
Efficient Assignment of Identities in Anonymous
Populations

Leszek Gąsieniec1, Jesper Jansson2, Christos Levcopoulos3, and
Andrzej Lingas3

1 Department of Computer Science, University of Liverpool, Street, L69 38X, U.K.
L.A.Gasieniec@liverpool.ac.uk

2 Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto
606-8501, Japan. jj@i.kyoto-u.ac.jp

3 Department of Computer Science, Lund University, 22100 Lund, Sweden.
{Christos.Levcopoulos, Andrzej.Lingas}@cs.lth.se

Abstract. We consider the fundamental problem of assigning distinct labels to
agents in the probabilistic model of population protocols. Our protocols oper-
ate under the assumption that the size n of the population is embedded in the
transition function. Their efficiency is expressed in terms of the number of states
utilized by agents, the size of the range from which the labels are drawn, and the
expected number of interactions required by our solutions. Our primary goal is
to provide efficient protocols for this fundamental problem complemented with
tight lower bounds in all the three aspects. W.h.p. (with high probability) our la-
beling protocols are silent, i.e., eventually each agent reaches its final state and
remains in it forever, and they are safe, i.e., never update the label assigned to any
single agent. We first present a silent w.h.p. and safe labeling protocol that draws
labels from the range [1, 2n]. Both, the number of interactions required and the
number of states used by the protocol are asymptotically optimal, i.e.,O(n logn)
w.h.p. and O(n), respectively. Next, we present a generalization of the protocol,
where the range of assigned labels is [1, (1 + ε)n]. The generalized protocol re-
quires O(n logn/ε) interactions in order to complete the assignment of distinct
labels from [1, (1 + ε)n] to the n agents, w.h.p. It is also silent w.h.p. and safe,
and uses (2 + ε)n + O(nc) states, for any positive c < 1. On the other hand,
we consider the so-called pool labeling protocols that include our fast protocols.
We show that the expected number of interactions required by any pool protocol
is ≥ n2

r+1
, when the labels range is 1, . . . , n+ r < 2n. Furthermore, we provide

a protocol which uses only n + 5
√
n + O(nc) states, for any c < 1, and draws

labels from the range 1, . . . , n. The expected number of interactions required by
the protocol isO(n3).Once a unique leader is elected it produces a valid labeling
and it is silent and safe. On the other hand, we show that (even if a unique leader
is given in advance) any silent protocol that produces a valid labeling and is safe

with probability > 1− 1
n

, uses ≥ n+
√

n−1
2
− 1 states. Hence, our protocol is

almost state-optimal. We also present a generalization of the protocol to include
a trade-off between the number of states and the expected number of interactions.
Finally, we show that for any silent and safe labeling protocol utilizing n+t < 2n
states the expected number of interactions required to achieve a valid labeling is
≥ n2

t+1
.

ar
X

iv
:2

10
5.

12
08

3v
4

 [
cs

.D
C

]
 1

9
D

ec
 2

02
1

1 Introduction

The problem of assigning and further maintaining unique identifiers for entities
in distributed systems is one of the core problems related to network integrity. In
addition, a solution to this problem is often an important preprocessing step for
more complex distributed algorithms. The tighter the range that the identifiers
are drawn from, the harder the assignment problem becomes.

In this paper we adopt the probabilistic population protocol model in which
we study the problem of assigning distinct identifiers, which we refer to as la-
bels, to all agents 4. The adopted model was originally intended to model large
systems of agents with limited resources (state space) [4]. In this model the
agents are prompted to interact with one another towards a solution of a shared
task. The execution of a protocol in this model is a sequence of pairwise inter-
actions between randomly chosen agents. During an interaction, each of the two
agents: the initiator and the responder (the asymmetry assumed in [4]) updates
its state in response to the observed state of the other agent according to the
predefined (global) transition function. For more details about the population
protocol model see Appendix A.

Designing our population protocols for the problem of assigning unique la-
bels to the agents (labeling problem), we make an assumption that the number
n of agents is known in advance. Our protocols would also work if only an up-
per bound on the number of agents is known to agents. In fact, in such case the
problem becomes easier as the range from which the labels are drawn is larger.
In particular, if we do not have the limit on n we also do not have limit on the
number of states to be used. More natural assumption is that such a limit is im-
posed. And indeed, there are plenty of population protocols which rely on the
knowledge of n [12,13].

Our labeling protocols include a preprocessing for electing a leader, i.e., an
agent singled out from the population, which improves coordination of more
complex tasks and processes. A good example is synchronization via phase
clocks propelled by leaders. More examples of leader-based computation can
be found in [5].

In the unique labeling problem adopted here, the number of utilized states
needs to reflect the number of agents n. Also, Ω(n log n) is a natural lower
bound on the expected number of interactions required to solve not only the la-
beling problem but any non-trivial problem by a population protocol. The main
reason is that Ω(n log n) interactions are needed to achieve a positive constant
probability that each agent is involved in at least one interaction [10].

4 When the size of the label range is equal to the number of agents, the problem is also called
ranking in the literature [12]

2

Perhaps the simplest protocol for unique labeling in population networks is
as follows [13] (cf. [11]). Initially, all agents hold label 1 which is equivalent
with all agents being in state 1. In due course, whenever two agents with the
same label i interact, the responder updates own label to i+1. The advantage of
this simple protocol is that it does not need any knowledge of the population size
n and it utilizes only n states and assigns labels from the smallest possible range
[1, n]5. The severe disadvantage is that it needs at least a cubic in n number
of interactions (getting rid of the last multiple label i, for all i = 1, . . . n −
1, requires a quadratic number of interactions in expectation) to achieve the
configuration in which the agents have distinct labels.

In the following two examples of protocols for unique labeling, we assume
that the population size n is embedded in the transition function, such protocols
are commonly used and known as non-uniform protocols [3], and one of the
agents is distinguished as the leader, see leader based protocols [5].

In the first of the two examples, we instruct the leader to pass labels n, n−
1, ..., 2 to the encountered subsequently unlabeled yet agents and finally assign
1 to itself. The protocol uses only 2n − 1 states (n states utilized by the leader
and n − 1 states by other agents) and it assigns unique labels in the smallest
possible range [1, n] to the n agents. Unfortunately, this simple protocol requires
Ω(n2 log n) interactions because as more agents get their labels, interactions
between the leader and agents without labels become less likely. The probability
of such an encounter drops from 1

n at the beginning to 1
n(n−1) at the end of the

process.
By using randomization, we can obtain a much faster simple protocol as

follows. We let the leader to broadcast the number n to all agents. It requires
O(n log n) interactions w.h.p. 6. When an agent gets the number n, it uniformly
at random picks a number in [1, n3] as its label. The probability that a given pair
of agents gets the same label is only 1

n3 . Hence, this protocol assigns unique
labels to the agents with probability at least 1 − 1

n . It requires only O(n log n)
interactions w.h.p. The drawback is that it uses O(n3) states and the large range
[1, n3]. This method also needs a large number of random bits independent for
each agent.

Besides the efficiency and population size aspects, there are other deep dif-
ferences between the three examples of labeling protocols. An agent in the first
protocol never knows whether or not it shares its label with other agents. This
deficiency cannot happen in the case of the second protocol but it takes place in
the third protocol although with a small probability.

5 We shall denote a range [p, · · · , q] by [p, q] from here on.
6 That is with the probability at least 1− 1

nα , where α ≥ 1 and n is the number of agents.

3

The labeling protocols presented in this paper are silent and safe. We say that
a (non-necessarily labeling) protocol is silent if eventually each agent reaches
its final state and remains in it forever. We say that a labeling protocol is safe
if it never updates the label assigned to any single agent. While the concept
of a silent population protocol is well established in the literature [12,15], the
concept of a safe labeling protocol is new. The latter property is useful in the sit-
uation when the protocol producing a valid labeling has to be terminated before
completion due to some unexpected emergency or running out of time.

Observe that among the three examples of labeling protocols, only the sec-
ond one is both silent and safe. The first example protocol is silent [12] but not
safe. Finally, the third (probabilistic) one is silent and almost safe as it violates
the definition only with small probability.

1.1 Our contributions

The primary objective of this paper is to provide efficient labeling protocols
complemented with tight lower bounds in the aspects of the number of states
utilized by agents, the size of the range from which the labels are drawn, and
the expected number of interactions required by our solutions.

In particular, we provide positive answers to two following natural questions
under the assumption that the number n of agents is known at the beginning.

