplemmtaying differ-
ent phylogenetic network construction methods or by using the same metladig orative
data sets) to determine which ancestral relationships are present in atketWoreover,
the size of such a subnetwork provides a measure of how similar the nstimoakgiven
set are. This problem was formalized as a computational problem dakethaximum
agreement phylogenetic subnetwork prob(@wSN) and initially studied in [6].

The general case of MASN is NP-hard for three or more phylogeneticonks [6].
Actually, it is NP-hard even for judtvo networks, as we shall prove in Section 4.1.. On
the other hand, in the special case of no recombination events at all, M&SMG net-
works (i.e., rooted, leaf-labeled binary trees) can be solved veryegifig?. Fortunately,
in nature, recombination events usually do not occur in an unrestrictedemgr#) 28]. It
is therefore important to establish what structural restrictions on the irgtwiorks make
the problem efficiently solvable. In this chapter, we investigate the compuhibom-
plexity of MASN for two phylogenetic networks whose merge pathsreagted which is
a natural generalization of rooted, leaf-labeled, binary trees andlsd galled-trees pre-
viously studied in [12, 17, 23, 28] (see below for definitions), and @b\t this case can
be solved by a polynomial-time algorithm. The decomposition technique for nglsyéat
genetic networks that we develop here may also be applicable to other ceionaitand
combinatorial problems related to phylogenetic network construction andarsuap.

To evaluate a construction methge, the following steps are performed a number of times. First, a
phylogenetic networkV is randomly generated and a sequence is evolved down the edgésaofording
to some chosen model of evolution, then a phylogenetic netwdrkor the resulting set of sequences is
reconstructed using, and finally the similarity betweeV’ and N is measured.

2See the comments abahe maximum agreement subtree prob[@MST) in Section 1.3..
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1.1. Problem Definition

A phylogenetic networks a connected, rooted, simple, directed acyclic graph in which:
(1) each node has outdegree at mysf2) each node has indegréer 2, except the root
node which has indegrdg (3) no node has both indegréeand outdegreé; and (4) all
nodes with outdegree are labeled by elements from a finite detn such a way that no
two nodes are assigned the same label. From here on, nodes of oattlageaeferred to
asleavesand identified with their corresponding elementdlin We denote the set of all
nodes and the set of leaves in a phylogenetic netatky V (V) andA(N), respectively.

Given a phylogenetic network’ and a set’’, the topological restrictiorof N to L/,
denoted byV | L', is defined as the phylogenetic network obtained by first deleting all nodes
which are not on any directed path from the root to a leak/imlong with their incident
edges, and then, for every node with outdedresd indegree less tha) contracting its
outgoing edge (any resulting set of multiple edges between two nodes isaeg a
single edge).

Given a set\' = {Ny, Na, ..., Ny} of phylogenetic networks, amgreement subnet-
work of V' is a phylogenetic networld such thatA(A) C Ny, A(V;) and for every
N; € N, it holds thatA is isomorphic to a graph obtained froiv; | A(A) by deleting
zero or more edges and contracting each outgoing edge from a nodeesiitlirrg outde-

Nl: NZ:

Figure 1. A maximum agreement subnetwork of two given phylogenetic miesw¥,
and N,. Another maximum agreement subnetwork/éf and N, (not shown here) has
leaf set{a, b, d, e}.
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greel and indegree less than A maximum agreement subnetwork\fis an agreement
subnetwork ofA/ with the maximum possible number of leave§he maximum agree-
ment phylogenetic subnetwork problélRASN) is: Given a setNV' = {Ny, N, ..., Ny}

of phylogenetic networks, find a maximum agreement subnetwork” ofSee Figure 1
for an example. A leaf can appear in a maximum agreement subnetwokk ofily

if it is present in every network in\/, so we assume without loss of generality that
A(N71) = A(Ny) = ... = A(Ny) and call this leaf seL.. Throughout this chapter, we let
n denote the number of different leaves dnthe number of input networks, i.ex, = ||
andk = [N in the problem definition above.

1.2. Terminology

Let NV be a phylogenetic network. Recall that noded/imith outdegree O are callddaves

We refer to nodes with indegree 2kagbrid nodesFor any hybrid nodé, every ancestos

of h such that: can be reached using two disjoint directed paths starting at the childeen of
is termed asplit node ofh. If s is a split node of then any path starting atand ending
ath is called amerge path oh, and any path starting at a child #&nd ending at a parent
of h is called aclipped merge path of.

For any hybrid nodé, let M (h) denote the set of all merge pathswofwWe say thatV is
anested phylogenetic netwaififor each pair of hybrid nodes,, hs, one of the following
three conditions holds: (1) eadh € M(hy) and P, € M(hsy) are internally disjoint
paths; (2) for eact’, € M(h;), there exists &, € M(hz) such thatP; is a subpath
of P; or (3) for eachP, € M (hs), there exists &, € M (hy) such thatP, is a subpath
of P;. For example, in Figure 1, the phylogenetic netwoikand the displayed maximum
agreement subnetwork are nested, Byts not.

For each node; in a nested phylogenetic networK, define thenesting depth of;,
d(u), as the number of hybrid nodesMthat have a clipped merge path passing through
Figure 3 contains an example of a nested phylogenetic network where stiegngepths
of some nodes are shown. Thesting depth ofV, denoted byl(V), is the maximum
value ofd(u) over allu € V(N). Observe that/(/N) = 0 if and only if NV is a binary
tree. Gusfieldet al. [12] defined agalled-tree(also referred to in the literature asgé
network[23] or atopology with independent recombination evd@®) as a phylogenetic
network in which all clipped merge paths are disjoint. For a discussion onidteglzal
significance of galled-trees, see [12]. CleadyN) < 1 if and only if N is a galled-
tree. Thus, nested phylogenetic networks naturally extend the notiontetkdeaf-labeled,
binary trees and galled-trees.

Finally, given any phylogenetic network, letZ/(N) be the undirected graph obtained
from N by replacing each directed edge by an undirected edge. For evennbitied com-
ponentB in U(N ), thelevel of B is the number of nodes it contains which are hybrid nodes
in N. N is said to be devel-f phylogenetic network if the maximum level of all bicon-
nected components i(N) is equal tof. To illustrate,N; and N, in Figure 1 are leve$
and level2 phylogenetic networks, respectively, and the shown maximum agreemtent s
network of Ny and NV, is a leveld phylogenetic network. IfV is a nested phylogenetic
network with nesting depth then f > d because any node iN that has nesting depth
must belong to the same biconnected componedt (i) as at least! different hybrid
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nodes. Alsof = 0ifand only ifd = 0, andf = 1 ifand only ifd = 1.

