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Abstract—In functional genomics, experimentally obtained
protein-protein interaction (PPI) data is often incomplete. To
deal with this issue, computational approaches are used to infer
missing data and to evaluate confidence scores. Link prediction
is one such approach that uses the structure of the network of
PPIs known so far to find good candidates for missing PPIs. In a
recent study by Kovács et al., a novel PPI-specific link predictor
was proposed. Their link predictor is biologically motivated by
the so-called L3 principle and it was shown to be superior to
other general link predictors when applied to PPI data. However,
the L3 link predictor is only an approximate implementation
of the L3 principle. As such, not only is the full potential of
the L3 principle not realized, it may even penalize candidate
PPIs that otherwise fit the L3 principle. In this paper, we
formulate an L3-based link predictor without approximation,
coined ExactL3. We show computationally that ExactL3 is better
than the previously proposed methods on four major PPI datasets
(STRING, BioGRID, IntAct/HuRI, and MINT). The predicted
PPIs are also shown to be much more functionally relevant.
This confirms that ExactL3 is a better link predictor for PPI
networks, and demonstrates its ability to characterize PPIs by
only the topological features of binary PPI networks.

Index Terms—Protein-Protein Interaction, Link Prediction,
Complex Network, Graph Theory

I. INTRODUCTION

In the post-genomic era, high-throughput techniques have

been developed to retrieve and analyze high-level and dynamic

cellular activities. An important example is the development of

techniques that enable large-scale characterization of protein

interactions [1]. This has led to a new type of interactome for

system biology, the Protein-Protein Interaction (PPI) network

[2]. A PPI network is a form of complex network where a

node represents a protein, and an edge indicates that two

proteins can interact with each other. Since PPIs describe

signals transduction of protein physical docking [3], large-

scale studies can provide insights into the molecular machinery

of living systems [4]. On a basic level, a PPI network can

represent signaling pathways as a chain of PPIs [5], and a

protein complex as a graph cluster [6]. In more advanced use

cases, analysis in targeting disruptive PPIs can even introduce

new cancer therapeutic strategies [7].

The basis of meaningful and comprehensive discoveries is

a complete and reliable PPI network. However, measurement

errors or incomplete experimental data may lead to some parts

of the constructed PPI network having the wrong structure.

For this reason, computational tools have been developed to

evaluate the edges in an existing PPI network or to find good

candidates for new edges that should be added in order to

make the resulting network more biologically sound. The most

direct approaches use protein sequences data [8] [9], since

protein sequences compare proteins’ functions genetically.

Some of the other approaches include the use of protein

structures, RNA co-expression, and protein annotations [10]

[11]. Undoubtedly, these methods are successful by utilizing

features to describe proteins, subsequently characterizing PPIs.

On the other hand, general-purpose link prediction tech-

niques have been developed for complex networks, such as

PPI networks and social networks [12]. These link predictors

raise interests due to their abilities to characterizes PPIs with

only binary PPIs data. However, they are usually not specific

enough to characterize PPIs, and there are no guarantees on

their correctness and reliability. Due to this concern, Kovács

et al. [13] recently introduced a novel link predictor based

on a biological motivation that they called the L3 principle.

This principle hypothesizes that two proteins linked by many

different paths of length three have a higher likelihood of also

interacting directly with each other. Using the L3 principle,

the L3 link predictor infers new PPIs by scoring the structure

of candidate PPIs, and keeping the candidates with the highest

scores. [13] also argued that for PPI networks, being linked

by many paths of length two has the opposite effect, and

showed experimentally that the L3 link predictor outperforms

a vast number of general link predictors, including the famous

Common Neighbor [14] that favors paths of length two.

Despite the strength of the L3 principle, some researchers

claim that our understanding of the L3 link predictor is limited

and that it was derived empirically rather than from any

theoretical knowledge [15]. In fact, one can regard the L3 link

predictor as an approximation in the sense that it penalizes

the score of a neighborhood if some of its properties imply

that it is a coincidence. This generally happens to any link

predictor and each has different measures to address this.