1. Can one design a protocol for the labeling problem requiring an asymptoti-
cally optimal number of O(n log n) interactions w.h.p., utilizing an asymp-
totically optimal number ofO(n) states and an asymptotically minimal label
range of size O(n) ?

2. Can one design a silent and safe protocol for the labeling problem utilizing
substantially smaller number of states than 2n and possibly the minimal
label range [1, n] ?

We first present a population protocol that w.h.p. requires an asymptoti-
cally optimal number of O(n log n) interactions to assign distinct labels from
the range [1, 2n]. The protocol uses an asymptotically optimal number of O(n)
states. We also present a more involved generalization of the protocol, where
the range of assigned labels is [1, (1 + ε)n]. The generalized protocol requires
O(n log n/ε) interactions in order to complete the assignment of distinct labels
from [1, (1 + ε)n] to the n agents, w.h.p. It uses (2 + ε)n + O(nc) states, for
any positive c < 1. Both protocols are silent w.h.p. and safe. Furthermore, we
consider a natural class of population protocols for the unique labeling problem,
the so-called pool protocols, including our fast labeling protocols. We show that

4

for any protocol in this class that picks the labels from the range [1, n + r], the
expected number of interactions is Ω(n

2

r+1)
Next, we provide a labeling protocol which uses only n + 5

√
n + O(nc)

states, for any positive c < 1, and the label range [1, n]. The expected number of
interactions required by the protocol is O(n3). Once a unique leader is elected
it produces a valid labeling and it is silent and safe. On the other hand, we
show that (even if a unique leader is given in advance) any silent protocol that
produces a valid labeling and is safe with probability larger than 1− 1

n , uses at

least n+
√

n−1
2 − 1 states. It follows that our protocol is almost state-optimal.

In addition, we present a variant of this protocol which uses n(1 + ε) + O(nc)
states, for any positive c < 1. The expected number of interactions required by
this variation is O(n2/ε2), where ε = Ω(n−1/2). On the other hand, we show
that for any silent and safe labeling protocol utilizing n + t < 2n states the
expected number of interactions required to achieve a valid labeling is at least
n2

t+1 .
All our labeling protocols include a preprocessing for electing a unique

leader and assume the knowledge of the population size n. However, our al-
most state-optimal protocol (Single-Cycle protocol) can be made independent
of n (see Section 4).

Our results are summarized in Tables 1 and 2.

1.2 Main ideas of our protocols

Our first fast labeling protocol roughly operates as follows. The leader initially
has label 1 and a range of labels [2, n]. During the execution of the first phase,
encountered unlabeled agents also get a label and an interval of labels that they
can distribute among other agents. Upon a communication between a labeled
agent that has a non-empty interval and an unlabeled agent, the latter agent gets
a label from the interval and if the remaining part of the interval has length
≥ 2 then it is shared between the two agents. After O(n log n) interactions, a
sufficiently large fraction of agents is labeled and has no additional labels to
distribute w.h.p. The leader counts its own interactions up to O(log n) in order
to trigger the second phase by broadcasting. In the latter phase, an agent with
a label x and without a non-empty interval can distribute one additional label
x + n. In the first phase of this protocol the labels from the range [1, n] are
distributed rapidly among the agents. In the second phase the unlabeled agent
still have a high chance of communicating with an agent that can distribute a
label. Roughly, our second, generalized fast labeling protocol is obtained from
the first one by constraining the set of agents that may distribute the labels x+n
in the second phase to those having labels in the range [1, nε].

5

Theorem # states # interactions Range
Theorem 1 O(n) O(n logn) w.h.p. [1, 2n]

Theorem 2 (2 + ε)n+O(nc), any c < 1 O(n logn/ε) w.h.p. [1, (1 + ε)n]

Theorem 3 n+ 5 ·
√
n+O(nc), any c < 1 expected O(n3) [1, n]

Theorem 4 (1 + ε)n+O(nc), any c < 1 expected O(n2/ε2) [1, n]

Table 1. Upper bounds on the number of states, the number of interactions and the range required
by the labeling protocols presented in this paper. In Theorem 2, ε is Ω(n−1) while in Theorem 4
Ω(n−0.5).

Protocol type # states # interactions Theorem
any1 n Ω(n logn) w.h.p. Theorem 5

silent, safe2 n+
√

n−1
2
− 1 - Theorem 6 (1st part)

silent, safe3, n+ t < 2n states - expected n2

t+1
Theorem 6 (2nd part)

pool, range [1, n+ r] - expected n2

r+1
Theorem 7

Table 2. Lower bounds on the number of states or/and the number of interactions required by
labeling protocols. (1) Any labeling protocol that is capable to produce a valid labeling. (2) The
silent protocol in Theorem 6 (first part) is assumed to produce a valid labeling and be safe with
probability greater than 1 − 1

n
. (3) The silent protocol in Theorem 6 (2nd part) is assumed to

produce a valid labeling and be safe with probability 1.

The main idea of the almost state-optimal labeling protocol (Single-Cycle
protocol) is to use the leader and an auxiliary leader nominated by the leader to
disperse the n labels jointly among the remaining free agents. The leader dis-
perses the first and the auxiliary leader the second part of each individual label.
When a free agent gets both partial labels, it combines them into its individual
label and then informs the leaders about this. The two leaders operate in two
embedded loops. For each of roughly

√
n partial labels of the leader, the auxil-

iary leader makes a full round of dispersing its roughly
√
n partial labels. In the

generalized version of the protocol (k-Cycle protocol), the process is partially
parallelized by letting the leader to form k pairs of dispensers, where each pair
labels agents in a distinct range of size n/k.

1.3 Related work

There are several papers concerning labeling of processing units (also known as
renaming or naming) in different communication models [14]. E.g., Berenbrink
et al. [8] present efficient algorithms for the so-called lose and tight renaming
in shared memory systems improving on or providing alternative algorithms to

6

the earlier algorithms by Alistarh et al. [2,1]. The lose renaming where the label
space is larger that the number of units is shown to admit substantially faster
algorithms than the tight renaming [1,8].

The problem of assigning unique labels to agents has been studied in the
model of population protocols by Beauquier et al. [7,11]. In [11], the emphasis
is on estimating the minimum number of states which are required by apparently
non-safe protocols. In [7], the authors provide among other things a generaliza-
tion of a leader election protocol to include a distribution of m labels among
n agents, where m ≤ n. In the special case of m = n, all agents will receive
unique labels. No analysis on the number of interactions required by the proto-
col is provided in [7]. Their focus is on the feasibility of the solution, i.e., that
the process eventually stabilizes in the final configuration. Their protocol seems
inefficient in the state space aspect as it needs many states/bits to keep track of
all the labels.

Doty et al. considered the labeling problem in [17] and presented a sub-
routine named "UniqueID" for it based on the technique of traversing a labeled
binary tree and associating agents with nodes in the tree. The subroutine requires
O(n log n log log n) interactions.

The labeling problem has also been studied in the context of self-stabilizing
protocols where the agents start in arbitrary (not predefined) states, see [12,13].
In [13], Cai et al. propose a solution which coincides with our first example
of labeling protocols presented in the introduction. In a very recent work [12],
Burman et al. study both slow and fast labeling protocols, the latter utilizing
an exponential number of states. The protocols in both papers require the ex-
act knowledge of n. The work [12] focuses on self-stabilizing protocols which
cannot be safe by definition. It is more proper to compare our protocols with
the initialized version of the protocols in [12]. E.g., the leader-driven initialized
(silent) ranking protocol in [12] (see Lemma 4.1) requires O(n2) interactions,
uses O(n) states and it is safe. An analogous variant of the fast ranking proto-
col from [12] requiring O(n log n) interactions and an exponential number of
states is also safe but not silent. The known labeling protocols are summarized
in Table 3.

The most closely related problem more studied in the literature is that of
counting the population size, i.e., the number of agents. It has been recently
studied by Aspnes et al. in [6] and Berenbrink et al. in [10]. We assume that
the population size is initially known. Alternatively, it can be computed by us-
ing the protocol counting the exact population size given in [10]. The afore-
mentioned protocol computes the population size in O(n log n) interactions
w.h.p., using Õ(n) states. Another possibility is to use the protocol computing
the approximate population size, presented in [10]. The latter protocol requires

7

n # interactions # states Range Properties Paper
unknown O(n3) w.h.p. n [1, n] silent [13]
unknown O(n logn log log n) w.h.p. nO(1) [1, nO(1)] silent [17]

known O(n2) expected O(n) [1, n] silent, safe [12]
known O(n logn) w.h.p. exp(O(nlogn logn)) [1, n] safe [12]

Table 3. Upper bounds on the number of interactions, the number of states and the range used by
the known labeling protocols. In case of the self-stabilizing labeling protocols in [12], the “safe”
property can eventually hold only for their initialized versions.