1.3. Previous Results

Median-joining, split decomposition (SplitsTree), PYRAMIDS, statistical spar
mony (TCS), molecular-variance parsimony (Arlequin), reticulogramREKX), and
netting are some of the existing general methodsctorstructingphylogenetic networks
(see [21] and [24] for a survey). More recently presented methodsd@d\eighbor-
Net [4] and the Z-closure method [16]. Algorithms for some reconstrugtioblems with
additional constraints on the networks were given in [5, 12, 17, 23i2@prticular, these
papers considered problems involving constructing a phylogenetic retwitr nesting
depth1.

As for comparing two given phylogenetic networks, one method based on the
Robinson-Foulds (RF) measure for phylogenetic trees was propofst] idMASN was in-
troduced in [6], where it was shown to be NP-hard if restrictel to 3 and anO(n?)-time
algorithm for the special case of two levelphylogenetic networks (i.e., having nesting
depthl) was presented. [6] also showed that MASN for a lefigbhylogenetic networkv;
and a levelf, phylogenetic networkV, can be solved irO(|V (Ny)| - |[V(No)| - 2/1+/2)
time.

MASN extends a well-studied problem knownthe maximum agreement subtree prob-
lem(MAST)?3 (see, e.g., [1, 3,7, 9, 11, 14, 18, 19, 27] and the numerous re&sdnerein)
in which the input is a set of distinctly leaf-labeled trees and the goal is to cenapuiee
embedded in all of the input trees with the maximum possible number of labeled.leave
The fastest known algorithm for MAST for two trees runstry/D nlog(2n/D)) time,
wheren is the number of leaves ard is the maximum degree of the two input trees [18].
Note that this i) (n log n) for two trees withD bounded by a constant ant{n!-®) for two
trees with unboundef?. MAST is NP-hard for three trees with unbounded degrees [1], and
solvable inO(kn® + n?) time for k > 3 trees, wheré is an upper bound on at least one
of the input trees’ degrees [3, 9] (fér= 2, even faster algorithms exist [19]). The inap-
proximability of MAST has been studied in [11] and [14], in terms of how thiglhts and
degrees of the input trees as well as the number of input trees affegblyreomial-time
approximability of MAST.

1.4. Our Results and Organization of Chapter

In this chapter, we focus on MASN for two nested phylogenetic networks.

In Section 2., we derive some useful combinatorial properties of nestddgenetic
networks. We first prove thgl’(N)| = O(n(d + 1)) for any nested phylogenetic net-
work N with n leaves and nesting depihand then show how to test whether a given phy-
logenetic network is nested, and if so, determine its nesting degth|¥i (V)| - (d + 1))
time. In Section 3., we present a fast dynamic programming-based algonthsolfing
MASN for two nested phylogenetic networRg and N, running inO(|V (Ny)| - |V (Na)| -
(d1+1)-(d2+1)) time, whered; andd, are the nesting depths 8f; and N, respectively,
which generalizes the algorithm from [6]. (The algorithm given in [6]lddae applied here

SMAST is also known in the literature alse maximum homeomorphic subtree prob{&fhiT).
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directly but its running time i©(|V (Ny)|- |V (No)| - 2/1+/2), wheref; > dy andfy > ds.)

For the special cas¢, = 1, dy = 1, i.e., two galled trees/levdl-networks, the running
time of our new algorithm coincides with the running time((»?) of the algorithm in [6].
Next, in Section 4.1., we strengthen the NP-hardness result of [6] myngrthat MASN is
NP-hard already fotwo phylogenetic networks, even when one of the networks is required
to be a binary tree In Section 4.2., we consider a new variant of MASN in which the defi-
nition of a phylogenetic network is relaxed to allow nodes to have outdegeeteg thar2

and prove that with this modification, the problem becomes NP-hard evestiicted to

two nested phylogenetic networks with nesting deptle., two galled-trees/level-net-
works). Finally, we discuss possible extensions of our techniques tro8é&c.

2. Preliminaries

We first investigate some basic properties of nested phylogenetic networks

Lemma 1. If N is a nested phylogenetic network then: (1) each split nod¥ is a split
node of exactly one hybrid node, and (2) each hybrid nod€ mas exactly one split node.

Proof. Let s be any split node iV and denote the two children efby c andd. Suppose,
for the sake of contradiction, that there exist two hybrid na@deandh, such thats is a
split node of both; andhs. Fori € {1,2}, let C; and D; be two disjoint clipped merge
paths ofh; starting atc andd, respectively, and ending at the two parent&gfand letC!
and D, be the corresponding (non-clipped) merge paths. Since the intersettignamd
CY, containse, one must be a subpath of the other by the definition of a nested phylogenetic
network, and similarly forD] and D5. Now, if C{ is a subpath ot then D} must be
a subpath ofD/, (otherwise, there would exist a directed path frmto he and fromhg
to hq, contradicting that a phylogenetic network has no cycles), butdheamd D, are not
disjoint because both pass through Contradiction. The case whef is a subpath o’}

is analogous. (1) follows.

To prove (2), suppose some hybrid nddéas two split nodes; ands,. Denote the
parents ofh by p andq. Fori € {1, 2}, let P, and@; be two disjoint clipped merge paths
of h starting at the two children of; and ending ap andg, respectively, and leP/ and
Q) be the corresponding (non-clipped) merge paths.hl,die the node in the intersection
of P{ andP; closest to the root, let, be the node in the intersection @f andQy, closest
to the root, and let be the lowest common ancestorgfands. If s # s; ands # s
thens is a split node of three hybrid node’s, (,,, andh,), and ifs = s; or s = s then
s is a split node of two hybrid nodes (and eitherh,, or k). In both cases, we have a
contradiction with (1). O

Because of Lemma 1, each hybrid node in a nested phylogenetic netwoekmaonds
to a unique split node. For any such hybrid nddand split nodes, s is calledthe split
node ofh andh is calledthe hybrid node of.

“The reduction in [1] for proving the NP-hardness of MAST restrictedteghrees with unbounded degrees
cannot be used directly for MASN with = 2 because it constructareetrees and because here we require
all nodes to have outdegree at most two. It is interesting to note that M&ISW6 binary trees is solvable in
O(nlogn) time [7, 18].
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Lemma 2. Let h be a hybrid node in a nested phylogenetic network and ke the split
node ofh. Thend(h) = d(s).