However, the penalization in the L3 link predictor applies

even to PPIs that should be rewarded for such properties.

So, a better approach would be to evaluate its fitness to

the L3 principle by characterizing a neighborhood of PPI
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more precisely, namely to reward desirable graph structures

such as paths of length three, and penalize undesirable graph

structures such as paths of length two. In this paper, we

show how to define the link predictor in a way that more

accurately corresponds to the biological motivation of the L3

principle. Our approach is coined ExactL3. The advantages

of the ExactL3 link predictor is that it is better at inferring

undiscovered PPIs, and it demonstrates how to characterize

PPIs biologically with only the PPI topology.

The paper is organized as follows. Section II reviews some

known general and PPI-specific link prediction techniques.

Then, we provide the problem definition and the formulation

of ExactL3 in Sections III and IV, respectively. We evaluate

ExactL3 in Sections V and VI by comparing it to five other

link predictors in a series of computational experiments, using

data from four different databases for two organisms. Finally,

the paper wraps up with a discussion of the results and some

suggested follow-ups in Section VII.

II. PREVIOUS WORK

Link prediction infers new edges based on the properties

of the nodes as well as the overall topology of the existing

edges [12]. Many subclasses of link prediction approaches

exist, and this paper will be focusing on similarity-based

link predictions, where nodes are connected based on their

topological similarity. Two such predictors are reviewed next.

A. General Link Prediction

The Common Neighbors (CN) concept originates from

social networks [14]. This concept characterizes a social

phenomenon: the more friends two individuals shares, the

more likely they are also be friends of each other. From

here on, for any node a, let N(a) denote the set of neighbor

nodes of a. Then, the CN score of any two nodes a and b is

|N(a) ∩N(b)|. The higher the CN score, the more confident

we can be that the two nodes should be adjacent. In the context

of PPIs, a high CN score of two proteins implies they are of

similar functions [16]. That is, if two proteins interact with

similar set of proteins, their functions are then similar.

However, a high-degree node will contribute to the CN

scores of many more node pairs than a low-degree node will.

Consequently, it is a good idea to penalize high-degree nodes

in the CN index. To do so, the Resource Allocation (RA)

algorithm [17] makes high-degree nodes contribute less by

using the following formula instead for every pair of nodes

a and b:
∑

z∈N(a)∩N(b)
1

|N(z)| . In addition to RA, there exist

many other normalization schemes. In the Adam-Adar (AA)

Index [18], a logarithm modifier (motivated in the context

of social networks mining) is used to do the normaliza-

tion:
∑

z∈N(a)∩N(b)
1

log(|N(z)|) . For many other normalization

schemes based on different motivations, see the survey of

general link predictions [12].

B. PPI-specific Link Prediction

Given the context of PPI networks, link predictions can

extend beyond neighborhoods of nodes. A study [19] applies

(a) Common Neighbors in PPI (b) L3 Hypothesis in PPI

Fig. 1: Let the color of the node be the type of its protein interface,

and assume that node pairs with different colors are compatible. In

(a), node a and node b have common neighbors, which suggests that

the interface of a and the interface of b are similar; therefore, one

can assume that a and b will not be compatible with each other, as

indicated by the dashed red line. In (b), nodes x and y are connected

by P4-subgraphs. It is possible for node x, v1 and v2 to have the

same type of interface (white) and nodes y, u1 and u2 to have a

complementary interface (black), as shown in the figure. In this case,

x and y will be compatible, as shown by the dotted green line. The

other possibility, i.e., that x and y have the same interface, is unlikely

because u1 is not known to interact with y and v1 is not known to

interact with x; additional P4-subgraphs between x and y (such as

the one involving u2 and v2) make this scenario even less likely.

random walks to identify and connect pairs of nodes that

have similar distances to the other nodes in the network,

and showed that this method reconstructs PPI networks with

greater biological relevance. This can be classified as the

global approach in similarity-based link predictions.