O(n log2 n) interactions to compute the approximate size w.h.p., using only a
poly-logarithmic number of states. For references to earlier papers on protocols
for counting or estimating the population size, in particular the papers that intro-
duced the counting problem and that include the original algorithms on which
the improved algorithms of Berenbrink et al. are based, see [10].

All our protocols include a preprocessing for electing a unique leader and
its synchronization with the proper labeling protocol (e.g., see the proof of The-
orem 1). There is a vast literature on population protocols for leader election
[9,16,18,19]. For our purposes, the most relevant is the protocol that elects a
unique leader from a population of n agents using O(n log n) interactions and
O(nc) many states, for any positive constant c < 1, w.h.p., described in [10,16]
(see also Fact 7). The newest results elaborate on state-optimal leader election
protocols utilizing O(log log n) states. These include the fastest possible pro-
tocol [9] based on O(n log n) interactions in expectation, and a slightly slower
protocol [19] requiring O(n log2 n) interactions with high probability.

Our population protocols for unique labeling use also the known popula-
tion protocol for (one-way) epidemics, or broadcasting. It completes spreading
a message in Θ(n log n) interactions w.h.p. and it uses only two states [18] (see
also Fact 4).

1.4 Organization of the paper

In the next section, we provide basic facts on probabilistic inequalities and pop-
ulation protocols for broadcasting, counting and leader election. In Section 3,
we present our fast silent w.h.p. and safe protocol for unique labeling in the
range [1, 2n] and its generalization to include the range [1, n(1 + ε)]. Section
4 is devoted to the almost state-optimal, roughly silent and safe protocol with
the label range [1, n] and its variation. Section 5 presents lower bounds on the
number of states or the number of interactions for silent, safe and the so-called
pool protocols for unique labeling. We conclude with Final remarks.

8

2 Preliminaries

2.1 Probabilistic bounds

Fact 1 (The union bound) For a sequenceA1, A2,, Ar of events, Prob(A1∪
A2 ∪Ar) ≤

∑r
i=1 Prob(Ai).

Fact 2 (multiplicative Chernoff lower bound) Suppose X1, ..., Xn are indepen-
dent random variables taking values in {0, 1}. Let X denote their sum and let
µ = E[X] denote the sum’s expected value. Then, for any δ ∈ [0, 1],

P rob(X ≤ (1 − δ)µ) ≤ e
δ2µ
2 holds. Similarly, for any δ ≥ 0, P rob(X ≤

(1 + δ)µ) ≤ e
δ2µ
2+δ holds.

Fact 3 [18] For all C > 0 and 0 < δ < 1, during Cn log n interactions, with
probability at least 1 − n−O(δ2C) , each agent participates in at least 2C(1 −
δ) log n and at most 2C(1 + δ) log n interactions.

2.2 Broadcasting, counting and leader election

We shall refer to the following broadcast process which can be completed during
Θ(n log n) interactions w.h.p. Each agent is either in a state of M-type (got the
message) or in a state of ¬M-type. Whenever an agent in a state of M-type
interacts with an agent in a state of ¬M-type, the latter changes its state to a
state of M-type (gets the message). The process starts when the first agent gets
the message and completes when all agents have the message.

Fact 4 There is a constant c0 , such that for c ≥ c0, the broadcast process
completes in cn log n interactions with probability at least 1− n−Θ(c).

Berenbrink et al. [10] obtained among other things the following results on
counting the population size, i.e., the number of agents.

Fact 5 There is a protocol for a population of an unknown number n of agents
such that w.h.p., after O(n log2 n) interactions the protocol stabilizes and each
agent holds the same estimation of the population size which is either dlog ne
or blog nc. The protocol uses O(log2 n log logn) states.

Fact 6 There is a protocol for a population of an unknown number n of agents
such that w.h.p., after O(n log n) interactions the protocol stabilizes and each
agent holds the exact population size. The protocol uses Õ(n) states.

9

There is a vast literature on population protocols for leader election [18].
For our purposes, the following fact will be sufficient. Its idea is to start leader
election with a subprotocol of [19] that elects a junta of substantially sublinear in
n number of leaders. The junta is formed using O(n log n) interactions. Then,
when state space of size nc is available, c < 1, only a constant number of
rounds of leader elimination is needed, each requiring O(n log n) interactions.
For more details, see [10,16].

Fact 7 There is a protocol that elects a unique leader from a population of n
agents using O(n log n) interactions and O(nc) many states, for any positive
constant c < 1, w.h.p. [10,16].

3 Labeling with asymptotically optimal number of interactions,
nearly optimal number of states and range

In this section, we provide a silent w.h.p. and a safe labeling protocol that assigns
unique labels from the range [1, 2n] to n agents inO(n log n) interactions w.h.p.
Then, we generalize the protocol to include the range [1, (1+ε)n],where ε does
not have to be a constant; it can even be as small as O(n−1). We show that the
generalized protocol assigns unique labels from [1, (1 + ε)n] in O(n log n/ε)
interactions w.h.p. In the first protocol, the agents useO(n) states, in the second
protocol only (2 + ε)n+O(nc) states, for any positive c < 1.

3.1 Range [1, 2n]

The protocol runs in two main phases preceded by a leader election prepro-
cessing. The idea of the first phase resembles that of load balancing [10], the
difference is that tokens (in our case labels and interval sub-ranges) are distinct.

At the beginning of the first phase, the leader assigns the label 1 and also
temporarily the interval [2, n] to itself. Next, whenever two agents interact, one
with label and a temporarily assigned interval [q, r] where r > q and the other
without label, the former agent shrinks its interval to [q, b q+r2 c] and it gives away
the label b q+r2 c + 1 and if b q+r2 c + 2 ≤ r also the sub-interval [b q+r2 c + 2, r]
to the latter agent. Furthermore, whenever an agent with label and a temporarily
assigned singleton interval [q, q] interacts with an agent without label, the former
agent cancels its interval and gives the label q to the latter agent. In the remaining
cases, interactions have no effect. Note that during the first phase a sub-tree of
the binary tree of the partition of the start interval [1, n] with n leaves determined
by the protocol rules is formed, see Fig. 1. Also observe that when an agent at
an intermediate node of the tree interacts with an agent without label then the

10

1

1

5

[2,7]

[2,4] [6,7]

1 75
[6,6][2,3]

4

5 61
[2,2]

3

1 2

Fig. 1. An example of the partition tree of the start interval.

former agent migrates to the left child of the node while the latter agent lands at
the right child of the node.

In the second phase, when an agent with a label i ∈ [1, n] at a leaf of the
tree interacts with an agent without label for the first time then the latter agent
gets the label i + n. Interactions between agents (if any) at intermediate nodes
of the tree and agents without labels are defined as in the first phase.

The following lemmata are central in showing that O(n log n) interactions
are sufficient w.h.p. to implement our protocol.

Lemma 1. There is a constant c such that after cn log n interactions in the first
phase the number of agents without labels drops below n/4 w.h.p.

Proof. The proof is by contradiction. Suppose that a set F of at least n/4 agents
without labels survives at least cn log n interactions, where the constant c will
be specified later.

Consider first the leader agent starting with the interval [2, n] during the
aforementioned interactions. When the agent interacts with an agent without
label its interval is roughly halved. We shall call such an interaction a success.
The probability of success is at least 1

4n . The expected number of successes is
at least c4 log n. By using Chernoff multiplicative bound given in Fact 2, we can
set c to enough large constant so the probability of at least log2 n+ 1 successes
will be at least 1 − 1

n2 . This means that the leader will end up without any

11

interval with so high probability during the cn log n interactions. The leader
chooses the leftmost path in the binary partition tree of the start interval [1, n].
Consider an arbitrary path P from the root to a leaf in the tree. Note that several
agents during distinct interactions can appear on the path. Define as a success
an interaction in which an agent currently on P interacts with an agent without
label. The expected number of successes is again at least c

4 log n and again we
can conclude that there are at least log2 n+1 successes with probability at least
1 − 1

n2 . Simply, the probabilities of interacting with an agent without label are
the same for all agents with labels, i.e., on some paths in the tree. Another way
to argue is that the leader could make other decisions as to which roughly half
of interval to preserve and the path choice. By the union bound (Fact 1), we
conclude that all the n paths from the root to the leaves in the tree could be
developed during the cn log n interactions, so all agents would get a label, with
probability at least 1− 1

n . We obtain a contradiction with the so long existence
of the set F. ut

Lemma 2. If the second phase starts after cn log n interactions, where c is the
constant from Lemma 1, then only O(n log n) interactions are needed to assign
labels in [1, 2n] to the remaining agents without labels, w.h.p.