Proof. Supposei(h) < d(s). Then there exists some clipped merge p&tbontainings

but noth. Let P’ be the corresponding (non-clipped) merge path. Sincas outdegre®,

P’ must contain one of the outgoing edges fremLet (Q be the merge path df which
also uses this edge. Now’ and( are not disjoint and one is not a subpath of the other,
yet their intersection contains at least two nodes, contradicting the defioitiamested
phylogenetic network. The cagéh) > d(s) can be disproved in the same way. O

We now derive an upper bound on the total number of nodes in a nesgyphetic
network. The next two lemmas generalize Lemmas 2 and 3 in [6].

Lemma 3. If N is a nested phylogenetic network witHeaves and nesting depththen
the number of hybrid nodes IN is at most(n — 1) - d.

Proof. Let T'x(d) be the phylogenetic netwotk. Then, fori € {0,1,...,d — 1}, define

T (4) as the rooted directed graph constructed ffoati + 1) as follows. For every hybrid
nodeh in Ty (i + 1) with d(h) = i, removeh’s two incoming edges, contract the split node
of h and all nodes on the two clipped merge paths tf a single node, and add a directed
edge froms to h. (Note that the obtainediy (i) may contain nodes with outdegree greater
than2.) T (0) is a tree because every node with inded*@e N has indegreé in T (0)
and no contraction increases the indegree of any node. Furtherffip(@) containsn
leaves. Thus, the number of internal node§’in(0) with outdegree> 1 is at most: — 1.
Next, observe that at mostsplit nodes inN correspond to each internal nodeTiy (0)
with outdegree> 1 and that the number of hybrid nodes/ equals the number of split
nodes inV sinceN is nested. O

Lemma 4. If N is a phylogenetic network with leaves andd hybrid nodes then the total
number of nodes itV is at mos2(n + H) — 1.

Proof. Let z;; denote the number of nodesMwhich havei incoming edges angloutgo-
ing edges. By the definition of a phylogenetic network, the total numberadésim N is
‘V(N)‘ = zp2 + 210 + 212 + 220 + 221 + z99. FOr everyu € V(N), let m(u) andout(u)
denote the number of incoming and outgoing edges incideint ince

E m(u) = 2920 + (210 + 212) -1+ (ZQ() + 291 + 2’22) -2
ueV(N)

Y. out(u) = (210 + 220) -0 + 291 -1 + (202 + 212 + 222) - 2
u€V(N)
and Z m(u) = Z out(u), we havezia = z10 + 2220 + 221 — 2202.
weV(N) ueV(N)
Next, H = zo9 + 291 + 299, n = 2109 + 220, @Ndzgs = 1 give USz12 < n+ H — 2.
Hence|V(N)| < 14+n+(n+H—-2)+ H = 2n+2H — 1. O

For an example showing that the bounds given above are tight, referuceRig By
combining Lemmas 3 and 4, we get:
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A '/"

N: l
d hybrid nodes
b
Figure 2. An example of a nested phylogenetic netwitrkwith nesting depthd and
n leaves for which the upper bounds given in Lemmas 3 and 4 are tiyh¢shown on
the right) consists ofi — 1 copies ofA; (shown on the left) and is distinctly leaf-labeled

by {ai1,as,...,a,-1,b}. The number of hybrid node¥ in N equals(n — 1) - d and
[V(N)| = (2d+2)-(n—1)4+1 =2H +2n—1.

Theorem 5. If IV is a nested phylogenetic network witHeaves and nesting depththen
[V(N)| < 2dn+2n—2d—1,i.e.,|[V(N)| = O(n(d+1)).

We also have the following.

Theorem 6. Let N be a phylogenetic network withleaves andd hybrid nodes. We can
test whethetV is nested irO(|V(N)| - (H + 1)) time; if N is nested, the test takes only
O(|JV(N)]|-(d(N)-+1)) time and its nesting depth can be determined in the same asymptotic
time bound.

Proof. Use the following method to construct a li5tu) for everyu € V(NN) consisting of
all hybrid nodes which have a clipped merge path passing thrapghlus« itself if » is a
hybrid node. Associate an initially empty lis{u) to eachu € V(N), and define.(0) = 0.
Visit the nodes ofV according to a reverse topological ordering\of Whenever a non-leaf
nodeuw is visited, examind.(uy,) and L(ug), whereuy, andup are the children of. (if
only has one child then letr equal(). If L(uy,) is empty then lef.(u) := L(ug); else if
L(ug) is empty then lef.(u) := L(uz). Otherwise, check whethdr(u,) equalsL(ug).
If no then NV is not nested, and the algorithm terminates; if yes ther(et) := L(ur)
and remove the last elemefifrom L(u) (in this casewu is the split node for the hybrid
node/). Finally, if u is a hybrid node then insett at the end ofL.(«). Note that a node
may be both a split node and a hybrid node. The length oflgmy can never exceed the
number of hybrid nodes itV. Moreover, when the algorithm is finished,/¥f is a nested
phylogenetic network then its nesting degfttiV) equals the maximum length éf(«) over
allu € V(N) sinced(u) = |L(u)| for each non-hybrid node.

The time taken at each node Mis bounded by) (1 + max,cy(n) |L(u)]). O
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3. An Algorithm for MASN for Two Nested Phylogenetic Net-
works

In this section, we show how to solve MASN for two nested phylogenetic m&svg;, N
with n leaves inNO(|V (Ny)| - |[V(N2)| - (d1 + 1) - (d2 + 1)) time, whered; andd; are the
nesting depths alV; and N, respectively. We first introduce some additional notation.

Let N be any nested phylogenetic network. From this point onward, assunmsothat
arbitrary left-to-right ordering of the children of every node has bieexd. If u € V(N)
has two children then let; anduy denote the left and right child of, respectively, and
if w only has one child then setu;, = candugr = 0. For everyu € V(N), NJu| is
the subnetwork ofV rooted atu, i.e., the minimal subgraph @ which includes all nodes
and directed edges df reachable fromu. N (] refers to the empty network with no nodes
or edges.

Eachu € V(IV) belongs tod(u) different clipped merge paths. Sinéé is nested,
the d(u) different hybrid nodes corresponding to these clipped merge patksriesting
depths0, 1, ..., d(u) — 1. Fori € {1,...,d(u)}, we definehi(u) as the hybrid nodé
which has a clipped merge path passing througimd which satisfied(h) = i — 1. Next,
fori € {1,...,d(u)}, let N[u] be the subgraph oN[u] where N[h’(u)] and hi(u)'s
incoming edge have been removed, and\éfu] be N[u]. Define Ni[u] for i > d(u) as
NO[u] if uis not a hybrid node, and ag[(] if  is a hybrid node. See Figure 3. Intuitively,

N7 y]: NT ] :

4

Figure 3. is a nested phylogenetic network with nesting deydindw is a split node inv.
The numbers shown next to the nodes\bére their respective nesting depté?[w ] and
NO[ug] are the subgraphs 6 displayed on the right.
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the parameterinforms us at which descendant hybrid node o6 cut N [u] to obtainN*[u].