Another study [20] uses protein complex datasets on top of

PPI datasets to investigate how many PPIs might be missing

from those PPI datasets. Assuming that each protein complex

must induce a connected subgraph in the corresponding PPI

network, the minimum number of edges that have to be added

to ensure that this condition holds in the network thus gave

lower bounds on the number of missing PPIs in various

databases. This also shows how PPI datasets can be augmented

with external feature data, utilizing the biological context.

Finally, the study of our focus [13], the L3 algorithm is

biologically motivated by the following observation: Since a

physical PPI is the physical docking of two proteins, it can

only occur if the interfaces of the two proteins are compatible.

Now, if nodes x and y in a PPI network share many neighbors,

it can be expected that the interface of x is similar to the

interface of y. Two proteins with identical or nearly identical

interfaces are usually not compatible (they cannot dock with

each other), which means that the PPI network will not have

an edge between x and y in this case. See Fig. 1(a) for an

illustration. On the other hand, if there are many paths of

length 3 between x and y in the network then x and y are likely

to be compatible, as shown in Fig. 1(b). Following standard

graph theory notation, P4 will denote an undirected length-3

path consisting of four nodes and three edges. The observation

above can be stated as: the more P4-subgraphs that connect

a pair of nodes x and y, the more certain it is that x and y
should be connected by an edge. In the rest of this paper, we

shall refer to this principle as the L3 principle.
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III. PROBLEM DEFINITION

Given an undirected graph G = (V,E), our goal is to iterate

through all non-adjacent node pairs in V , and determine for

each such pair whether or not an edge between them should

be added to E. Every non-adjacent node pair {x, y} will be

assigned a score Pxy that measures, in a relative sense, the

confidence with which one can say that x and y should be

connected by an edge. As explained in Section II-B, one can

compute Pxy based on the L3 principle simply by counting the

number of P4-subgraphs between x and y. For this purpose,

define U = N(x)∩N(N(y)) and V = N(y)∩N(N(x)), i.e.,

let U be the set of neighbors of x at distance 2 from y and

analogously for V . Then, every P4-subgraph between x and

y is an undirected simple path of the form (x, u, v, y), where

u ∈ U and v ∈ V . Note that a node may belong to N(x) as

well as N(y) and also to both U and V , in which case it will

be able to take the role of either u or v in a P4-subgraph. With

these definitions, one can count the number of P4-subgraphs

between x and y using Formula 1, and this kind of double

summation will be abbreviated as Formula 2 to simplify the

notation from now on.

P (1)
xy =

|U |∑
i=1

|V |∑
j=1

{
1 if ui ∈ N(vj)

0 otherwise
(1)

P (1)
xy =

∑
U,V

1 (2)

However, similar to what was mentioned in Section II-A,

high-degree nodes in the sets U and V will contribute to

many more P4-subgraphs than low-degree nodes, giving them

a disproportionate influence on the value of Pxy . Hence,

Formula 2 should be adjusted to penalize high-degree nodes.

The L3 algorithm [13] does this by using a square root modifier

as in Formula 3 below.

P (L3)
xy =

∑
U,V

1√|N(ui)|·|N(vj)|
(3)

The normalization modifier makes Formula 3 an approxi-

mation, similar to the AA index in Section II-A. Namely, only

set U , set V , and the degree of its nodes are used to evaluate

the L3 structure of a xy node pair. This does not sufficiently

characterize a L3 structure, and may incorrectly penalize xy-

links that are otherwise highly likely (despite having high de-

gree nodes u and nodes v). ExactL3 addresses these problems

by proposing an alternative approach to normalization. Before

presenting the formulation, we first give more intuition behind

the L3 principle introduced in Section II-B.

Recall that in the L3 principle, the interface compatibility

of node x and node y can be evaluated using the number of

P4-subgraphs. The use of P4 is justified by considering N(x)
and N(y). First, we evaluate if x is incompatible with nodes in

N(y). Since proteins with similar interfaces are incompatible,

we are then evaluating if protein x has similar interfaces to

all proteins N(y). Similarly, we evaluate if nodes in N(x)

are incompatible with y for the same reason. Combining both

evaluations, since U ⊆ N(x) and V ⊆ N(y), a P4 consisting

of (x, u, v, y) is a minimum expression of the L3 principle.

|U | evaluates the number of compatible nodes of x, and |V |
evaluates the number of incompatible nodes of x. This applies

symmetrically to y as well (i.e., |V | evaluates the number of

nodes compatible with y, and |U | evaluates the number of

nodes incompatible with y). So, the number of P4-subgraphs

determines the PPI confidence between x and y.