Proof. The number of agents without labels at the beginning of the second phase
is at most n/4 w.h.p. Hence, at the beginning of this phase the number of agents
with labels is at least 3

4n w.h.p. An agent with label i ≤ n at a leaf of the tree
can give the label i + n to an agent without label only once. Since this can
happen at most n4 times, the number of agents with labels in [1, n] that can give
a label is always at least n2 w.h.p. We conclude that for an agent without label
the probability of an interaction with an agent that can give a label is is at least
almost 1

2n . Hence, after each O(n) interactions the expected number of agents
without label halves. It follows that the expected number of such interactions
rounds is O(log n). Consequently, the number of the rounds is also O(log n)
w.h.p. by Chernoff bound (Fact 2).

An alternative way to obtain theO(n log n) bound on the number of interac-
tions w.h.p. is to use Fact 3 with C = O(1

1/2) and δ = 1
2 . Then, each agent will

interact with at least C log n agents w.h.p. during Cn log n interactions. Con-
sequently, the probability that a given agent does not interact with any agent
that can give a label during the aforementioned interactions is (1− 1

2)
O(2 logn).

Hence, by picking enough large C, we conclude that each agent (in particular
without label) will interact with at least one agent that can give a label during
the Cn log n interactions w.h.p. ut

Lemma 3. During both phases, no pair of agents gets the same label.

12

Proof. The uniqueness of the label assignments in the first phase follows from
the disjointedness of the labels and intervals assigned to agents before and af-
ter each interaction. This argument also works for the labels not exceeding n
assigned later in the second phase. Finally, the uniqueness of the labels of the
form i+n follows from the uniqueness of the labels of the agents passing these
labels. ut

Theorem 1. There is a safe protocol for population of n agents that w.h.p. as-
signs unique labels in the range [1, 2n] to the agents equipped with O(n) states
in O(n log n) interactions. The protocol is also silent w.h.p.

Proof. Under the assumption that the leader election preprocessing provides a
unique leader, the correctness of label assignment in both phases w.h.p. and the
fulfilling of the definition of a silent and safe protocol follows from Lemmata 1,
2, and 3 and the specification of the protocol, respectively.

For the purpose of the leader election preprocessing, we use the simple
leader election protocol using O(n log n) interactions and O(nc) states, for any
positive constant c, described in [10,16] (Fact 7). The phase clock (based on
junta of leaders) from [19] is also formed in O(n log n) interactions, using
O(log log n) states and we use this clock to count the required (by the sim-
ple leader election protocol) time Ω(n log n). When this time is reached on
the clock we switch from leader election to our proper labeling protocol. The
two aforementioned processes can be run simultaneously, resulting in additional
state usage O(nc log logn) (still fine for our needs). Thus, the leader election
preprocessing and its synchronization with the proper labeling protocol in two
phases add O(n log n) interactions and o(n) states w.h.p. It provides a unique
leader w.h.p. It follows that w.h.p. the whole protocol provides a correct la-
beling, it is silent and safe. In fact, we can make it safe (with probability 1)
by prohibiting agents to change or get rid of an assigned label. Note that this
constraint does not affect the operation of the protocol when a unique leader is
provided by the preprocessing.

Both phases require O(n log n) interactions w.h.p. by Lemmata 1, 2.
To put the two phases described in Lemmata 1, 2 together, we let the leader

agent to count its interactions. When the number of interactions of the leader in
the first phase exceeds an appropriate multiplicity of log n, the total number of
interactions in the first phase achieves the required lower bound from Lemma 1
w.h.p. by Fact 3. Therefore, then the leader starts broadcasting the message on
the transition to the second phase to the other agents. By Fact 4, the broadcasting
increases the number of interactions only by O(n log n) w.h.p. (The leader can
also stop the second phase in a similar fashion.)

13

To save on the number of states, instead of having states corresponding to all
possible sub-intervals of [1, n], we consider states corresponding to the nodes
of the interval partition tree (see Fig. 1) whose sub-tree is formed in the first
phase. More precisely, we associate two states with each intermediate node of
the binary tree on n leaves and n−1 intermediate nodes. They indicate whether
or not the agent at the intermediate node has already received the message about
the transition to the second phase. Next, we associate four states to each leaf of
the tree. They indicate similarly whether or not the agent at the leaf has already
received the phase transition message and whether or not the agent has already
passed a label to an agent without label in the second phase, respectively. With
each label in the range [n+1, 2n],we associate only a single state. Additionally,
there areO(log n) states used by the leader to count interactions in order to start
the second phase. Recall also that the leader election preprocessing requires
o(n) additional states. Thus the total number of states does not exceed 2n +
4n+ n+ o(n). ut

By combining the protocol of Theorem 1 with that of Berenbrink et al. for
exact counting the population size (Fact 6), we obtain the following corollary
on unique labeling when the population size is unknown to agents initially.

Corollary 1. There is a protocol for a population of n agents that assigns
unique labels in the range [1, 2n] to the agents initially not knowing the number
n, equipped with Õ(n) states, in O(n log n) interactions w.h.p.

Proof. We run first the protocol for exact counting (Fact 6) and then our pro-
tocol for unique labeling (Theorem 1) using the leader elected by the counting
protocol. We can synchronize the three protocols in a similar fashion as we
synchronized the two phases of our protocol additionally using O(n log n) in-
teractions and O(log n) states. ut

By using the method of approximate counting from [10] (Fact 5) instead of
that for exact counting (Fact 6), we can decrease the number of states to O(n)
at the cost of increasing the label range to [1, 8n] and the number of interactions
required to O(n log2 n).

3.2 Range [1, (1 + ε)n]

The new protocol is obtained by the following modifications in the previous one.
The leader which counts the number of own interactions starts broadcasting the
phase transition message when the number of agents without labels drops be-
low nε/4 w.h.p. (see Lemma 4). The information about the transition to the
second phase affects only the agents at the leaves of the interval partition tree,

14

corresponding to labels in [1, nε]. When they get the message about the phase
transition, they know that they can pass a label which is the sum of their own
label and n to the first agent without label they interact with. For this reason,
only the agents at the leaves corresponding to labels in [1, nε] as well as the
agents that are at the nodes that are ancestors of the aforementioned leaves par-
ticipate in the broadcasting of the phase transition message. (Observe that the
number of agents at these ancestors is O(nε) and an agent at such an ancestor
also has a label in [1, nε].) In the second phase, besides the agents at the leaves
corresponding to labels in [1, nε] and the agents without labels, also the agents
at the intermediate nodes of the tree (if any) can really interact, in fact as in the
first phase.

The following generalization of Lemma 1 is straightforward.

Lemma 4. Let c be the constant from the statement of Lemma 1. During cn log n/ε
interactions in the first phase the number of agents without label drops below
nε/4 w.h.p.

Proof. The proof is a generalization of that for Lemma 1. Define Fε as a set
of at least εn/4 agents without labels that survive at least cn log /ε interactions
in the first phase. Note that for an arbitrary agent, the probability of interaction
with a member in Fε is at least ε

4n . The rest of the proof is analogous to that
of Lemma 1. It is sufficient to replace F by Fε and the probability 1

4n of an
interaction with a member in F with that ε

4n of an interaction with a member in
Fε. ut

Having Lemma 4, we can easily generalize Lemma 2 to the following one.

Lemma 5. If the second phase starts after cn log n/ε interactions, where c is
the constant from Lemmata 1, 4 , then onlyO(n log n/ε) interactions are needed
to assign labels in [1, (1 + ε)n] to the remaining agents without labels, w.h.p.

Proof. The number of agents without labels at the beginning of the second phase
is smaller than εn/4 w.h.p. Hence, at the beginning of the second phase the
number of agents with labels in the range [1, εn] is at least 3εn

4 w.h.p. Recall
that such an agent at a leaf of the tree can give a label to an agent without label
only once. It follows that the number of agents with labels in [1, εn] that can
give a label to an agent without label is always at least εn2 w.h.p. We conclude
that for an agent without label the probability of an interaction with an agent
that can give a label is at least almost ε

2n . Hence, after each O(n/ε) interactions
the expected number of agents without labels halves. It follows that the expected
number of such interactions rounds is O(log n). Consequently, the number of
the rounds is also O(log n) w.h.p. by Fact 2.