Lemma 7. For any nested phylogenetic netwakk v € V(N), and0 < j < i < d(u), it
holds thatN*[u] is a proper subgraph a7 [u].

Proof. If j = 0 then N*[u] is trivially a proper subgraph aV’[u] (= N°[u] = Nu]).
If j > 0, the nodeh’(u) is a descendant dfi(u) sincej < 4, so N[h?(u)] is a proper
subgraph ofV|[hi(u)], and thereforeV:[u] is a proper subgraph o’ [u]. O

Lemma 8. Let N be a nested phylogenetic network. For amye V(N) andi €
{0,1,...,d(u)}, it holds that: (1)N‘[uz] and N*[ug] are disjoint, and (2)N*[uz] and
Ni[ug] are disjoint, wherer = d(u) + 1 if u is a split node and: = i otherwise.

Proof. If u is a split node then let be the hybrid node of. By Lemma 2,d(h) = d(u).
Let ¢; be a child ofu with ¢; # h and letes be the other child ofi, possibly withc, = h.
We haveh*(c;) = h*®+1(¢;) = h, which means thal®|c,] does not contain any nodes
in N[h]; hence,N*[c;] and N[c;] are disjoint, and Lemma 7 then implies thét [c;] and
Ni[eg] are disjoint. Similarly,N‘[c;] and N*[cs] are disjoint (ifca # h thenh®(cz) =
h¥W+1(¢cy) = h s0 N¥[cy] contains no nodes itV [h] and thus no nodes itV'[ci]; if
co = hthenN?[cy] = N¥WH[p] = NUW+L[p) = N[))).

If « is not a split node theV[uz] (= N°uz]) and N[ug] (= N°[ug]) are always
disjoint. By Lemma 7 N‘[uz] and N[up] are disjoint. O

For any two phylogenetic networks;, Ny, defineMasn(Ny, N2) as the number of
leaves in a maximum agreement subnetwork. Nif or Ny is an empty network then
Masn(N1, N2) is equal ta). Otherwise M asn (N1, N2) for two nested phylogenetic net-
works can be expressed recursively using the following lemma which ieexaiezation of
the main lemma in [27] for MAST. In thé/atch case, when trying to match two subnet-
works N{[uz] and N§ [ug] to two subnetworksVy v, ] and N [vg], Lemma 8 ensures that
the set of nodes in the intersectionl6f V; [uz]) andV (N; [ug]) is matched to only one of
N¥[vr] and N [vg], and vice versa.

Lemma 9. Let N; and N, be two nested phylogenetic networks. For everyv) €
V(Ny) x V(N2) and0 < i < d(u),0 < k < d(v),

|A(Ni[u]) N A(NK[v])|, if atleast one of. andv is a leaf

asmn i u k V) =
Masn(Nilu], N3[v]) {maX{Dz’ag(Nf[u],Néf[v]), Match(Ni[u], N5¥[v])}, otherwise

where
Diag(Ni[u], N¥[v]) = max{Masn(Nf[u],Nf[vL]), Masn(N{:[u],NQk[vR]),
Masn(Nifuz), N[v]), Masn(Nifur, N[u])}

and

Match(Ni[u], N¥[v]) = max{Masn(Nf[uL], NE[vr)) + Masn(N§[ug], N3[vg]),
Masn(Ni[uL], Ny[vr]) + Masn(N¥[ug], N¥[vg]),
Masn(Ni[uL], NE[vg]) + Masn(N¥[ug], Ny[vL]),
Masn(N{[ur], N3[vg]) + Masn(N{[ug], Ny[vL)),
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Masn(N¥[ur), N§[vr]) + Masn(N{:[uR], NYwg]),
Masn(N{{ur], NJ[vr]) + Masn(NﬂuR], N¥[vg)),
Masn(Nf[uz], N¥[og]) + Masn(Nj[ug], N{[or]),
Masn(NYlur], N3[vg]) + Masn(Ni[ug], N¥[vL])},

wherez = fl(u) +1, if wis asplit nqde
L, otherwise

_ [ d(v)+1, if visasplit node

a k, otherwise

Proof. [Generalization of [27]] If at least one af andv is a leaf? then the size of a
maximum agreement subnetwork®f[u] and N¥[v] is either0 or 1, depending on whether
or not/ occurs in the other subnetwork, i.84asn is equal to A(Ni[u]) N A(N§[v])|.

If neither ofu andv are leaves then led be any maximum agreement subnetwork of
Ni[u] and N§[v] which is a tree (such ad must exist because for any agreement subnet-
work B which is not a tree, if one parent edge of each hybrid nodg imdeleted and edge
contractions are performed, we get an agreement subnettvaikh A(A) = A(B) which
is a tree). WriteM = A(A) so that|M| = Masn(Ni[u], N¥[v]). Leta; andas be the
lowest common ancestor iN} [u] and N¥[v], respectively, of the leaves i/. There are
two main cases:

1. a1 # u orasy # v (the Diag case).
Here, A is also a maximum agreement subnetwork of each pair of networks
(Ni[z], N¥[y]) wherez belongs to any path from to a; andy belongs to any path
from v to az. Hence,Masn(Ni[u], N§[v]) is equal toM asn(Ni[w:], N5[ws]) for
some(ws, wsz) € {(u,vr), (u,vgr), (ur,v), (ugr,v)}.

2. a1 = v anday = v (the Match case).
The elements inl/ are descendants of both 0% children and also of both af's
children. LetA, and A, be the two subtrees of rooted at the children of the root
of A.

By Lemma 8,N![uy] and N¥[ug] are disjoint; furthermore, every € V (Ni[u]) \
{u} belongs to exactly one aVi[uz] and N¥[ugr]. The same holds foN{[uy]
and Ni[ug) (observe that ifu is not a split node then = i and these two cases
coincide), and there are no other ways to dividgu] into two disjoint subnetworks
rooted atu;, andug. Similarly, N5[v] can be divided into two disjoint subnetworks
rooted atv;, andwvg in at most two ways.A, is therefore a maximum agreement
subnetwork ofN?"* [u,] and N4*[v,], and 4, is a maximum agreement subnetwork
of N{*[up] and N3?[vp] for someu,, up € {ur, ur} with u, # u, and somey,, v, €
{vr,vg} with v, # v, and wherep; = i andq; = z, orp; = x andg; = i, and
whereps = k andga = 3, orps = y andgy = k. Now, Masn(Ni[u], Nf[v]) =
M| = |[A(A)] = |A(AL)| + |A(Ap)| is given by one of the eight cases in the
equation forM atch.

