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Abstract. The online squarefree recognition problem is to detect the
first occurrence of a square in a string whose characters are provided
as input one at a time. We present an efficient algorithm to solve this
problem for strings over arbitrarily ordered alphabets. Its running time
is O(n log n), where n is the ending position of the first square, which
matches the running times of the fastest known algorithms for the anal-
ogous offline problem. We also present a very simple algorithm for a
dynamic version of the problem over general alphabets in which we are
initially given a squarefree string, followed by a series of updates, and
the objective is to determine after each update if the resulting string
contains a square and if so, report it and stop.

1 Introduction

A classic problem in computer science is to determine whether a given string T
contains a square, defined as a substring of T which can be split into two identical
parts. Since a square is one of the simplest possible types of patterns in a string,
methods for detecting squares efficiently have a wide range of applications in
diverse areas such as string algorithms and combinatorics [2, 6, 8, 9, 11, 16, 18],
automata and formal language theory [6, 12], data compression [4, 8, 17], coding
theory [4], and computational biology [3, 5, 11].

Many people have studied this problem and its variants (see, e.g., [1, 2, 4, 6–9,
11, 12, 15–18] and the numerous references therein). However, previous work has
mainly focused on the offline version in which the entire string T is available at
once. This offline property is not desirable in certain applications. For example,
suppose we need to determine whether a string of one million characters contains
a square. If we use an offline algorithm, we will have to scan through all the one
million characters, which may be very inefficient if a square appears at the very
beginning of the string. In some applications, such as online data compression,
the offline property is even unacceptable; we need to be able to report a square
whenever a new character arrives. The online squarefree recognition problem is
also motivated by the local search method for solving the constraints satisfaction
problem in [13, 14, 19]; to guarantee that the method will not be trapped in some
infinite loop, one can encode the successive states of the search as characters in
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a growing string and terminate the method if a square is formed at the end of
this string [15].

Our main result is an efficient algorithm for the online squarefree recognition
problem over an arbitrarily ordered alphabet. This is a reasonable assumption
for most applications because when the symbols are encoded as binary numbers
in a computer, this will induce a lexicographical ordering among them. Our
algorithm is based on the work of Leung, Peng, and Ting [15]. We also introduce
and study a dynamic version of the problem.

1.1 Problem Definitions

For any string T , let |T | be the length of T . For every 1 ≤ i ≤ j ≤ |T |, denote the
substring of T starting at position i and ending at position j by T [i..j], and define
T [i] = T [i..i]. A substring of the form T [i..(i + 2k − 1)] is called a square (also
known in the literature as a tandem repeat) if for every x ∈ {0, 1, . . . , (k − 1)},
it holds that T [i + x] = T [i + k + x]. If T does not contain a square, then T is
squarefree.

We distinguish between the offline, online, and dynamic versions of the
squarefree recognition problem. In the offline version, the entire string T is pro-
vided as input directly, and the objective is to determine whether or not T
contains a square. In the online version, the characters of the string T arrive one
at a time in sequential order, and the objective is to determine after receiving
each character if the string obtained so far contains a square; if so, report it and
stop. Finally, in the dynamic version, a squarefree string T is provided as the
initial input and then followed by a series of updates of the form “replace the
symbol on position q of T by the symbol x”, and the objective is to decide after
each update if the resulting T contains a square and if so, report it and stop. In
this paper, we also consider a combination of the online and dynamic versions of
the problem that also allows updates of the form “append the symbol x to the
end of T ”.

The alphabet of the input string determines how efficiently the various
squarefree recognition problems can be solved. Under the least restrictive as-
sumption, the symbols in T cannot be relatively ordered; a comparison between
two symbols only tells us if they are equal or not. We call this type of alphabet
a general alphabet. If the symbols in T admit some arbitrary lexicographical
ordering so that any comparison between two symbols yields one of the three
outcomes <, =, and >, then the alphabet is called ordered. 1 Next, in an inte-
ger alphabet, all symbols are integers in the range {1, 2, . . . , |T |}. Finally, if the
size of the alphabet is bounded by a constant, then we say that the alphabet is
constant.

