
3D Rectangulations and Geometric
Matrix Multiplication

Peter Floderus1, Jesper Jansson2, Christos Levcopoulos3,
Andrzej Lingas3(B), and Dzmitry Sledneu1

1 Centre for Mathematical Sciences, Lund University, 22100 Lund, Sweden
{pflo,Dzmitry}@maths.lth.se

2 Laboratory of Mathematical Bioinformatics, Institute for Chemical Research,
Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

jj@kuicr.kyoto-u.ac.jp
3 Department of Computer Science, Lund University, 22100 Lund, Sweden

{Christos.Levcopoulos,Andrzej.Lingas}@cs.lth.se

Abstract. The problem of partitioning an input rectilinear polyhedron
P into a minimum number of 3D rectangles is known to be NP-hard. We
first develop a 4-approximation algorithm for the special case in which P
is a 3D histogram. It runs in O(m logm) time, where m is the number of
corners in P . We then apply it to compute the arithmetic matrix product
of two n×n matrices A and B with nonnegative integer entries, yielding
a method for computing A × B in Õ(n2 + min{rArB , nmin{rA, rB}})
time, where Õ suppresses polylogarithmic (in n) factors and where rA
and rB denote the minimum number of 3D rectangles into which the 3D
histograms induced by A and B can be partitioned, respectively.

Keywords: Geometric decompositions · Minimum number rectangula-
tion · Polyhedron · Matrix multiplication · Time complexity

1 Introduction

This paper considers two intriguing and at a first glance unrelated problems.
The first problem lies at the heart of three-dimensional computational geom-

etry. It belongs to the class of polyhedron decomposition problems, whose applica-
tions range from data compression and database systems to pattern recognition,
image processing, and computer graphics [7,13]. The problem is to partition a
given rectilinear polyhedron into a minimum number of 3D rectangles. Dielissen
and Kaldewai have shown this problem to be NP-hard [4]. In contrast, the prob-
lem of partitioning a rectilinear (planar) polygonal region into a minimum num-
ber of 2D rectangles admits a polynomial-time solution [7,10]. Formally, the NP-
hardness proof by [4] is for polyhedra with holes, but the authors remark that
the proof should also work for simple polyhedra. To the best of our knowledge,

Jesper Jansson: Funded by The Hakubi Project at Kyoto University.
Christos Levcopoulos: Research supported in part by Swedish Research Council grant
621-2011-6179.

c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 65–78, 2014.
DOI: 10.1007/978-3-319-13075-0 6

66 P. Floderus et al.

no non-trivial approximation factors for minimum rectangular partition of simple
rectilinear polyhedra are known, even in restricted non-trivial cases such as that
of a 3D histogram (a natural generalization of a planar histogram, see Section 2).

The second problem we consider is that of multiplying two n × n matrices.
There exist fast algorithms that do so in substantially subcubic time, e.g., a
recent one due to Le Gall runs in O(n2.3728639) time [8], but they suffer from
very large overheads. On the positive side, input matrices in real world appli-
cations often belong to quite restricted matrix classes, so a natural approach
is to design faster algorithms for such special cases. Indeed, efficient algorithms
for sparse matrix multiplication have been known for long time. In the Boolean
case, despite considerable efforts by the algorithms community, the fastest known
combinatorial algorithms for Boolean n × n matrix multiplication barely run in
subcubic time (in O(n3(log log n)2/(log n)9/4)) time [1], to be precise), but much
faster algorithms for Boolean matrix product for restricted classes of Boolean
matrices have been developed [3,5,9]. For example, when at least one of the
input Boolean matrices admits an exact covering of its ones by a relatively
small number of rectangular submatrices, the Boolean matrix product can be
computed efficiently [9]; similarly, if the rows of the first input Boolean matrix
or the columns of the second input Boolean matrix can be represented by a
relatively cheap minimum cost spanning tree in the Hamming metric (or its gen-
eralization to include blocks of zeros or ones) then the Boolean matrix product
can be computed efficiently by a randomized combinatorial algorithm [3,5].

Our first contribution is an O(m log m)-time, 4-approximation algorithm for
computing a minimum 3D rectangular partition of an input 3D histogram with
m corners. It works by projecting the input histogram onto the base plane, par-
titioning the resulting planar straight-line graph into a number of 2D rectangles
not exceeding its number of vertices, and transforming the resulting 2D rectan-
gles into 3D rectangles of appropriate height. Importantly, the known algorithms
for minimum partition of a rectilinear polygon with holes into 2D rectangles
[7,10] do not yield the aforementioned upper bound on the number of rectangles
in the more general case of planar straight-line graphs.

Our second contribution is a new technique for multiplying two matrices with
nonnegative integer entries.We interpret thematricesas3Dhistogramsanddecom-
pose themintoblocks that canbeefficientlymanipulated inapairwisemannerusing
the interval tree data structure. LetAandB be twon×nmatriceswithnonnegative
integer entries, and let rA and rB denote theminimumnumber of 3D rectangles into
which the 3D histograms induced by A and B can be partitioned. By applying our
4-approximation algorithm above, we can compute A × B in Õ(n2 + rArB) time,
where Õ suppresses polylogarithmic (in n) factors. Furthermore, by using another
idea of slicing the histogram of A (or B) into parts corresponding to rows of A (or
columns of B) and measuring the cost of transforming a slice into a consecutive
one, we obtain an upper bound of Õ(n2 + nmin{rA, rB}). We also give a general-
ization of the latter upper bound in terms of the minimum cost of a spanning tree
of the slices, where the distance between a pair of slices corresponds to the cost of
transforming one slice into the other.