Finally, note that in theDiag case, the value oM atch is at most|M |, and in the
Match case, the value dDiag is at most M |. Taking the maximum oDiag and M atch
thus gives us the size of a maximum agreement subnetwork. Ol
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Now, given two nested phylogenetic networks and N,, we can use Lemma 9 to
computeMasn(Ni[u], N¥[v]) forall 0 < i < d(u) and0 < k < d(v) by applying
dynamic programming in a bottom-up manner, e.g., by evaluating all paivq ¥y ) x
V(N3) in increasing order in the lexicographic orderiégof V' (IN1) x V(N2) where the
nodes in eaclV'(N;) are ordered according to a reverse topological orderiny,0f The
resulting algorithm (AlgorithnNested/ asn) is listed in Figure 4.

Algorithm  Nested/asn
Input:  Two nested phylogenetic networRg and Ns.

Output: The number of leaves in a maximum agreement subnetwofRef N> }.

1 Compute and storé(u) andh’(u) for allu € V(N1) UV (No),i € {1,...,d(u)}.
2 Let O be the lexicographic ordering & (N7) x V(N3) where the nodes in eadh(1V;) are
ordered according to a reverse topological orderingypf
3 for each(u,v) € V(Ny) x V(Ns) in increasing order i do
ComputeMasn(Ni[u], Nf[v]) forall 0 < i < d(u), 0 < k < d(v) by using the
expression in Lemma 9.
endfor
4 return Masn(NV[r], N9[rs]), wherer; is the root ofN; for i € {1,2}.

End Nested/asn

Figure 4. A dynamic programming algorithm for computing all valuegtisn.

Lemma 10. NestedZasn runs inO(|V (N1)| - |[V(N2)| - (d(N1) + 1) - (d(N2) 4+ 1)) time.

Proof. In Step1 of Algorithm Nested/asn, we may compute(u) andh’(u) for all u €
V(N),i € A{1,...,d(u)} for a given nested phylogenetic netwavkin a way similar to the
algorithm in the proof of Theorem 6 by traversing the noded&’ah bottom-up order. (For
every leafu, d(u) = 0; when a non-leaf node is reached, computé(u) for all valid i
by usingd(uy,), d(ug), h*(ur), andhi(ug) and checking if any ofi;, andup is a hybrid
node, and then assigtfu).) This takesO(|V (N)]| - (d(N) + 1)) time.

Next, the algorithm evaluates(|V (Ny)| - |V (INV2)|) pairs of nodes. For any such pair
(u,v), if neitheru nor v is a leaf then it takes constant time to compute each one of the
O((d(N1) +1) - (d(N2) + 1)) different M asn(Ni[u], N§[v])-values from previously com-
puted values. Ifu is a leaf then the value of eadh(Ni[u]) N A(N§[v])| can be ob-
tained in constant time as follows. Associate a binary veétar) of lengthn to each
w € V(N1)UV(N2), where theth bit of L(w) is set tol if and only if leafi is a descendant
of w (note that allZ(w)-vectors can be computed in advanc@if(|V (N1)|+ |V (N2)|)-n)
time by traversing each @¥; and N, according to a reverse topological ordering). Then to
determine whethex € A(N9[v]), check if bitu in L(v) equalsl; for £ > 1, the condition
u € A(N§[v]) is equivalent tas € A(N9[v]) andu & A(NS[h*(v)]). The case where is
a leaf is analogous. O

Algorithm Nested/asn can be modified to compute the set of leaves in a maximum
agreement subnetwork without increasing the asymptotic running time byeadsading
information about how each/ asn-value is attained as it is computed, e.g., by saving point-
ers. To construct an actual maximum agreement subnetwork from sset’.g we may
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use a standard traceback technique to obtain a tree with leaf séiich is an agreement
subnetwork. This yields:

Theorem 11. Given two nested phylogenetic networks and N» with nesting depthd;
and ds, respectively, a maximum agreement subnetwork can be comput&diiiN)| -
|[V(N2)|-(di +1)-(d2 + 1)) time.

4. New NP-hardness Results

Below, we first show that MASN is NP-hard already for= 2. We then show that if our
definition of a phylogenetic network is relaxed so that the outdegrees obiles are un-
bounded, then the problem becomes NP-hard even if restricted to twal méstegenetic
networks with nesting depth

4.1. MASN with & = 2 is NP-hard

To prove the NP-hardness of MASN for every fixed> 2, we provide a polynomial-time
reduction from the following problem.

Three-Dimensional Matching (3DM)

Instance: AsetM C X xY x Z, whereX, Y, and Z are disjoint sets andk =
{z1,...,2¢}, Y ={y1,...,ys,andZ = {z1,..., 24}

Question: Is there a subsel/’ of M with |M’| = g such that)M’ is a matching, i.e., such
that for every paiey, es € M’ it holds thate; andes differ in all coordinates?

3DM is NP-complete (see, e.g., [10]). Given an arbitrary instance of 3@istruct
an instance of MASN with two phylogenetic networkR§ and N, with a leaf setl as
described next. (In factiV; will be a leaf-labeled binary tree.) The elementsidfare
encoded in subtrees called, ., in Ny and in subtrees called,, in N. The purpose of
the subtrees named,,, B,, .,, andWW,, is to make sure that for any two triplesand f
in M, a maximum agreement subnetwork/éf and N, can contain both of the two leaves
representing and f if and only if e and f differ in all coordinates.

Let the leaf sef. equalM U A U B, whereA is a set ofg® - (¢ + 2) elements not i/
andB is a set of;® elements not i/ or A. Let A,,, Az, .. y Azyy Az, yy DEG+ 2 binary
trees withg® leaves each, distinctly labeled by, For every(x;, z) € X x Z, let By, .,
be a binary tree witly* leaves, distinctly labeled bi.