1 As an example to illustrate the difference between general and ordered alphabets,
consider the element uniqueness problem which has a lower bound of Ω(n2) for
general alphabets but admits an O(n log n)-time solution for ordered alphabets
(see [4]).
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1.2 Previous Results

For the offline and general alphabet case, Main and Lorentz [17] gave an algorithm
that can be used to report all s occurrences of squares in a string T of length n
in O(n log n + s) time, or just the longest square in T in O(n log n) time. This is
optimal because to determine if T is squarefree takes Ω(n log n) time for general
alphabets [17]. (For the offline and non-general alphabet case, other efficient al-
gorithms for finding squares were presented earlier in [1] and [7].) However, it is
still not known if the lower bound Ω(n log n) for determining squarefreeness holds
for ordered alphabets. For the offline and constant alphabet case, there exist al-
gorithms that determine if T is squarefree in optimal O(n) time [8, 18]. Parallel
algorithms for finding squares offline have also been developed (see [4]).

For the online case, the only previously known result is the algorithm by
Leung, Peng, and Ting [15] for general alphabets which has a running time
of O(n log2 n), where n is the ending position in T of the first square. (This
is just a factor of O(log n) worse than the optimal offline algorithm for general
alphabets mentioned above.) The algorithm of Leung, Peng, and Ting is outlined
in Section 3.1.

1.3 Our Results

We first present an algorithm for the online squarefree recognition problem over
arbitrarily ordered alphabets. It reads the successive characters of T until a
square has been formed, then reports the occurrence of this square and stops.
The running time is O(n log n), where n is the ending position in T of the square;
in other words, if n is the smallest integer such that T [1..n] contains a square,
our algorithm correctly determines whether T [1..h] contains a square after read-
ing T [h] for every h ∈ {1, 2, . . . , n}. Note that this matches the running times
of the fastest known offline algorithms for determining squarefreeness of strings
over ordered alphabets [1, 7, 17].

Next, we give a very simple algorithm for the dynamic version of the square-
free recognition problem. It works for general alphabets and uses O(n) time per
update, where n is the length of the input string. The algorithm can easily be
extended to also solve the combination of the online and dynamic versions of the
problem in which every update either modifies an existing character or adds a
new character to the end of T .

The table below summarizes our results.

Alphabet type Online algorithm Dynamic algorithm Online + dynamic

General O(n log2 n) O(n) per update O(n) per update
(See [15]) (Theorem 3, (Theorem 4,

Section 4) Section 4)
Ordered O(n log n) O(n) per update O(n) per update

(Theorem 2, (Theorem 3, (Theorem 4,
Section 3) Section 4) Section 4)



Online and Dynamic Recognition of Squarefree Strings 523

2 Preliminaries

2.1 Suffix Trees

Let A be a string of length k. A suffix of A is a substring of A of the form A[x..k],
where x ∈ {1, 2, . . . , k}. A suffix tree for A (see, e.g., [10, 11]) is a rooted tree
with O(k) nodes which represents each suffix of A as a unique path from the
root to a leaf. Every edge in the suffix tree for A encodes a particular substring
of A whose starting and ending positions in A are specified by two integers which
label that edge. For any two leaves x and y, the unique path from the root to
the lowest common ancestor of x and y encodes the longest common prefix of
the two suffixes represented by x and y.

3 An Efficient Online Squarefree Recognition Algorithm
for Arbitrarily Ordered Alphabets

In this section, we present an algorithm for the online squarefree recognition
problem for arbitrarily ordered alphabets. Our algorithm is based on the algo-
rithm of Leung, Peng, and Ting [15] for the general alphabet case, but faster.

3.1 LPT: The Algorithm of Leung, Peng, and Ting

Here, we briefly review the algorithm of Leung, Peng, and Ting [15], henceforth
referred to as LPT. LPT reports the first square in the online input string T in
O(n log2 n) time, where n is the position in T where the square ends.