15

An alternative way to obtain the O(n log n/ε) bound on the number of in-
teractions w.h.p. is to use Fact 3 analogously as in the proof of Lemma 2. The
difference is that C is set to O(2ε) instead of O(2) since the set of agents that
can give a label is of size at least nε2 now. ut

We also need the following auxiliary lemma on broadcasting constrained to
a subset of agents.

Lemma 6. The leader can informΘ(nε) agents with labels not exceedingO(nε)
about the phase transition using only these agents in O(n log n/ε) interactions.

Proof. During the initial part of the broadcasting process, after every O(n/ε)
interactions, the expected number of agents participating in the broadcasting
process doubles. Hence, after O(n log /ε) interactions, the expected number
of informed agents will be Ω(nε). Then, the expected number of uninformed
agents will be halved for every O(n/ε) interactions. So the expected number of
rounds, each consisting of O(n/ε) interactions, needed to complete the broad-
casting is O(log n). It remains to turn the latter bound to a w.h.p. one. This can
be done by using the Chernoff bounds (Fact 2).

Alternatively, we can define for the purpose of the analysis of the doubling
part, a binary broadcast tree. An informed agent at an intermediate node of the
tree after an interaction with an uninformed agent moves to a child of the node
while the other agent now informed places at the other child (cf. the partition
tree in the proofs of Lemmata 1, 4). Then, we can use the technique from the
proofs of Lemmata 1, 4 to show that only O(n log n/ε)interactions are required
w.h.p. to achieve a configuration where only a constant fraction of the agents
participating in the broadcasting is uninformed. To derive the same asymptotic
upper bound on the number of interactions required by the halving part w.h.p.,
we can use Fact 3 with C = O(ε−1) analogously as in the proofs of Lemmata
2, 5. ut

The proof of the following theorem is analogous to that of Theorem 1 with
Lemmata 1, 2 replaced by Lemmata 4, 5.

Theorem 2. Let ε > 0. There is a silent w.h.p. and safe protocol for a popula-
tion of n agents that assigns unique labels in the range [1, (1+ ε)n] to n agents
equipped with (2 + ε)n+O(nc) states, for any positive c < 1, in O(n log n/ε)
interactions w.h.p.

Proof. Under the assumption that the leader election preprocessing provides
a unique leader, the correctness of the label assignment in both phases w.h.p.
and the fulfillment of the definition of a silent and safe protocol follow from
Lemmata 4, 5, and 6 by the same arguments as in the proof of Theorem 1.

16

The leader election preprocessing and its synchronization with the proper
labeling protocol require O(n log n) interactions and o(nc) states, for c < 1,
w.h.p. as described in the proof of Theorem 1. Analogously, it follows that w.h.p.
the whole protocol provides a valid labeling, it is silent and safe. Again, it can
be transformed to a safe protocol by prohibiting agents to change or get rid of
an assigned label.

By Lemmata 4, 5, both phases require O(n log n/ε) interactions w.h.p. The
broadcasting about the phase transition starts when the number of agents with-
out labels in the first phase drops below nε/4 w.h.p. By Lemma 6, it requires
O(n log n/ε) interactions w.h.p. since only the Θ(nε) agents in states corre-
sponding to labels in [1, nε] are involved in it.

The estimation of the number of needed states is more subtle than in The-
orem 1. With each intermediate node of the interval partition tree that does not
correspond to a label in [1, nε] (equivalently, that is not an ancestor of a leaf
corresponding to a label in [1, nε]), we associate a single state. (Recall here
that if an agent at an intermediate node of the tree encounters an agent with-
out label then the former agent moves to the left child of the node.) With each
intermediate node corresponding to a label in [1, nε], we associate two states.
They indicate whether or not the agent at the node has already got the message
about phase transition. Next, with each leaf of the tree corresponding to a label
i in [1, nε], we associate four states. They indicate whether or not the agent at
the leaf has already got the message about the phase transition, and whether or
not the agent has already passed the label i + n to some agent without label,
respectively. To each of the remaining leaves, we associate only a single state.

We also needO(log n/ε) additional states for the leader to count the number
of own interactions in order to start broadcasting the message on transition to
phase two at a right time step. In fact, we can get rid of the O(1ε) factor here
by letting the leader to count approximately each Θ(1/e) interaction. Simply,
the leader can count only interactions with agents which have got labels not
exceeding O(εn).

Finally, we have nε states corresponding to the labels in [n + 1, (1 + ε)n].
Thus, totally only (2 + O(ε))n + O(nc) states, for any positive c < 1, are
sufficient. To get rid of the constant factor at ε, it is sufficient to run the protocol
for a smaller ε′ = Ω(ε). It does not change the asymptotic upper bound on the
number of required interactions w.h.p. and even it decreases the range of the
labels. ut

Note that ε in Theorem 2 does not have to be a constant; it can even be as
small as O(n−1).

By combining the protocol of Theorem 2 with that of Berenbrink et al. for
exact counting the population size (Fact 6), we obtain the following corollary

17

on unique labeling when the population size is unknown to agents initially. The
proof is analogous to that of Corollary 1.

Corollary 2. Let ε > 0. There is a protocol for a population of n agents that
assigns unique labels in the range [1, (1+ε)n] to the agents initially not knowing
the number n, equipped with Õ(n) states in O(n log n/ε) interactions w.h.p.

4 State- and range-optimal labeling

In this section we propose and analyze state-optimal protocols, which are silent
and safe once a unique leader is elected, and utilize labels from the smallest
possible range [1, n]. We assume the number of agents n to be known. We pro-
pose such a labeling protocol Single-Cycle which utilizes n + 5

√
n + O(nc)

states, for any positive c < 1, and the expected number of interactions required
by the protocol is O(n3). We show in Section 5 that any silent and safe labeling

protocol requires n+
√

n−1
2 −1 states, see Theorem 6. Thus, our protocol is al-

most state-optimal. Finally, we propose a partial parallelization of Single-Cycle
protocol called k-Cycle protocol which utilizes (1 + ε)n states and O((n/ε)2)
interactions for ε = Ω(n−1/2).

4.1 Labeling protocol

The state efficient labeling protocol starts from a preprocessing electing a unique
leader. Its main idea is to use two agents: the initial leader A and a nomi-
nated (by A) agent B, as partial label dispensers. These two agents jointly
dispense unique labels for the remaining free (non-labeled yet) agents in the
population where agent A dispenses the first and agent B the second part of
each individual label. For the simplicity of presentation, we assume that n is
a square of some integer. During execution of the protocol agent A uses par-
tial labels label(a) ∈ {0, . . . ,

√
n − 1} and B uses partial labels label(b) ∈

{1, . . . ,
√
n}. The two dispensers label every agent by a unique pair of partial

labels (label(a), label(b)) where the combination (i, j) is interpreted as the
integer label i ·

√
n+ j. The protocol first labels all free (different to dispensers

unlabeled) agents and eventually gives labels (0, 2) to agent B and (0, 1) to
agent A.

In a nutshell, the labeling process is based on a single cycle of interactions
between dispensers A and B and the free agents. Agent A awaits an interaction
with a free agent F when A dispenses to F its current partial label label(a).
Now F awaits an interaction with B in order to receive the second part of its
label. And when this happens agent F concludes with the combined label and

18

agent B awaits an interaction with A to inform that the next free agent needs to
be labeled. On the conclusion of this interaction if label(b) > 1 agentB adopts
new partial label label(b)− 1, otherwise B adopts label(b) =

√
n and agent

A adopts new label label(a) − 1. The only exception is when label(a) = 0
and label(b) = 2 when agent B adopts label (0, 2) and agent A adopts label
(0, 1) and both agents conclude the labeling process. The state utilization and
transition function in the labeling protocol are specified as follows.
State utilization in Single-Cycle protocol

[AgentA] Since label(a) ∈ {0, . . .
√
n−1} dispenserA utilizes 2·

√
n+2

states including:

– A.init = (1) # the initial (leadership) state of dispenser A,
– A[label(a), await(F)] # dispenser A carrying partial label label(a) awaits in-

teraction with a free agent F,
– A[label(a), await(B)] # dispenser A carrying partial label label(a) awaits in-

teraction with dispenser B,
– A.final = (0, 1) # the final state of A.

[Agent B] Since label(b) ∈ {0, . . .
√
n} dispenser B utilizes 2 ·

√
n + 3

states including:

– B[label(b), await(F)] # dispenser B carrying partial label label(b) awaits in-
teraction with a free agent F,

– B[label(b), await(A)] # dispenser B carrying partial label label(b) awaits in-
teraction with dispenser A

– B.final = (0, 2) # the final state of B.