For every(xz;, z;) € X x Z, define: (1)M,, ., as the subset af/ containing all triples
of the form (z;, vy, z;) wherey € Y; and (2)5,, ., to be a tree obtained from a binary
caterpillar tree with M, ., | + 1 leaves distinctly labeled by/,, ., and where one of the
bottommost leaves has been replaced by the roBt0f, . See Figure 5. For every € Y,
define: (1)M,, as the subset o/ containing all triples of the forniz, y;, z) wherez € X
andz € Z; and (2)U,, to be a binary caterpillar tree witld/,, | + q leaves in which the
|M,,| leaves closest to the root are distinctly labeledMy, and the rest are unlabeled
nodes referred to ag, ., for 1 < k < q. Finally, for everyz; € Z, defineiv’,, to be a tree
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U

(Xg: 1.3 ) (X4, ¥2.%)

(Xg:¥3.3 ) (Xg:Ya13)

(Xg:Ya 3 )

(Xg: Y7, %) Vy,, 2,

Vy,. Zq Vi 241

Figure 5. AssumeM,,., = {(xs,y1,23), (¥8,¥3,23), (¥8,¥4,23), (28,y7,23)} and
My, = {(x4,y4, 2z5), (x8,ys,23)}. Sz, andU,, are shown on the left and in the cen-
ter, respectively. The structure of ealdh, is shown on the right.

1,1
1 1t / Qu,
2 — % — ——— . Q1 3
3 —*— — Q| 1 * le4
4 —— Q|2 ‘ ¢ / Q
. Qi,3 . /l,q
q .
Stagel Stage vy * Q, J
. ;
Qp+1, 2 Q
Q. ¥ i
p+1,3
.
Qp+1,4
Qs

Figure 6. The sorting network on the left yields a directed acyclic graph

obtained from the binary caterpillar tree wijtleaves by replacing the leaves with the roots
Of Byy zyps v v o1 Bay 2,

Next, letP be any sorting network (see, e.g., [8]) foelements with a polynomial num-
berp of comparator stages. Build a directed acyclic grgpfiom P with (p + 1) - ¢ nodes
{Qi; |1 <i<p+l, 1 <5 < q}suchthatthere is a directed eddg; j, Qi+1,;) for every
1 <i<pandl < j < g, and two directed edg€§); ;, Qi+1,x) and(Q; x, Qit+1,;) for ev-
ery comparato(j, k) at stage in P for 1 < i < p, as illustrated in Figure 6. Furthermore,
constructy directed path§G, . .., G4} where eacltiy, = (G k, ..., Gq k).

Let N; be a phylogenetic network obtained by attaching to a directed path
(my,ma, ... ,Mg24412), i order of non-decreasing distance frem, the roots ofA,,,
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Figure 7. The phylogenetic networRg andN,.

S1,210 Sy zar o000 Sayzgr Azys Sa 21y -0 Sag,zgr Azgr @ANA A, and lettingm, be the
root of N;. (Note thatV; is actually a binary tree.) See Figure 7. The phylogenetic net-
work N is obtained by first attaching to a directed péth, no, . .., nog42), in order of
non-decreasing distance fram, the root ofA4,,, the node&?; 1, the root ofA,,, the node
Q1,2, the root ofA4,,, ..., the root of4, , and the root ofAqu, and lettingn, be the root

of Na. Then, forj € {1,...,q}, let@,.1,; coincide with the root ol/,, and for every

1 <j<gandl <k < qaddadirected edge, .,, G k). Next, for everyl < k < g add

a directed edge frortr, ;, to the root oflV, . Again, see Figure 7. Finally, for every node
in N7 and N, having indegred and outdegre&, contract its outgoing edge.

Lemma 12. If M has a matching of size then there exists an agreement subnetwork of
(N1, No) with ¢7 + 2¢° + ¢° + ¢ leaves.

Proof. Supposel has a matchind/’ of sizeq. For every(x;, z;) € X x Z, denote by
Va, 2. the set of all leaves iB,, .,. LetC = M’ U Uiy 2 Vairz @nd letT be
N1 | (AU C). For eachr; € X, there is precisely one tripler;, y;, ) in M’, so the path
inT" from the root ofS,, ., to the root ofB,, ., has one leafz;, y;, z) attached to it. Now
consider the structure a¥, | (A U C). SinceP is a sorting network, there aredisjoint
paths in@ from (Q1 1), Q1,x2)s - » Q1r(e) 10 (Qp+1,15 Qpr12s - -+, @pt1,4) fOr any
given permutationr of {1,2,...,¢}; in particular, this holds for the permutatiandefined
by the relationr(j) = i for all (z;,y;, z,) € M'. Thus, for every(z;, y;, zi,) in M’, there
exists a path inV, from nodeny; to the root of B,, ., (passing through the root af,,
and the nodes, ., andG, ;) along which the leafz;, y;, z) is attached. This implies
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thatT is a subgraph oV, | (AU C), i.e., T is an agreement subnetwork @¥;, N) with
|A|+q-(1+q¢*) = ¢ +2¢° + ¢° + q leaves. O

Lemma 13. If there exists an agreement subnetwork &%, No) with ¢” + 2¢° + ¢° + ¢
leaves thenV/ has a matching of size

Proof. Suppose there exists an agreement subnet@orkith a leaf set’ C L such that
IL'| = ¢"4+2¢54+¢°+q Write M' = L' M, A’ = L'’ N A, andB’ = L' N B. First
observe that the number of elementslihis strictly greater than the number of elements
in L\ {a | aisaleafofA,,}, so at least one leaf from,, must be included ir.' by
the pigeonhole principle. Hence, the root®f corresponds to the roots @f; and Ns.
Similarly, at least one leaf; from A,, for everyx; € X and at least one ledf,; from
Az, must belong td.’. Also by the pigeonhole principle, a total of at le@st| — [M| —
|A| > ¢°+q—q¢> leaves fromB must be included ith/, and these leaves must in fact belong
to at leasty different subtrees of the form®,, ., (this is because — 1 different subtrees
of the form B, ., can only contair(q — 1) - ¢* leaves andg — 1) - ¢* < ¢° + ¢ — ).
However,L’ cannot contain leaves from boﬂs’y,gil,zk1 anngEiQ,zk2 if i1 #£ ig andky = ko
(if by andb, are two such leaves then they appear in diffefgnt., in Ny but in the same
W, in Ny, s0, €.9.N1 | {b1, b2, £g+1} and Ny | {b1, b2, L4441} differ, which contradicts that
{b1,b2, g1} are leavesi”), orif iy = iy andk; # ko (if by andb, were two such leaves
then Ny | {b1, b2, 4, —1,4;, } @and Na | {b1, b, £, —1, ¢;, } would differ); thusB’ consists of
leaves from at mosj (and hence, precisely by the above) different subtrees of the form
By, -, andwe havéB'| < ¢-¢*, yielding|M’| = |L/|-|A'|~|B'| > |L/|-|A|~¢° = q.
We now show that for any two triples= (z;,,yj,, zx,) and f = (zi,, Yj,, 2k,) in M,
if e and f agree on at least one coordinate then they cannot both beldrigite., M’ is a
matching of M. Using the same argument as abovd,/itontains a leaf By, -, then
L' cannot contain any tripléz;,, y;,, zk,) With i1 # iy andk; = ks, or withi; = 73 and
ki # ko. Then for any(z;,,yj,, 2z, ) € L', L’ must also contain a leaf frorﬁmil,zk1 since
leaves fromy different subtrees of the ford@,, ., must be included i/, soe andf cannot
both belong tol’ if i1 # is andk; = ko, or if i1 = iy andk; # ko. Next, if iy # o,
J1 = jo, andk; # ko thenNy | {e, f,q+1} and Nz | {e, f, {441} differ, implying that L’
cannot contain bothandf. Finally, if iy = is, j1 # j2, andk; = ko ande, f € L' then the
roots ofU,, andU,, in N> both have to correspond to nodes located in the same subtree
le.pzkl in V1 because and f belong toninkl, and then there are strictly less than 1
availableU,,-roots for the remaining — 1 subtrees of the forns, ., with leaves inL’,
which is a contradiction. O