Algorithm LPT is listed in Fig. 1. It reads the string T one character at
a time, starting with T [1]. After reading a new position h, LPT immediately
checks if T [1..h] contains a square; if so then it reports the square and stops.
Otherwise, T [1..h] is squarefree, and the algorithm proceeds to read the character
at the next position from T . To efficiently do the checking, LPT makes use of a
procedure called DHangSq(i, j) which solves the following subproblem: for every
h ∈ {(j+1), (j+2), . . . , (2j−i+1)}, after T [h] is read, determine if T has a square
ending at position h whose first half lies entirely in the interval T [i..j] (such a

For h ∈ {1, 2, . . .}, after reading T [h], do the following:
if there is a square in T [(h − 3)..h], or any of the running DHangSq(i, j)
detects a square in T [1..h], then report it and stop.
j = h; � = 1;
while (j ≥ 2�) do

if j = q · 2� for some integer q then
i = max{1, q · 2� − 4 · 2� + 1};
start DHangSq(i, j);

� = � + 1;

Fig. 1. Algorithm LPT
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square is said to be “hanging in T [i..j]”). When LPT reaches certain values of h,
it starts a new DHangSq process so that at any point of its execution, it will have
a number of DHangSq(i, j) processes running (for various values of i and j). Refer
to [15] for more details as well as correctness proofs for the algorithm.

For any 1 ≤ i ≤ j, the pair (i, j) is called a level-� pair if there exists
an integer q such that j = q · 2� and i = max{1, q · 2� − 4 · 2� + 1}. (Hence,
j − i + 1 ≤ 4 · 2�.) The analysis in [15] of Algorithm LPT can be summarized
and expressed as:

Theorem 1. [15] Suppose n is the smallest integer such that T [1..n] con-
tains a square. For every h ∈ {1, 2, . . . , n}, LPT correctly determines whether
T [1..h] contains a square after reading T [h]. The total running time of LPT is
∑�log n�

�=1 O( n
2� ) · t(�), where t(�) is the running time of DHangSq(i, j) for a level-�

pair (i, j).

Leung, Peng, and Ting [15] described how to implement DHangSq(i, j) for
general alphabets to run in O((j − i+1) · log(j− i+1)) time, i.e., t(�) = O(2� · �)
above. Using this implementation, it follows from Theorem 1 that the total
running time of LPT is O(n log2 n).

3.2 Speeding Up DHangSq

Recall that DHangSq(i, j) needs to solve the following problem: for every h ∈
{(j + 1), (j + 2), . . . , (2j − i + 1)}, after T [h] is read, determine if T has a square
ending at position h whose first half lies entirely in the interval T [i..j]. Section 4
in [15] shows that this problem can in fact be reduced to the following problem
(stated slightly differently in [15]) at an additional cost of O(j − i + 1) time,
where the parameter k in the new problem is equal to j − i + 1:

The Minimum-Suffix-Centers Checking Problem (MSCC):
Let A be a given string of length k and let L be a given list of pairs of integers of
the form (1, e(1)), (2, e(2)), . . . , (k, e(k)), where for each s ∈ {1, 2, . . . , k} it holds
that 1 ≤ s ≤ e(s) ≤ k. Next, let B be a string of length k which arrives online,
one character at a time. Return the smallest possible h ∈ {1, 2, . . . , k} for which
there is a pair (s, e(s)) in L such that A[s..e(s)] is equal to B[1..h]; if no such h
exists then return fail.

This means that if we could solve MSCC in O(k) time then we could improve
the running time of DHangSq and hence Algorithm LPT; see Theorem 1. More
precisely:

Lemma 1. If we have an O(k)-time algorithm for MSCC then t(�) = O(2�) in
Theorem 1.

3.3 Solving MSCC for Integer Alphabets

We now give an algorithm for solving MSCC in O(k) time under the additional
constraint that A is a string over an integer alphabet {1, 2, . . . , m} with m ≤ k.
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(In the next section, we show how to deal with this extra constraint efficiently
for ordered alphabets by using an input alphabet mapping technique.)