Taking the above considerations into account, ExactL3 ad-

dresses the evaluation more accurately by directly evaluating

the ratio of compatible nodes and incompatible nodes. For

example, one has to penalize the confidence score of an edge

between x and y if either of them has adjacent nodes that

cannot form a P4, and reward if otherwise. In the next section,

we formulate the ExactL3 link predictor.

IV. METHODS

In this section, we formalize the ideas of ExactL3 (Formula

4). It is based on the concept of the Jaccard similarity coeffi-

cient and a simple penalization index. The Jaccard similarity
coefficient measures the overall similarity and dissimilarity of

two sets A and B of data and is defined as the value
|A∩B|
|A∪B| .

P (L3E)
xy =

|U |
|N(x)| ·

|V |
|N(y)| ·

∑

U,V

|N(v) ∩N(x)|
|N(v) ∪N(x)| ·

|N(u) ∩N(y)|
|N(u) ∪N(y)|

(4)

As explained in Section 3, the L3 principle involves two

parts: to evaluate if x is incompatible with nodes in N(y),
and to evaluate if nodes in N(x) are incompatible with y.

ExactL3 is defined to directly address these two parts.

The first part can be realized as depicted in Fig. 2. The figure

demonstrates the use of |N(v)∩N(x)|
|N(v)∪N(x)| (b) and |V |

|N(y)| (c) applied

to the all L3 paths of xy (a). For each L3 path between xy,

(b) is used to evaluate whether node v1 in N(y) are similar

to x in terms of their neighborhood (set U ). Since each L3
path will yield a (b) score of that path, these scores will be

summed together (Formula 4). Then, (c) is used to evaluate

how compatible y is with set V , since there could be non-V
nodes in N(y). The combination of (b) (c) as in Formula 4

can then realize the first part of the L3 principle, since if x is

similar to all v (Qb), and y is compatible with V (Qc), then

x is likely to be compatible with y (Qa) (i.e., incompatible

with nodes in N(y)). The second part of the L3 principle is

to evaluate if nodes in N(x) are incompatible with y. This is

accomplished analogously by the remaining terms in Formula

4 (
|N(u)∩N(y)|
|N(u)∪N(y)| and

|U |
|N(x)| ).

A. Time Complexity

We now analyze the time complexity of L3 (Formula 3) and

ExactL3 (Formula 4). Let n denote the number of nodes in G.

The CN link predictor is already known to run in O(n3) time

[21].

The main operations in both L3 and ExactL3 are the set

operations on node neighborhoods. We first elaborate on how
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Fig. 2: The central idea of the ExactL3 formulation. (Qa) To estimate

the compatibility of x and y based on the L3 principle, (a) we identify

all L3 paths between x and y. For any L3 path {x, ui, v1, y}, we

ask two questions: (Qb) Are the interfaces of x and v1 similar in

terms of their neighborhood? (Qc) Are v nodes compatible with y

in terms of N(y)? These two questions are encoded in the scoring

functions (b) and (c) so that the higher the scores, the more likely

the answers will be yes. To model all L3 paths, Formula 4 combines

the contributions of (b) and (c) to evaluate if x is incompatible with

N(y) and also the analogous scoring functions for evaluating if y is

incompatible with N(x).

to perform two set operations, the set intersection and the set

union. Every graph neighborhood will be precomputed and

stored in a hash table so that it takes O(1) time to check

if a node belongs to a set N(a). To do the set intersection

operation A ∩B, simply look up each of the elements of the

smaller set in the hash table for the larger set. Thus, A ∩ B
takes O(min(|A|, |B|)) time. For the set union operation A∪
B, one has to access all elements of both sets if intersection

is empty, so it takes O(|A|+|B|) time. Notice that the time

complexity for the set union operation dominates that of the

set intersection operation.