From the above, we obtain:
Theorem 14. MASN is NP-hard even if restricted ko= 2, and even if one of the two input
networks is a binary tree.
4.2. MASN with Unrestricted Outdegrees is NP-hard

Here, we prove that MASN for two nested phylogenetic networks with rpdepthl (i.e.,
two galled trees/level-networks) is NP-hard if the nodes are allowed to have unrestricted



The Maximum Agreement of Two Nested Phylogenetic Networks 135

outdegree. We give a polynomial-time reduction from the problem 3SAT,mikiknown
to be NP-complete (see, e.g., [10]).

Three-Satisfiability (3SAT)

Instance: A setU = {uy,...,u,} of Boolean variables and a collectich= {c!, ..., ¢?}
of disjunctive clauses ovér, each containing exactlyliterals.

Question: Is there a truth assignment forthat makes every clause intrue?

For everyu; € U, let J(u;) be the sefj : w; occursin clause’}. Without loss of
generality, assume thaf (u;)| > 2. Let J(u;), be thekth smallest integer i/(u;) so
that J(u;)1 < J(ui)2 < ... < J(u;))pe,- Now, given an instance of 3SAT, construct
an instance of MASN with two nested phylogenetic netwokks= { Ny, N2} (where the
outdegrees of the nodes are unrestricted) having a ledf asfollows.

For eachu; € U, define a set of new elemenitu;) = {vz,vz,w] w ] € J(u;)}
Similarly, for eache’ € C, define a set of six new elementyc/) = {dﬂ[ ], d7[2], d’[3],
e[1], €2, e[3]}. Let L = U, ey V(ui) U Ugee D(¢’). Note that for each’ e C,
there are exactly8 elements with the symbglin their exponent, stl| = 18¢.

For any nonempty.,, Lo, L3 C L, defineS(L1; Lo; L3) to be a nested phylogenetic
network with nesting depthhaving a single hybrid nodewhere: (1) L, | leaves distinctly
labeled byL; are attached to a path of lendth; | starting at the left child of the root and
ending ath; (2) |Lq| leaves distinctly labeled by, are attached to a path of lengths|
starting at the right child of the root and endinghatand (3)h is the parent ofL3| leaves
distinctly labeled byL3. See Figure 8 for an example. For ariyc C, let T(c¢’) be a tree
whose root has one child with three children =2, 23, and where fok € {1, 2,3}, = is
the parent of two leaves labeled 8Y(k] ande’ [k].

We build the nested phylogenetic netwoN as follows. First, for everyu; €
U, construct for allk € {1,...|J(u;)|} the networksS({v;](“i)’“}; {@‘i]("i)’““};
{wl‘.}(“i)’“, @;](“i)k“}), whereJ (u;)| j(u;)+1 = J(us)1, and let all their roots coincide with
the root of N1. Then, construct’(c!), ..., T(c?) and make all of their roots also coincide
with the root of NV;. See Figure 9.

Next, for everyu; € U and allj € J(u;), if u; is thekth literal inc/ then defineR (u;, )
asS({v!}; {v!, di[k], e’ [k 1} {w!, @w'}); otherwise, ifu; is thekth literal in ¢/ then let
R(u;,7) be S({v], d’[k], e7[k]}; {vj} {w!, w!}). Let N, be the nested phylogenetic
network whose root node coincides with the roots off&l;, j), whereu; € U andj €
J(u;). See Figure 10.

Lemma 15. If U has a truth assignment that makes every clause irue then there exists
an agreement subnetwork @V;, N2) with 10q leaves.

Proof. Supposd’ has a truth assignmert : U — {true, fals@ that satisfies all clauses
in C. For eachy; € U, constructaseL(ul) as follows. If A(u;) = true then letl(u;) =
(W, w! :je J(u;)} and define(u]) = o forall j € J(u;), and if A(u;) = false
thenL(u;) = {Uw wz 2 j€ J(w)} andﬁ(u{) = vf forall j € J(u;). Next, for every
j € J(u;), if u; is the variable with the lowest index which makéstrue then add’ []
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S(Ly;LysLg ) T(cz):

d?[3
8 d?[1] e%[1] d?[2] €?*[2] d?[3] e?[3]

e’[3]
w3 w3
Figure 8.5(Ly; Lo; L3) with Ly = {v3}, Ly = {92, d*[3], €*[3]}, andL3 = {w?, w3}

is shown on the leftl’(c?) is shown on the right.

N;:

d*[1]

w2 w3 wiow} ws w2 e®[1] e®[2] e®[3]

Figure 9. The phylogenetic networ¥ . Assume that variable, occurs inc?, ¢, andc® in
the given instance of 3SAT. Then the portion/éf that corresponds te, has the structure
shown above. Also shown &(c?), the part corresponding td.

ande’[k] to L(u;), wherey; is thekth variable inc’; otherwise, ifu; is not the variable with
the lowest index which make$ true then add(u?) to L(u;). LetL' = Uy, ev L(ui).