The main idea of our algorithm for MSCC for integer alphabets is to store
the given A in a suffix tree TA, and match the successive characters of B along
a unique path from the root in TA until either enough characters match so that
A[s..e(s)] equals a prefix of B for some s, or the current character of B fails to
match any outgoing edge at the current position in TA. Our algorithm consists
of a preprocessing phase and a matching phase:

Phase I (Preprocessing Phase): Construct a suffix tree TA for A. For conve-
nience, let s for any s ∈ {1, 2, . . . , k} also refer to the leaf in TA that represents
the suffix A[s..k]. Augment TA with additional information as follows. For every
edge f in TA, define v(f) as the minimum value of e(s) − s + 1 taken over all
leaves s belonging to the subtree of TA below f (note that v(f) ≤ k). Obtain
and store v(f) for every edge f in TA by doing a bottom-up traversal of TA.

Phase II (Matching Phase): For successive values of h ∈ {1, 2, . . . , k}, check
if B[1..h] equals A[s..e(s)] for any (s, e(s)) ∈ L with the following method.
Match the successive characters in B along the unique path in TA starting at
the root by following edges labeled by B[1], B[2], . . . (to traverse an edge in TA

that represents x characters, we need to match it to x characters from B) until
either h reaches the value v(f) for the edge f being traversed (success; return h),
or the current character in B does not match any edge at the current position
in TA (failure; return fail).

Correctness: In Phase I, the algorithm builds a suffix tree TA for A. In Phase II,
the algorithm starts at the root of TA and follows a path whose labels match
the successive characters of B. Suppose that the algorithm has received B[1..h]
for any h ∈ {1, 2, . . . , k}. By the properties of a suffix tree, the set of leaves
descending from the current location in TA encode all prefixes of suffixes (i.e., all
substrings) of A having length h that are identical to the string B[1..h] received
so far. Now, if there is such a substring A[s..(s + h − 1)] that also satisfies
(s, s + h− 1) ∈ L, then the edge f being traversed will have v(f) = h, and since
the length of the path from the root is exactly h, the algorithm will succeed and
return h.

To see that the algorithm will stop for the smallest possible h, suppose
B[1..h] = A[s..(s + h − 1)] as well as B[1..h′] = A[t..(t + h′ − 1)] for some
h < h′ and (s, (s + h − 1)), (t, (t + h′ − 1)) ∈ L. Then the algorithm must have
terminated after B[1..h] has been processed because the corresponding path of
length h in TA from the root will have reached the lowest common ancestor of
the two leaves s and t, and the edge f leading to that node satisfies the stopping
condition v(f) ≤ min{h, h′} = h.

Running Time: To implement the algorithm above, we use the method of
Farach-Colton et al. [10] for constructing suffix trees over integer alphabets to
build TA in O(k) time. Next, the bottom-up traversal to compute v(f) for every
edge f in TA takes O(k) time. Then, in the matching phase, the total time
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for finding which outgoing edges to follow in TA from internal nodes is upper-
bounded by the number of edges in TA since each edge is examined at most once;
thus, these computations take O(k) time. The rest of the computations in the
matching phase take O(1) time per read character and the algorithm reads at
most k characters from B. Therefore, the total running time of our algorithm
is O(k).

Lemma 2. MSCC for integer alphabets can be solved in O(k) time.

3.4 LPT∗: An Online Squarefree Recognition Algorithm for
Arbitrarily Ordered Alphabets

Our solution for the subproblem MSCC in Section 3.3 requires the alphabet
of the input string A to be an integer alphabet {1, 2, . . . , m}, where m ≤ |A|.
However, the input T to the online squarefree recognition problem for an arbi-
trarily ordered alphabet does not necessarily meet this requirement. Therefore,
we will modify Algorithm LPT so that before starting DHangSq for any required
pair of indices (i, j), it translates T [i..j] into an equivalent string T ′′

i..j over the
alphabet {1, 2, . . . , (j − i + 1)}. Similarly, when a symbol is read from T , the
algorithm will translate that symbol into the corresponding integer alphabet for
each currently active DHangSq for checking. For this purpose, the modified LPT
will translate the input string T online to a string T ′ over a growing integer
alphabet that is subsequently used to construct all the necessary T ′′

i..j-strings.
In this section, we demonstrate how these extra steps can be performed without
increasing the overall asymptotic running time of LPT. Below, the new version
of LPT is referred to as LPT∗.