[Agent F] Since free agents carry partial labels label(a) ∈ {0, . . .
√
n−1}

and eventually adopt one of the n− 2 destination labels (excluding dispensers)
they utilize n+

√
n− 1 states including:

– F.init = (0) # the initial (non-leader) state of F
– F [label(a), await(B)] # free agent F carrying partial label label(a) awaits in-

teraction with dispenser B,
– F.final = (label(a), label(b)) # the final state of F.

In total Single-Cycle protocol requires n+ 5 ·
√
n+ 4 states.

Transition function in Single-Cycle protocol

[Step 0] Initialization During the first interaction of A with a free agent the
second dispenser B is nominated. Both dispensers adopt their largest labels.
Agent A awaits a free agent in the initial state while agent B awaits a free agent
carrying a partial label obtained from A.

19

– (A.init, F.init)
→ (A[label(a) =

√
n−1, await(F)], B[label(b) =

√
n, await(F)]),

The three steps C1, C2, and C3 of the labeling cycle are given below.
[Step C1] Agent A dispenses partial label During an interaction of agent A
with a free agent F the current partial label label(a) is dispensed to F . Both
agents await interactions with dispenser B which is ready to interact with par-
tially labeled F but not A.

– (A[label(a), await(F)], F.init)
→ (A[label(a), await(B)], F [label(a), await(B)]) # Go to Step

C2

[Step C2] Agent B dispenses partial label During an interaction of agent B
with a free agent F which carries partial label label(a), the complementary
current partial label label(b) is dispensed to F . Agent F concludes in the final
state with the combined label (label(a), label(b)). Agent B is now ready for
interaction with A.

– (B[label(b), await(F)], F [label(a), await(B)])
→ (B[label(b), await(A)], F.final = (label(a), label(b))) #

Go to Step C3

[Step C3] Agent A and B negotiate a new label or conclude In the case when
label(a) = 0 and label(b) = 2 the dispensers A and B conclude in states
(0, 1) and (0, 2) respectively, see the first transition. Otherwise a new combina-
tion of partial labels is agreed and the protocol goes back to Step C1.

– (A[label(a) = 0, await(B)], B[label(b) = 2, await(A)])
→ (A.final = (0, 1), B.final = (0, 2)) # Conclude the labeling pro-

cess
– (A[label(a) = 0, await(B)], B[label(b) > 2, await(A)]) or

(A[label(a) > 0, await(B)], B[label(b) > 1, await(A)])
→ (A[label(a), await(F)], B[label(b) − 1, await(F)]) # Go to

Step C1

– (A[label(a) > 0, await(B)], B[label(b) = 1, await(A)])
→ (A[label(a) − 1, await(F)], B[label(b) =

√
n, await(F)]) #

Go to Step C1

Theorem 3. Single-cycle utilizes n + 5 ·
√
n + O(nc) states, for any positive

c < 1, and the minimal label range [1, n]. The expected number of interactions
required by the protocol is O(n3). Once a unique leader is elected, it produces
a valid labeling of the n agents and it is silent and safe.

20

Proof. Assume that the leader election preprocessing provides a unique leader.
Then, the protocol is silent and safe by its definition. All ll labels are dispensed
in the sequential manner and the labeling process concludes when the two dis-
pensers finalize their own labels. In particular, as soon as the two dispensers
A and B are established they operate in a short cycle formed of steps C1, C2
and C3 labeling one by one all free agents in the population. One can observe
that the sequence of cycles mimics the structure of two nested loops where the
external loop iterates along the partial labels of A and the internal one along
partial labels of B. In total, we have n − 2 iterations where the expected num-
ber of interactions required by each iteration is O(n2). Thus one can conclude
that the expected number of interactions required by the whole labeling process
but for the leader election preprocessing is O(n3). By the definition of the pro-
tocol the range of assigned labels is [1, n]. Finally, as indicated earlier in this
section the number of states utilized by the protocol but for the leader election
preprocessing is equal to n+ 5 ·

√
n+ 4.

The leader election preprocessing and its synchronization with the proper
labeling protocol require additionalO(n log n) interactions and additional o(nc)
states, for c < 1, w.h.p. as described in the proof of Theorem 1. ut

Observe that when the exact value of n is embedded in the transition function
on the conclusion all agents become dormant, i.e., they stop participating in
the labeling process. One could redesign the protocol such that the labels are
dispensed by A and B in the increasing order using a diagonal method, e.g.,
(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0) etc., where
agent A gets label (0, 0), agent B gets label (0, 1), the first labeled free agent
gets (1, 0), the second (0, 2), then (1, 1) and (2, 0), when A and B start using
the next diagonal, etc. Each pair (i, j) is interpreted as (i+ j)(i+ j +1)/2+ i,
e.g., (0, 1) = 1, (0, 2) = 3, (0, 3) = 6 and in general (0, j) = j(j + 1)/2,
(1, j−1) = j(j+1)/2+1, (1, j−2) = j(j+1)/2+2,....,(j, 0) = j(j+1)/2+j
= (j + 1)(j + 2)/2− 1 = (0, j + 1)− 1. In this case the size of the population
does not need to be known in advance, however, the two dispensers will never
stop searching for free agents yet to be labeled.

4.2 Faster Labeling

We observe that one can partially parallelize Single-Cycle protocol by instruct-
ing leaderA to form k pairs of dispensers where each pair labels agents in a dis-
tinct range of size n/k. In such case the new k-cycle protocol requires extra 2k
states to allow leader A initialize the labeling process (create two dispensers) in
all k cycles. Thus the total number of states is bounded by n+2k+k ·(5

√
n/k+

4) = n+6k+5k ·
√
n/k < n+6(k+

√
nk) < n+12

√
nk, as k <

√
nk, plus

21

the number of states required by the leader election preprocessing. We use the
same method for the leader election preprocessing and its synchronization with
the proper labeling protocol described in the proof of Theorem 1. Analogously,
it adds O(n log n) interactions and O(nc) states, for any positive c < 1. As we
need to pick k for which n+12

√
nk ≤ n+nε we conclude that k ≤ nε2/144.

One can show that for k = nε2/144, the expected number of interactions
required by the k-cycle protocol is O(n2/ε2). Note that in order to initialize
k cycles the leader A has to communicate with 2k − 1 free agents. As k is
at most a small fraction of n during the search for dispensers for each cycle
the number of free agents is always greater than n/2 (in fact it is very close
to n). Thus the probability of forming a new dispenser during any interaction
is greater than 1/2n, i.e., the product of the probability 1/n that the random
scheduler selects leader A as the initiator, times the probability greater than 1/2
that the responder is a free agent. In order to finish the initialization, we need
to create new dispensers 2k − 1 times. Using Chernoff bound, we observe that
after O(kn) = O(n2/ε2) interactions all k cycles have their two dispensers
formed. As each cycle dispenses n/k = 144/ε2 labels and the expected number
of interactions required to dispense a single label is O(n2) with high probabil-
ity, the expected number of interactions required by a specific cycle to gener-
ate all labels is O(n2/ε2) also with high probability. As observed earlier, the
leader election preprocessing adds only O(n log n) interactions w.h.p. Hence,
the expected number of interactions required to conclude the labeling process
is O(n2/ε2). Finally, note that for small values of ε approaching n−1/2 k-cycle
protocol reduces to Single-cycle protocol and for constant ε the number of in-
teractions required by the protocol is O(n2).

Theorem 4. For k = nε2/144, where ε = Ω(n−1/2), and the minimal la-
bel range [1, n], the proposed k-cycle labeling protocol provides a space-time
trade-off in which utilization of (1 + ε)n + O(log log n) states permits the ex-
pected number of interactions O(n2/ε2).

5 Lower bounds

In this chapter, we derive several lower bounds on the number of states or the
number of interactions required by silent, safe or the so-called pool protocols
for unique labeling. Importantly, these lower bounds also hold in our model
assuming that the population size is known to the agents initially and also when
a unique leader is available initially.

The following general lower bound valid for any range of labels follows
immediately from the definitions of a population protocol and the problem of
unique labeling, respectively.

22

Theorem 5. The problem of assigning unique labels to n agents requiresΩ(n log n)
interactions w.h.p. and the agents have to be equipped with at least n states.