Let T" be the following tree, distinctly leaf-labeled ly. For eache’ € C, the rootr
of T has6 children. Letu; be the variable (the one with the lowest index, if there exists
more than one) which makes true when assigned the valuiu;), and denote the other
two variables in/ by u, andu,. Two of the children of- corresponding te’ are leaves
labeled by/(u?) andE(u{)). Another one of the children of is a node with two children
labeled byd’ [k] ande’ [k], whereu; is thekth variable inc’. The remaining three children
of  corresponding te’ are nodes with two children each, labeled by eitlteandw? (if
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N,:

d?[3]  d%m3

w2 w? wi owl wi w)
Figure 10. The phylogenetic netwoNo. If ¢> = (... V...V ug), ¢ = (... V...V 1Y),
andc® = (... V @y V...) then the part corresponding iq looks as above.

T:

<
N

<l
ww

ve we o oviowd d’@] %@ v wi
Figure 11. Assume?® = (us V U3 V Uy), A(uz) = false,A(u3) = true, andA(u4) = false.
The part of T corresponding ta? is displayed. d3[3] and 3[3] belong toT sincec? is
satisfied because afy, i.e., the third variable ie?.

A(u,) = true) orvl andw? (if A(u,) = false) forz € {i,z,y}. See Figure 117 has
10 leaves for each’/ € C, and thuslOq leaves in total. It is easily verified that is a
subgraph ofV; | L' and also a subgraph &f, | L/, and hence an agreement subnetwork of
(N1, Na). O

Lemma 16. If there exists an agreement subnetworK &%, N2) with 10¢ leaves ther/
has a truth assignment that makes every claugeé irue.

Proof. Suppose there exists an agreement subnet®orkith a leaf setl’ C L such that
|L’| = 10q. For eacht’ € C, denote the set of all leaves iif with the symbol; in their
exponent ag.;. By the structure ofV; andN,, at most one otuf andwf for everyu; € U
and;j € J(u;) may appear irl/. Also, for eache’ € C, elements from at most one of the
three pairgd’[1], e’[1]), (d’[2], ¢/ [2]), and(d’[3], ¢/[3]) can belong td.’. Furthermore, if
somed’[k] or e’ [k] is in L’ then eithew! (if the kth literal of ¢/ is of the formw;) or v (if
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the kth literal of ¢/ is of the formw;) cannot be inL’. Hence, for each’ ¢ C, at mostl10
leaves with the symbal in their exponent belong té’. Denote the three variables which
are included ine/ by u,, u,, andu,. Since|L’| = 10q it follows that|L;| = 10 and L,
must consist of: (1) [k] ande’ k] for somek € {1, 2, 3}; (2) five of the six elements in
{vl, ¥, v), ), vl, v1}; and (3) for eacht € {x,y, =}, eitherw! or w.

Next, for eachs; € U, if w{ € L' forsomej € J(u;) thenw® € L' for everyk € J(u;)
(and analogously it/ € L'). This follows because; " ¢ L’ implies thatw; """+ ¢
L’ (they belong to the samgin NV but differentS in Ny), whereJ (u;))(u,)1+1 = J (ui)1,
and by (3) abovez,u;m”)k+1 € L'. We can now define a truth assignmetit: U — {true,
false} as follows. For each; € U, if wf € L’ for everyk € J(u;) then setd!(u;) = true,
and ifwk € L' for everyk € J(u;) then setd’(u;) = false.

Finally, we show that eactf € C is satisfied by4’. By the aboved’ [k] ande’ [k] for
somek € {1,2, 3} belong toL,. Let/ be thekth literal in¢’. If ¢ is of the formu; then@f
lies on the same side d&[k] ande k] in R(u;, 5) in No, and hence! ¢ L' andw! ¢ L,
giving usw’ € L' andA’(u;) = true. Otherwise/ is of the formw; and then? lies on the
same side ag’[k] ande’ [k] in R(u;,j) in No, and hence’ ¢ L' andw’ ¢ L', giving us
wff € L' andA’(u;) = false. In both cases/ is satisfied. O

Lemmas 15 and 16 give us the next theorem.

Theorem 17. If the restriction on the outdegrees of the nodes is removed then MASN is
NP-hard even for two nested phylogenetic networks with nesting dgpth, two galled-
trees/levelt networks).

5. Conclusion

MASN with & = 2 is NP-hard (as proved in Section 4.1.), but efficiently solvable for
some special types of phylogenetic networks. For examplg, &nd N, are trees then the
problem can be solved i@(nlogn) time [7, 18], if N; and N, are leveld phylogenetic
networks (i.e., “galled-trees”, using the terminology of [12]) then the lerolis solvable in
O(n?) time [6], and more generally, i; and N, are levelf phylogenetic networks, where
[ = O(log(|V(N1)| 4|V (N2)])), then theO(|V (N1)]| - |V (No)| - 47 )-time algorithm in [6]
runs in time which is polynomial in the input size. In this chapter, we have demabed
that even when the parametgiis unrestricted, the problem can be solved in polynomial
time if N1 and N, are nested.

Does MASN for other types of structurally restricted phylogenetic netsvadmit ef-
ficient algorithms? In particular, is it possible to extend our method in Sectitm t80
networks in which every hybrid node has exactly one split node? An eleemhpuch a net-
work is shown in Figure 12. We would also like to know if MASN can be solvéidiently
for an even more complex structure which we cailanar phylogenetic networklefined
as follows: for any positive integers b, let M (a, b) be a rooted, directed graph with node
set{M; ;|1 <i<a,1<j <b}suchthatthere is one directed edge from; to M;_
for every2 < i < a andl < j < b, and one directed edge froi; ; to M; ;_; for every
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b ¢ d

Figure 12. This phylogenetic network is not nested although every hgbdd has exactly
one split node, and every split node has exactly one hybrid node.s(The& converse of
Lemma 1 is not true.)

1 <i<aand2 < j < b; we say that the network/ is an(a, b)-planar phylogenetic
networkif each biconnected componentZif{ V) is isomorphic to a subgraph éf (a, b).

We believe MASN for more than two nested phylogenetic networks can bedsaiv
polynomial time wherk = O(1). It would also be interesting to investigate if any other
computational problems which are hard to solve for unrestricted phyltigeretworks but
known to be solvable in polynomial time for galled-trees can be solved effigien nested
phylogenetic networks with unrestricted nesting depths. One example lofaspimblem
might bethe perfect phylogenetic network with recombination probletmich is NP-hard
for unrestricted networks [28] but solvable in polynomial time for galleggrd.2].

The final open question is: can the running time of our algorithm for two destglo-
genetic networks be improved, e.g., by applying sparsification techniques?
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