For any positive integer h, denote the set of symbols occurring in T [1..h] by
Σh. By our assumptions, each Σh is arbitrarily ordered; except for this fact, we
have no information about the alphabet of T in advance.

Translating T to T ′: As the characters of T arrive online, LPT∗ first translates
them to obtain a string T ′ such that for each positive integer h, the alphabet
of T ′[1..h] is precisely {1, 2, . . . , |Σh|}. To do this, it stores the distinct symbols
read from T so far in a balanced binary search tree B and associates a unique
integer with each symbol inserted into B. Since the number of nodes in B while
reading T [1..h] is always less than or equal to h and because Σh is ordered, the
total time used to translate T [1..h] to T ′[1..h] is O(h log h).

Translating T ′ to T ′′
i..j: Next, whenever LPT∗ starts DHangSq for some pair

of indices (i, j), it also constructs an injective mapping fi..j from the set of
symbols occurring in T ′[i..j] to the set {1, 2, . . . , (j − i + 1)} and applies fi..j

to each position in T ′[i..j] to obtain a string T ′′
i..j over {1, 2, . . . , (j − i + 1)}.

Furthermore, for each such (i, j), until DHangSq(i, j) is terminated, LPT∗ keeps
track of fi..j so that it can translate online the characters in T ′[(j+1)..(2j−i+1)]
to the same alphabet.

The mapping fi..j is implemented as an array Fi..j such that for any x ∈
{1, 2, . . . , j} occurring as a symbol in T ′[i..j], the entry x in Fi..j contains the
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value fi..j(x); the other entries of Fi..j are left undefined. For efficiency reasons
explained below, LPT∗ will reuse the array Fi..j for a terminated DHangSq, and
therefore also associates a “timestamp” of the form (i, j) with each entry of Fi..j

to directly tell whether an entry is valid or contains old information. Suppose
LPT∗ needs to start a new DHangSq(i, j) for some i immediately after reading a
character T [j] and translating it to T ′[j]. Let c be a counter, initially set to 0, and
scan the substring T ′[i..j]. For each s ∈ {i, (i+1), . . . , j}, first check if entry T ′[s]
in Fi..j already has been set by checking its timestamp: if no then increment c by
one, set entry Fi..j(T ′[s]) to c, and update the timestamp of fi..j(T ′[s]). Clearly,
this takes only O(j − i + 1) time.

Next, for any DHangSq(i, j) process started by LPT∗, say that it is on level �
if (i, j) is a level-� pair. We make the following crucial observation:

Lemma 3. At any point during the execution of LPT∗, there are at most four
active DHangSq processes on each level.

Proof. Suppose LPT∗ has just read T [h]. Consider any level � ≤ log h. Let a
be the largest multiple of 2� which is less than h, and write a = q · 2�, i.e.,
q · 2� <h≤ (q + 1) · 2�. If q < 4 then less than four DHangSq processes on level �
have been started and the lemma follows directly. Hence, assume q ≥ 4. Each
DHangSq(i, j) is active while at most j−i+1=4 ·2� positions of T are being read.
This means that right after T [h] is read, the only active DHangSq(i, j) processes
on level � are those that were started for j∈{(q−3)·2�, (q−2)·2�, (q−1)·2�, q ·2�}.