Both L3 and ExactL3 need to evaluate O(n2) pairs of nodes

to perform link prediction. For each such pair {x, y}, the

sets U = N(x) ∩ N(N(y)) and V = N(y) ∩ N(N(x)) are

constructed in O(n2) time. (To construct U , check each of the

O(n) nodes in N(x) to see if any of its O(n) neighbors is in

the hash table for y’s neighborhood, and if so, include it in U ;

construct V in the same way.) After that, L3 iterates over the

O(n2) pairs in U and V and applies the normalization from

Formula 3 to each one in O(1) time. Therefore, L3 runs in

O(n4) time. Next, ExactL3 is the same as L3 except that the

normalization is done according to Formula 4 instead. Here,

the normalization uses set intersection and set union opera-

tions and takes O(min(|N(v)|, |N(x)|)+ (|N(v)|+|N(x)|)+
min(|N(u)|, |N(y)|)+(|N(u)|+|N(y)|)) = O(n) time by the

above. In summary, the time complexity of ExactL3 is O(n5).

V. MATERIALS

The ExactL3 formulation (Formula 4) (L3E), the original

L3 link predictor [13], two other recent link predictors based

on the L3 principle (CH2 L3 [15] (CH2), Sim [22]), and

two other general link predictors (CN [14], CRA [23]) will

be evaluated and compared against each other on four PPI

datasets (BioGRID [24], STRING [25], IntAct [26], MINT

[27]) of two organisms (Saccharomyces cerevisiae S288c

(Yeast), Homo sapiens (Human)). For the human dataset, the

HuRI dataset [28] is used as it is one of the variations within

the IntAct dataset (identifier IM-25472).

Two computational setups are used for the experiments, one

with 24 cores and 128GB RAM (for BioGRID and STRING

human datasets), another with 8 cores and 16GB RAM (the

rest of the datasets). The program was written in Python 3.6

with multiprocessing capabilities.

For all datasets, only physical PPIs (i.e. binary interactions)

are considered, which is the focus of the L3 principle. We

extract PPIs using annotations in datasets as follows: ’physical’

for BioGRID; ’binding’ for STRING; ’direct interaction’,

’physical association’, and ’association’ for both IntAct and

MINT; HuRI by default includes only binary interactions. For

co-complex interactions in IntAct, the Spoke Model is used to

convert them into binary interactions [29] (i.e., assume prey

proteins interact only with bait proteins in the co-complex).

We do 10 experiments for each dataset. In each experiment,

we first remove 50% of the edges chosen uniformly at random;

here and in the next section, let γ denote the number of edges

that were removed in a particular experiment. For each link

predictor, we then rank all non-neighboring nodes x and y
(called candidate edges) according to their scores. The top γ
ranked candidate edges are selected as the predicted edges.

We evaluate the quality of the predicted edges by a statistical

method (Precision-Recall) as well as three biological metrics:

Gene Ontology Semantic Similarity (GOSemSim) scores, con-

fidence scores, and gene essentiality. To compute the GOSem-

Sim scores between proteins, we use an R language package

[30] based on Wang’s method [31] with the BWA strategy. The

confidence score of each predicted PPI is extracted from the

STRING dataset directly. Both scores are defined to be zero

if the computation returns null or the score does not exist. For

essential genes datasets, all 1080 essential genes of yeast, and

all 3230 essential genes of human were downloaded from [32]

and [33] (using the backup in [34]) respectively.

VI. RESULTS

In this section, we first evaluate ExactL3 (L3E) and other

link predictors by Precision-Recall. Then, we evaluate the

biological relevance of the top predicted PPIs in three metrics.

ExactL3 has the best performance in all evaluations.