Proof. Ω(n log n) interactions are needed w.h.p. since each agent has to interact
at least once, see, e.g., the introduction in [10]. The lower bound on the number
of states follows from the symmetry of agents, so any agent has to be prepared
to be assigned an arbitrary label with at least a logarithmic bit representation.

ut

5.1 A sharper lower bound on the number of states

We obtain the following lower bound on the number of states required by a
silent protocol which produces a valid labeling of the n agents and is safe w.h.p.
The lower bound holds even if the protocol is provided with a unique leader
and the knowledge of the number of agents. It almost matches the upper bound
established in the previous section.

Theorem 6. A silent protocol which produces a valid labeling of the n agents

and is safe with probability larger than 1 − 1
n requires at least n +

√
n−1
2 − 1

states. Also, if a silent protocol, which produces a valid labeling of the n agents
and is safe with probability 1, uses n+ t states, where t < n, then the expected
number of interactions required by the protocol to provide a valid labeling is
n2

t+1 .

Proof. Let I be the set of ordered pairs of the n agents. I can be interpreted as
the set of possible pairwise interactions between the agents.

Let Z be a finite run of the protocol, i.e., a finite sequence of pairs in I.
Suppose that the execution of Z is successful, i.e., each agent reaches a final
state with a distinct label, and no agent gets assigned two or more distinct labels
during the run.

Let FZ be the set of final states achieved by the agents after the execution of
the run Z. We have |FZ | = n. Also, let RZ stand for the set of remaining states
used in this run. Observe that if an agent is in a state in FZ then it has a label.

For an agent x, let fZ(x) ∈ FZ be the last state achieved by the agent in
the run Z, and let predZ(x) be the next to the last state achieved by the agent
x in the run. Since for at most one agent the common initial state can be the
final one, predZ() is defined for at least n − 1 agents. If predZ(x) ∈ FZ and
predZ(x) assigns a distinct label from that assigned by fZ(x) to x then we
have a contradiction with our assumptions on Z. In turn, if predZ(x) ∈ FZ
and predZ(x) assign the same label as that assigned by fZ(x) to x then we
have a contradiction with the validity of the final labeling resulting from Z. We
conclude that if predZ(x) is defined then predZ(x) ∈ RZ .

23

Next, let AZ be the set of agents x that achieved their final state in the run
Z by an interaction of x in the state predZ(x) with an agent in a state in FZ .

Under the theorem assumptions, we claim the following.

Claim. There is a finite run Z of the protocol such that after the execution
of Z, each agent is in a final state with a distinct label, no single agent is as-
signed distinct labels during Z, and for any pair of distinct agents x, y ∈ AZ ,
predZ(x) 6= predZ(y).

Proof of Claim 5.1. The proof of the claim is by a contradiction with the as-
sumptions on the labeling protocol. The general intuition is that if predZ(x) =
predZ(y) for two agents x, y ∈ AZ then we can associate with a prefix of Z
a slightly modified equally likely run Z ′ which assigns the same label to a pair
of agents. Hence, the modified run does not produce a valid labeling or it has to
assign at least two different labels to some agent.

To obtain the contradiction, we assume that for each finite runZ in which the
agents achieve final states with distinct labels without assigning distinct labels
to any single agent during the run, there is a pair of agents x, y ∈ AZ , where
predZ(x) = predZ(y). Let us consider such a pair of agents x, y ∈ AZ that
minimizes the length of the prefix of Z in which both agents achieve their final
states in FZ . We may assume w.l.o.g. that x gets its final state fZ(x) in an
interaction i1 with an agent x′ that is in a state in FZ , and in a later interaction
i2, y gets its final state fZ(y), in the run Z. (Note that x′ cannot be in a final state
different from its own, i.e., in FZ \ {fZ(x′)} since this would require updating
its label contradicting the assumption on Z.) Thus, the shortest prefix of Z in
which both x and y get their final states has the form Z1i1Z2i2. Then, if we
replace the latter interaction i2 by the interaction i3 between y and the agent
x′ in the state fZ(x′) analogous to i1, it will result in achieving by y the state
fZ(x) since predZ(x) = predZ(y). Thus, neither the run Z1i1Z2i3 nor any of
its extensions can yield a valid labeling of the agents without updating labels for
some of them. Importantly, the runs Z1i1Z2i2 and Z1i1Z2i3 are equally likely
(*).

We initialize two sets Svalid and Sinvalid of strings (sequences) over the al-
phabet I. Then, for each run Z in which the agents achieve final states with
distinct labels without updating the label of any single agent, we insert the pre-
fix Z1i1Z2i2 into Svalid and the corresponding sequence Z1i1Z2i3 into Sinvalid.
Note that by the choice of i1, i2, no string in Svalid is a prefix of another string
in Svalid. The analogous property holds for Sinvalid. By the construction of
the sets, each run Z in which the agents achieve final states with distinct la-
bels without updating the label of any single agent has to overlap with or be a
lengthening of a string in Svalid. Furthermore, no run of the protocol that over-

24

laps with a string in Sinvalid or it is a lengthening of a string in Sinvalid results
in a valid labeling without updating the label of any single agent. Define the
function g : Svalid → Sinvalid by g(Z1i1Z2i2) = Z1i1Z2i3. By the property
(*), the probability that a string over I is equal to Z1i1Z2i2 or it is a lengthening
of Z1i1Z2i2 is not greater than the probability that a string over I is equal to
g(Z1i1Z2i2) or it is a lengthening of g(Z1i1Z2i2). The function g is not nec-
essarily a bijection. Suppose that g(Z1i1Z2i2) = g(Z ′1i

′
1Z
′
2i
′
2). Then, we have

Z1i1Z2i3 = Z ′1i
′
1Z
′
2i3. Consequently, the strings Z1i1Z2i2 and Z ′1i

′
1Z
′
2i
′
2 may

only differ in the last interaction, i.e., i2 may be different from i′2. However, i2
and i′2 have to include the same agent (y in the earlier construction) that appears
in i3. We conclude that the aforementioned two strings in Svalid can differ by
at most one agent in the last interaction. It follows that g maps at most n − 1
strings in Svalid to the same string in Sinvalid. Consequently, the event that the
agents eventually achieve their final states yielding a valid labeling without up-
dating the label of any single agent is at most n − 1 times more likely than the
complement event. We obtain a contradiction with theorem assumptions which
completes the proof of Claim 5.1.

From here on, we assume that the run Z satisfies the claim. Consequently,
|RZ | ≥ |AZ |.

Let BZ be the set of remaining agents that got their final state in FZ in an
interaction where both agents were in states outside FZ , i.e., in RZ . Since the
agents in B achieved distinct final states with distinct labels in the aforemen-
tioned interactions, we infer that 2|RZ |2 ≥ |BZ | and thus |RZ | ≥

√
|BZ |/2.

Simply, there are |RZ |2 ordered pairs of states in RZ , and when agents in the
states forming such a pair interact they can achieve at most two distinct states
in FZ . (Consequently, if 2|RZ |2 < |BZ | then there would be a pair of agents in
BZ that would achieve the same final state in the run and hence it would have
the same label at the end of the considered run.)

Thus, we obtain |RZ | ≥ max{|AZ |,
√

n−1−|AZ |)
2 } ≥

√
n−1
2 −1 by straight-

forward calculations. This completes the proof of the first statement of the the-
orem.

To prove the second statement of the theorem, we need |RZ | ≥ |AZ | to hold
for any run Z resulting in a valid labeling of the agents without updating the
label of any single agent. The existence of such a run Z implied by Claim 5.1
is not sufficient to obtain a lower bound on the expected number of required in-
teractions. The stronger assumptions on the silent protocol in the second state-
ment of the theorem requiring the protocol to provide always a valid labeling
without updating the label of any single agent solves the problem. Namely, if
predZ(x) = predZ(y) for x, y ∈ AZ then following the notation and argumen-
tation from the proof of Claim 5.1 neither Z1i1Z2i3 nor any of its lengthening

25

can provide a valid labeling without updating the label of any single agent. We
obtain a contradiction with the aforementioned assumptions. Thus, the inequal-
ity |RZ | ≥ |AZ | holds for arbitrary run Z ending with a valid labeling without
updating the label of any single agent.

To prove the second statement, we may also assume w.l.o.g. that |AZ | < n
since otherwise t ≥ |RZ | ≥ |AZ | ≥ n. Hence, the set BZ of agents is non-
empty. Let x be a last agent in BZ that being in the state pred(x) gets its final
state f(x) by an interaction with another agent y in a state s. If y belongs to
BZ then both x and y are the two last agents in BZ that simultaneously get
their final states in FZ in the same interaction. The probability of the interaction
between them is only 1

n2 . Suppose in turn that y belongs to AZ . We know that
t ≥ |RZ | ≥ |AZ | from the previous part. Thus, there are at most t agents in BZ
in the state s with which the agent x in the state predZ(x) could interact. The
probability of such an interaction is at most t

n2 . We conclude that the probability
of an interaction between the agent x and the agent y after which x gets its final
state f(x) is at most t+1

n2 which proves the second statement. ut

Corollary 3. If for ε > 0, a silent protocol that produces a valid labeling of
the n agents and is safe with probability 1 uses only n + O(n1−ε) states then
the expected number of interactions required by the protocol to achieve a valid
labeling is Ω(n1+ε).