��
By Lemma 3, we only need to keep track of four Fi..j arrays for each level

reached. This means we can reuse the array Fi..j used for storing fi..j after
DHangSq(i, j) terminates to store fi′..j′ for another DHangSq(i′, j′) on the same
level. By using timestamps, we do not need to reinitialize all the positions of
the array. However, note that for any such (i′, j′), the array Fi..j might not be
large enough to store j′ entries. To handle this issue, whenever LPT∗ reaches a
position of the input string which equals a power of two, we let it double the size
of every existing Fi..j , (e.g., for each existing Fi..j , initialize a new array with
twice as many entries and copy the contents of the old Fi..j into the first half
of the new array). Thus, after reading h characters from T , every Fi..j contains
O(h) entries.

Supposing that LPT∗ terminates after reading T [1..n] for some positive in-
teger n, the time needed for all these operations is bounded by

∑�log n�
r=1 O(r) · 4 ·

O(2r) = O(n log n). (LPT∗ doubles the arrays after reaching position 2r of T
for every integer r, i.e., not more than �log n� times. Every time, there are O(r)
levels and at most four active DHangSq on each level, and the doubling of an
array uses time proportional to the number of positions read from T so far.)

Total Running Time of LPT∗: Suppose n is the smallest integer such that
T [1..n] contains a square. The total running time of LPT∗ is equal to the time
needed to do all the string translation operations to integer alphabets plus the
running time of LPT using the faster DHangSq for integer alphabets. By the
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above, the translation operations take a total of O(n log n) time. By Theorem 1,
the running time of LPT is given by

∑�log n�
�=1 O( n

2� ) · t(�), and according to
Lemmas 1 and 2, we have t(�) = O(2�). Adding everything together yields:

Theorem 2. The online squarefree recognition problem for arbitrarily ordered
alphabets can be solved in O(n log n) time, where n is the ending position of the
first square.

4 An Algorithm for Dynamic Squarefree Recognition
over General Alphabets

We now present a simple algorithm for the dynamic squarefree recognition prob-
lem over general alphabets. Its input is a squarefree string T of length n, followed
by a series of updates of the form T [q] := ’x’ (where 1 ≤ q ≤ n) which means
“replace the symbol on position q of T by the symbol x”. After each update, our
algorithm uses O(n) time to check if the modified T contains a square, and if so,
reports it and stops.

The key observation is that after each update T [q] := ’x’, any newly formed
square in T must include the position q along with a (possibly empty) substring
ending immediately before q and a (possibly empty) substring starting immedi-
ately after q, which limits the total number of comparisons we need to make.

For any two positions i, j of T with 1 ≤ i < j ≤ n, define LCSu−1(i, j) as the
longest common suffix of T [1..(i− 1)] and T [1..(j − 1)] and LCPr+1(i, j) as the
longest common prefix of T [(i + 1)..n] and T [(j + 1)..n]. We have the following.

Lemma 4. Suppose that T is a squarefree string of length n and we perform an
update T [q] := ’x’, where 1 ≤ q ≤ n. The resulting string T contains a square
if and only if there exists a q′ ∈ {1, 2, . . . , n} with q′ �= q such that T [q] = T [q′]
and |LCSu−1(q, q′)| + |LCPr+1(q, q′)| + 1 ≥ |q − q′|.
Proof. =⇒) Suppose the resulting T contains a square S = T [p..(p + 2k − 1)].
Then we know by the key observation above that p ≤ q ≤ p + 2k − 1. Define
the twin of q as q′ = q + k if q ≤ p + k − 1 and as q′ = q − k if p + k ≤ q. It is
easy to see that q �= q′, T [q] = T [q′], and |LCSu−1(q, q′)| + |LCPr+1(q, q′)| ≥
k − 1 = |q − q′| − 1.