A. Experiment Statistics

Table I summarizes the graph properties of all the PPI

datasets. In each experiment, any node that becomes isolated

during the edge removal process will be removed from the

graph so that no candidate edges involving that node will be
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# of Nodes # of PPIs Average # of Candidate PPIs γ
Yeast Human Yeast Human Yeast Human Yeast Human

BioGRID 6,815 24,381 172,448 604,747 20,115,400 224,868,220.7 86,224 302,373
IntAct / HuRI 5,418 8,135 143,750 167,331 1,166,076 30,904,949.3 71,875 61,413
STRING 4,574 13,712 46,298 122,827 8,870,602.6 74,147,866.4 23,149 83,665
MINT 4,056 7,430 39,429 33,146 6,479,681 17,396,746.3 19,714 16,573

TABLE I: Dataset graph properties

Fig. 3: (Section VI-B) Precision-Recall (PR) of the link predictors. The shaded regions show the PR-curves’ ranges in the ten experiments,
and the solid lines are their average values. Each figure legend ranks the link predictors according to their PR-curves.

considered. Hence, the average number of resulting candidate

edges for each dataset is presented in the table. In all cases, the

human datasets are much larger than the yeast datasets (e.g.,

HuRI has 26.5 times more candidate edges). We can rank

the size of the datasets from largest to smallest as follows:

BioGRID, IntAct/HuRI, STRING, MINT. Table II shows

the average running times for all the link predictors in ten

experiments for each dataset. Here, we can see that STRING

and MINT take less time than BioGRID and IntAct/HuRI, as

expected from their scales. Also, the running time of ExactL3
increases drastically compared to L3, or CN as the dataset

size increases, which agrees with the time complexity analysis

in Section IV-A. To summarize, the running time of the link

predictors can be ranked as follows (low to high): CN, CRA,

L3, Sim, ExactL3, CH2 L3. For ExactL3, all obtained scores

were between 0.000222 and 0.216915, with a precision up to

19 decimal places, and there were no significant truncation

errors.

Saccharomyces cerevisiae (Yeast)
CN L3 ExactL3 CRA CH2 L3 Sim

BioGRID 2.81 8.00 60.95 2.68 81.74 20.72
IntAct 1.63 4.11 33.49 1.73 42.93 10.07

STRING 1.09 1.32 1.63 1.11 1.70 1.46
MINT 0.94 0.99 1.03 0.89 0.93 0.97

Homo sapiens (Human)
CN L3 ExactL3 CRA CH2 L3 Sim

BioGRID 0.91 17.83 104.95 0.98 154.75 46.16
HuRI 4.15 6.07 10.50 4.30 11.01 7.89

STRING 0.23 0.94 1.51 0.24 1.31 1.09
MINT 2.52 2.66 2.93 2.48 2.83 2.74

TABLE II: Average running times (in minutes) taken over ten
experiments. For Human BioGRID and Human STRING, more

computational resources are used, as stated in Section V.

B. ExactL3 Improves PPI Link Predictions Statistically

In this section, we evaluate the changes in Precision-Recall

of the predicted edges, starting from the top 100 edges to the

top γ edges (see Table I) for each link predictor in all datasets.

Precision is defined as the ratio of true-positive edges in all

predicted edges, and Recall is defined as the ratio of true-

positive edges in all removed edges. The PR curve shows the

decrease in a link predictor’s performance (of identifying true-

positive edges) as the ratio of recovered edges increases.

In Fig. 3, we can see a general trend across datasets for

ExactL3. ExactL3 performs well on BioGRID and STRING

(1,2), similar to the other methods on IntAct/HuRI (3), and

worse than the others on MINT (4). Also note that regardless

of the scale (organism), ExactL3 is able to perform consis-

tently, unlike predictors such as CN in IntAct/HuRI. ExactL3
has the best performance for the majority of the datasets (five

cases) compared to other predictors (L3 is the second best,

with two cases). Within the top three of all datasets, they are

mostly dominated by L3-based predictors (6 out of 8 times).

This shows that the L3 principle can be used to predict missing

PPIs well in terms of Precision-Recall.

C. ExactL3 Predictions are More Biologically Relevant

Apart from evaluating the link predictors statistically, we

are also interested in the biological relevance of the predicted

PPIs. We evaluate the link predictors with the following three

metrics: Gene Ontology (GO) Semantic Similarity (GOSem-

Sim), STRING Confidence Scores, and Gene Essentiality. The

motivation for each metric will be elaborated on below.