5.2 A lower bound for the range [1, n + r]

Our fast protocols presented in Section 3 are examples of a class of natural
protocols for the unique labeling problem that we term pool protocols.

In each step of a pool protocol a subset of agents owns explicit or implicit
pools of labels which are pairwise disjoint and whose union is included in the as-
sumed range of labels. When two agents interact, they can repartition the union
of their pools among themselves. Before the start of a pool protocol, only a
single agent (the leader) owns a pool of labels. This initial pool corresponds
to the assumed range of labels. An agent can be assigned a label from its own
pool only. After that, the label is removed from the pool and cannot be changed.
Finally, an agent without assigned label cannot give away the whole own pool
during an interaction with another agent without getting some part of the pool
belonging to the other agent.

Theorem 7. The expected number of interactions required by a pool protocol
to assign unique labels in the range [1, n + r], where r ≥ 0, to the population
of n agents is at least n2

r+1 .

26

Proof. We shall say that an agent has the P property if the agent owns a non-
empty pool or a label has been assigned to the agent. Observe that if an agent
accomplishes the P property during running a pool protocol then it never loses
it. Also, all agents have to accomplish the P property sooner or later in order to
complete the assignment task. During each interaction of a pool protocol at most
one more agent can get the P property. Since at the beginning only one agent has
the P property, there must exist an interaction after which only one agent lacks
this property. By the disjointedness of the pools and labels, the assumed label
range, and the definition of a pool protocol, there are at most r+1 agents among
the remaining ones that could donate a sub-pool or label from own pool to the
agent missing the P property. The expected number of interactions leading to
an interaction between the agent missing the P property and one of the at most
r + 1 agents is n2

r+1 . ut

6 Final remarks

Our upper bound of n+ 5 ·
√
n+O(nc), for any positive c < 1, on the number

of states achieved by a protocol for unique labeling that is silent and safe once

a unique leader is elected almost matches our lower bound of n +
√

n−1
2 − 1.

We can combine our protocols for unique labeling with the recent protocols for
counting or approximating the population size due to Berenbrink et al. [10] in
order to get rid of the assumption that the population size is known to one of
the agents initially. Since the aforementioned protocols from [10] either require
Õ(n) states or O(n log2 n) interactions, the resulting combinations lose some
of the near-optimality or optimality properties of our protocols (cf. Corollaries
1, 2). The related question if one can design a protocol for counting or closely
approximating the population size simultaneously requiring O(n log n) interac-
tions w.h.p. and at most cn states, where c is a low constant, is of interest in its
own right.

References

1. D. Alistarh, H. Attiya, S. Gilbert, A. Giurgiu, and R. Guerraoui. Fast randomized test-and-set
and renaming. In Proc. of the International Symposium on Distributed Computing , DISC,
volume 6343 of Lect. Notes in Comput. Sci., pages 94–108. Springer, 2010.

2. D. Alistarh, O. Denysyuk, L. Rodrigues, and N. Shavit. Balls-into-leaves: Sub-logarithmic
renaming in synchronous message-passing systems. In Proc. of the 2014 ACM Symposium
on Principles of Distributed Computing, PODC, pages 232–241. ACM, 2014.

3. D. Alistarh and R. Gelashvili. Recent algorithmic advances in population protocols. ACM
SIGACT News, 49(3):63–73, 2018.

4. D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Computation in networks
of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253, 2006.

27

5. D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols with a
leader. In Proc. of the International Symposium on Distributed Computing , DISC, volume
4167 of Lect. Notes in Comput. Sci., pages 61–75. Springer, 2006.

6. J. Aspnes, J. Beauquier, J. Burman, and D. Sohier. Time and space optimal counting in pop-
ulation protocols. In Proc. of the 20th International Conference on Principles of Distributed
Systems,OPODIS, volume 70 of LIPIcs, pages 13:1–13:17. Dagstuhl - LZI, 2016.

7. J. Beauquier, J. Burman, L. Rosaz, and B. Rozoy. Non-deterministic population protocols. In
Proc. of the 20th International Conference on Principles of Distributed Systems, OPODIS,
Lect. Notes in Comput. Sci., pages 61–75. Springer, 2012.

8. P. Berenbrink, A. Brinkmann, R. Elsässer, T. Friedetzky, and L. Nagel. Randomized renam-
ing in shared memory systems. In Proc. of the EEE Int. Parallel and Distributed Processing
Symp., IPDPS, pages 542–549. IEEE Computer Society, 2015.

9. P. Berenbrink, G. Giakkoupis, and P. Kling. Optimal time and space leader election in pop-
ulation protocols. In Proc. of the 52nd ACM-SIGACT Symposium on Theory of Computing,
STOC, pages 119–129. ACM, 2020.

10. P. Berenbrink, D. Kaaser, and T. Radzik. On counting the population size. In Proc. of the
ACM Symposium on Principles of Distributed Computing, PODC, pages 43–52. ACM, 2019.

11. J. Burman, J. Beauquier, and D. Sohier. Space-optimal naming in population protocols. In
Proc. of the 33rd International Symposium on Distributed Computing, DISC, volume 146 of
LIPIcs, pages 9:1–9:16. Dagstuhl - LZI, 2019.

12. J. Burman, H. Chen, H. Chen, D. Doty, T. Nowak, E. Severson, and C. Xu. Time-optimal
self-stabilizing leader election in population protocols. In Proc. of the ACM Symposium on
Principles of Distributed Computing, PODC, pages 33–44. ACM, 2021.

13. S. Cai, T. Izumi, and K. Wada. How to prove impossibility under global fairness: On space
complexity of self-stabilizing leader election on a population protocol model. Theory of
Computing Systems, 50:433–445, 2012.

14. A. Castañeda, S. Rajsbaum, and M. Raynal. The renaming problem in shared memory sys-
tems: An introduction. Comput. Sci. Rev., 5(3):229–251, 2011.

15. S. Dolev, M.G. Gouda, and M. Schneider. Memory requirements for silent stabilization.
Acta Inf., 36(6):447–462, 1999.

16. D. Doty and M. Eftekhari. A survey of size counting in population protocols. Theoretical
Computer Science, 894:91–102, 2021. preprint arXiv:2105.05408.

17. D. Doty, M. Eftekhari, O. Michail, P. G. Spirakis, and M. Theofilatos. Exact size counting
in uniform population protocols in nearly logarithmic time. ArXiv, 2018. preprint arXiv:
1805.04832, 2018.

18. R. Elsässer and T. Radzik. Recent results in population protocols for exact majority and
leader election. Bull. EATCS, 126, 2018.

19. L. Gąsieniec and G. Stachowiak. Enhanced phase clocks, population protocols, and fast
space optimal leader election. J. ACM, 68(1):2:1–2:21, 2021.

A The computational model of population protocols

There is given a population of n agents that can pairwise interact in order to
change their states and in this way perform a computation. A population pro-
tocol can be formally specified by providing a set Q of possible states, a set O
of possible outputs, a transition function δ : Q × Q → Q × Q, and an output
function o : Q → O. The current state q ∈ Q of an agent is updated during
interactions. Consequently, the current output o(q) of the agent also becomes

28

updated during interactions. The current state of the set of n agents is given by a
vector inQn with the current states of the agents. A computation of a population
protocol is specified by a sequence of pairwise interactions between agents. In
every time step, an ordered pair of agents is selected for interaction by a proba-
bilistic scheduler independently and uniformly at random. The first agent in the
selected pair is called the initiator while the second one is called the responder.
The states of the two agents are updated during the interaction according the
transition function δ.

We can specify a problem to solve by a population protocol by providing the
set of input configurations, the set O of possible outputs, and the desired output
configurations for given input configurations. For the unique labeling problem,
all agents are initially in the same state q0. The set O is just the set of positive
integers. A desired configuration is when all agents output their distinct labels.
The stabilization time of an execution of a protocol is the number of interactions
until the states of agents form a desired configuration from which no sequence
of pairwise interactions can lead to a configuration outside the set of desired
configurations.

29

	Efficient Assignment of Identities in Anonymous Populations