⇐=) Suppose there exists a q′ ∈ {1, 2, . . . , n} with q′ �= q such that T [q] =
T [q′] and |LCSu−1(q, q′)| + |LCPr+1(q, q′)| + 1 ≥ |q − q′|. Assume without
loss of generality that q < q′. Define p = q − |LCSu−1(q, q′)| and r = q′ −
|LCSu−1(q, q′)|. By the definition of LCSu−1, we have T [p..(q−1)] = T [r..(q′−
1)]. Next, we rewrite the inequality as |LCPr+1(q, q′)| ≥ −q+r−1, which yields
T [(q + 1)..(r − 1)] = T [(q′ + 1)..(q′ − q + r − 1)] by the definition of LCPr+1.
Putting everything together, we have T [p..(r− 1)] = T [r..(q′ − q + r− 1)], i.e., T
contains a square. See Fig. 2 for an illustration. The case q > q′ is symmetric. ��

Now, to determine if T contains a square after performing an update T [q] :=
’x’, apply Lemma 4. More precisely: for each q′ ∈ {1, 2, . . . , n} with q′ �= q,
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q nq’

LCSu   (q,q’)−1 LCPr   (q,q’)+1

T:
1

p r

: :

Fig. 2. Illustrating the second part of the proof of Lemma 4

check if the two conditions T [q] = T [q′] and |LCSu−1(q, q′)|+ |LCPr+1(q, q′)|+
1 ≥ |q− q′| hold. If yes, then T contains a square; report it and stop. If no, then
T is still squarefree.

To implement the above, we use an O(n)-time method to obtain the values
of |LCSu−1(q, q′)| and |LCPr+1(q, q′)| for all q′ ∈ {1, 2, . . . , n} with q′ �= q as
follows. First create a string S = T [(q + 1)..n] ◦ T [1..(q − 1)], where ◦ denotes
concatenation, of length n− 1. Then, for all j ∈ {1, 2, . . . , (n− 1)}, compute the
length of the longest common prefix of S[j..(n−1)] and S[1..(n−q)] in O(n) total
time based on the method on p. 8 in [11] for computing the length of the longest
common prefix of S[j..(n−1)] and S[1..(n−1)] for every j. Clearly, this will give
us all the values of |LCPr+1(q, q′)| for q′ �= q. To compute the |LCSu−1(q, q′)|-
values, we repeat the above steps but create S = T [1..(q − 1)]R ◦ T [(q + 1)..n]R

instead, where AR means the reverse of string A.

Theorem 3. The dynamic squarefree recognition problem for general alphabets
can be solved in O(n) time per update, where n is the length of the input string.

We end this section by describing how the above algorithm can be extended to
the online dynamic squarefree recognition problem that also allows characters
to be appended to the current T . Given any update T [q] := ’x’, where q ∈
{1, 2, . . . , (n + 1)}, if 1 ≤ q ≤ n then perform the same steps as above. If
q = n+1 then position n+1 must be the endpoint of any possible newly formed
square according to the key observation. In this case, calculate |LCSu−1(n+1, j)|
for all j ∈ {�n+1

2 , . . . , n} and note that the resulting T contains a square if and
only if T [n+1] = T [j] and |LCSu−1(n+1, j)| ≥ n−j for some j as in Lemma 4;
use this fact to report any newly formed square. As above, the time needed for
one update is O(n), where n is the length of the current T . We obtain:

Theorem 4. The online dynamic squarefree recognition problem for general al-
phabets can be solved in O(n) time per update, where n is the current length of
the input string.

5 Concluding Remarks

We have presented an efficient algorithm for the online version of the squarefree
recognition problem for arbitrarily ordered alphabets which runs in O(n log n)
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time. In comparison, the fastest known offline algorithms for determining if a
string of length n over an ordered alphabet is squarefree [1, 7, 17] also run in
O(n log n) time. Moreover, we have provided a simple algorithm for a dynamic
version of the problem for general alphabets with O(n) time per update.

Some interesting open questions are:

– Is the running time of our algorithm optimal, i.e., does there exist a lower
bound of Ω(n log n) for determining squarefreeness of strings over ordered al-
phabets? Note that the Ω(n log n) bound in [17] assumes a general alphabet;
for ordered alphabets, no lower bound (except for the trivial Ω(n) bound)
has been proved for the offline case.

– Can the online squarefree recognition problem for constant alphabets be
solved in O(n) time?

– Can the running time of the LPT algorithm [15] be reduced to O(n log n)
for general alphabets?

– How efficiently can the online and dynamic versions of the cube (and higher
orders of repetitions) detection problem be solved?
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