1) GOSemSim Scores: GO annotations are used to describe

features of proteins, and the annotations are divided into three

root categories: cellular component, molecular function, and
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Fig. 4: (Section VI-C) Average GOSemSim for the top 10% of the γ predicted edges. The higher the GOSemSim scores, the better.

biological process. While GO annotation is a single keyword,

this keyword is actually a part of its ”GO tree” where many

other annotations are parent class of this annotation. As such,

GO annotations are highly specific and rich descriptors in

comparing the functional similarity of two proteins, and those

with high GOSemSim scores are likely to have PPIs [35].

Fig. 4 shows the GOSemSim score for the top 10% of the

top γ predicted PPIs of each link predictor across all datasets.

ExactL3 has the best performance in both the yeast and the

human datasets (except (b3) being slightly worse). The second

best predictor is CRA, which outperforms L3 consistently as

also shown by the data in [13]. Here, we can see that in

contrast to the previous section, CRA and CN is always the top

two and three respectively. This is natural as they are CN-based

link predictors, and the CN principle prioritizes proteins with

similar functions (i.e., high GOSemSim score). Since ExactL3
is based on L3, the high GOSemSim scores further show the

biological relevance of its link prediction.

Fig. 5: Moving averages of the STRING confidence scores for the

top γ edges predicted by each link predictor. The shaded regions and

the labels are arranged as in Fig. 3.

2) STRING Confidence Scores: The STRING confidence

score estimates the confidence of a PPI from various factors

such as gene co-expression, literature mining, etc. The moving

averages (MM) of the STRING confidence scores for the top

γ edges are shown in Fig. 5, with an MM-window size of 100

edges, and where each iteration slides pass 10 edges. MM

reflects the scores of the corresponding local portions of PPIs.

Unlike Section VI-C1, all of the top γ edges are evaluated

because STRING confidence scores have more comprehensive

biological evidence and can thus satisfactorily evaluate low-

rank PPIs. According to Fig. 5, ExactL3 has the best and the

most consistent performance among the link predictors across

two organisms.

3) Gene Essentiality: Essential genes are proteins that its

deletion will be lethal to an organism. Since they are important

proteins, they are more likely to be expressed as network hubs

in PPI networks [36]. Naturally, it is easier for link predictors

to pick PPIs related to essential proteins due to its topological

significance (i.e., high degree). So, if a link predictor can detect

essential genes with less-apparent topological traits (i.e, low

degree), the link predictor is then better normalized to discover

functional PPIs.

Next, we evaluate how sensitive the link predictors are in

identifying PPIs with essential genes. Then, we evaluate the

average degree of these essential nodes. This way, we can

evaluate the topological bias of the essential genes selected by

the link predictors. Fig. 6 shows the cumulative hit of essential

genes, and Fig. 7 shows the node degree of these essential

genes within the top 10% of the γ predicted PPIs. As shown

in Fig. 6, the predicted PPIs by ExactL3 are most sensitive

to essential genes in datasets of both organisms, except in

Fig. 6(a1) but with only a small difference to the top ones.

Then, in Fig. 7 we can also see that the top identified essential

genes by ExactL3 have relatively lower node degree than other

link predictors. This shows that ExactL3 can identify essential

genes more sensitively while being more independent to the

topological properties (i.e., not finding hub nodes). Note that

in some cases, Sim picks essential genes with much lower

node degree. However, it is not as sensitive to essential genes

as ExactL3.

VII. DISCUSSION

In this paper, ExactL3 is formulated based on the biological

motivation of the L3 principle. ExactL3 shows improved

performance statistically and functionally compared to two

CN-based link predictors (CN, CRA) and three L3-based link

predictors (L3, CH2 L3, Sim).

A. ExactL3 Characterizations

Overall, ExactL3 shows improved performance statistically

and functionally in numerous yeast (small-scale) and human
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Fig. 6: (Section VI-C3) Comparing the cumulative hit of essential genes in the order of the γ th predicted PPIs for each link predictor. Here,
the higher the curve is, the better. Each figure legend ranks the link predictors according to their curves.

Fig. 7: The average node degree of the essential genes within the top 10% of the γ predicted PPIs. Each figure maps to the corresponding
figure in Fig. 6 (e.g., Fig 7(a1.1) maps to Fig 6(a1)). Here, the lower the average node degree, the better.

(large-scale) PPI datasets. Its performance is most apparent in

Section VI-C3 (Gene Essentiality), matching our assumption

that if ExactL3 characterizes PPIs better, then it will be

sensitive to essential genes even with low degree. As for

Precision-Recall, Fig. 3 confirms that ExactL3 is the best of

the six evaluated methods for most of the datasets, and al-

ways among the top-performing ones. Furthermore, ExactL3’s

Precision-Recall pattern seems more consistent across different

organisms in the same dataset than the other methods’. It is

worth investigating if there is a topological bias within the

datasets that results in this pattern for ExactL3 but not the

others.

Surprisingly, ExactL3 performs well in terms of GOSemSim

scores, contrary to other L3-based predictors (and also as

shown in the data of [13]). As explained in Section VI-C1,

it is natural for CRA and CN to be better than the L3-based

predictors due to their inherent advantage (CN indicates two

nodes having similar functions). So for ExactL3, we believe

the logical explanation would be that it characterizes specific

subtypes of physical PPIs better, or physical PPIs that are

obtained by specific types of experiments. Methods such as the

ones in Section VII-C may help us to understand the apparent

discrepancy in performance among different datasets.

B. Significance

Characterizations of PPIs can not only be used to predict

PPIs, but also to assess the confidence of existing PPIs for

PPI analysis [7]. As such, it is important to characterize PPIs

according to the context. Naturally, conventional features that

directly imply PPIs such as domain interactions [37], or gene

co-expression are used for characterizations instead. Thus,

graph features in PPI networks have not been fully utilized,

as shown by the lack of related research in the review in [7].

In this paper, we show that given a proper hypothesis (the

L3 principle), PPIs can be characterized more specifically by

modifying the mathematical terms (ExactL3). This yields a

way to characterize a biological phenomenon topologically,

and also provides a cheap method to evaluate PPIs when only

binary interactions data is available (i.e., no external biological

data) to characterize PPIs.

In addition to the above, ExactL3 may be a valuable tool

in PPI analysis. In some studies such as [38], proteins with

significant topological properties such as betweenness and

closeness are shown to be feasible drug targets. Similarly, an

improved L3 link predictor like ExactL3 could be useful to

find significant PPIs. For example, since incompatible neigh-

bor nodes reduce the ExactL3 score, one of the topological

interpretations of a node pair having a high ExactL3 score is

that there may be an abundance of compatible proteins and

similar node pairs nearby. This shows that the interaction of

such node pairs are significant, and may even be essential.

C. Future Work

It would be useful to know exactly what types of subgraphs

(network motifs) are prioritized by ExactL3. Insights into what

these motifs imply biologically will then help explain why
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ExactL3 is better than the other link predictors, reveal more

precisely to what extent ExactL3 can characterize PPIs, and

potentially lead to even better link predictors.

Also, datasets have to be dissected to investigate the bias

of each link predictor more comprehensively. In this paper,

we use the dataset annotations to extract relevant PPIs for

evaluations. However, it is known that some experimental

methods, such as the Y2H assay, can obtain binary PPIs more

accurately compared to other methods [28]. So, it would be

better to divide PPIs within a dataset into various types of PPIs

to better highlight specific traits of the link predictors. Another

way would be to perform GO enrichment analyses, and to

see what types of physical binding activities the abundant GO

terms can be attributed to.

Finally, since the current ExactL3 formulation has a high

running time (see Table II), it would be helpful to derive more

efficient yet equivalent mathematical formulations.

D. Availability

The algorithms and the scripts written to generate and

extract the data for experiments, and a command-line program

to use ExactL3 are all included in the following GitHub

repository: https://github.com/andy897221/ExactL3 PPI
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