3D Rectangulations and Geometric Matrix Multiplication 67

Organization: Section 2 presents our 4-approximation algorithm for a partition
of a 3D histogram into a minimum number of 3D rectangles. Section 3 presents
our algorithms for the arithmetic matrix product. Section 4 concludes with some
final remarks.

2 3D Histograms and Their Rectangular Partitions

A 2D histogram is a polygon with an edge e, which we call the base of the
histogram, having the following property: for every point p in the interior of
histogram, there is a (unique) line segment perpendicular to e, connecting p to
e and lying totally in the interior of the histogram. In this paper, we consider
orthogonal histograms only. For simplicity, we consider the base of a histogram
as being horizontal, and all other edges of the histogram lying above the base.
In this way, a 2D histogram can also be thought of as the union of rectangles
standing on the base of the histogram.

A 3D histogram is a natural generalization of a 2D histogram. To define a
3D histogram, we need the concept of the “base plane”, which for simplicity we
define as the horizontal plane containing two of the axes in the Euclidean space.
A 3D histogram can then be thought of as the union of rectilinear 3D rectangles,
standing on the base plane. The base of the histogram is the union of the lower
faces (also called bases) of all these rectangles.

Definition 1. A 3D histogram is a union of a finite set C of rectilinear 3D
rectangles such that: (i) each element in C has a face on the horizontal base
plane; and (ii) all elements in C are located above the base plane.

(In the literature, what we call a 3D histogram is sometimes termed a 2D his-
togramora1Dhistogramwhenusedtosummarize2Dor1Ddata, respectively [12].)

By a rectangular partition of 3D histogram P , we mean a rectilinear partition
of P into 3D rectangles. In Section 2.2 below, we consider the problem of finding
a rectangular partition of a given 3D histogram P into as few 3D rectangles as
possible. We present a 4-approximation algorithm for this problem with time
complexity O(m log m), where m denotes the number of vertices in P . The algo-
rithm partitions P into less than m′ 3D rectangles, where m′ is the number of
vertices in the vertical projection of P (i.e., m′ < m), by applying a subroutine
described in Section 2.1 that partitions any rectilinear planar straight-line graph
(PSLG) with m′ vertices into less than m′ 2D rectangles. Finally, the approxi-
mation factor is derived by observing that any rectangular partition of P must
contain at least m′/4 3D rectangles.

2.1 Partitioning a Rectilinear PSLG into 2D Rectangles

The problem of partitioning a rectilinear polygon into rectangles in two dimen-
sions has been well studied in the literature [7,10]. An optimal solution for this
problem can be computed in polynomial time [7,10]. However, to use the result
in 3D, we need a bound on the number of produced rectangles, expressed in

68 P. Floderus et al.

terms of the number of vertices. Therefore, it is not so crucial for our purposes
to compute an optimal solution for the 2-dimensional problem, but instead, we
need to partition planar straight-line graphs (PSLGs) into at most m′ rectangles,
where m′ denotes the number of vertices in the input PSLG. We will show that
a simple algorithm suffices to obtain this bound.

Since this subsection considers 2D only, we use the term “horizontal” for line
segments parallel to the X-axis. By “vertical” lines, we mean lines or line seg-
ments parallel to the Y -axis. Each vertex in the planar graphs in our application
has degree 2, 3, or 4.

Definition 2. A planar straight-line graph (PSLG) PG = (V,E), as used in
this paper, is a planar graph where every vertex has an x- and a y-coordinate.
Each edge is drawn as a straight line segment, all edges meet at right angles, and
each vertex has degree 2, 3, or 4. A rectangular partition of PG is a partition
R = (V ∪ VR, E ∪ ER) that adds edges and vertices to PG so that R is still a
PSLG while every face in R is a rectangle.

Given a PSLG PG, we denote m′ = |V |. We say that a vertex v of PG is
concave if it has degree 2, its two adjacent edges are perpendicular to each other,
and the corner at v which is of 270 degrees does not lie in the outer, infinite face
of PG. Any vertex which is not concave is called convex.

We use a sweep line approach to generate a partition into less than m′ rect-
angles. We perform a horizontal sweep with a vertical sweep line [2], using the
vertices of PG as event points. Whenever the sweep line reaches a concave ver-
tex v, we insert into the graph PG a vertical line segment s connecting v to
the closest edge of PSLG upwards or downwards, thus canceling the concavity
at v and transforming v into a convex vertex of degree 3. Hence, if there was
already an edge of PG below v, then the new segment s is inserted above v, oth-
erwise it is inserted below v. To preserve the property that the resulting graph
is still a PSLG, the other endpoint of s may have to become a new vertex of the
PSLG. This is a standard procedure for trapezoidation; see, e.g., [2] for more
details. After the sweep is complete, all concave vertices have been eliminated.
(Remark: In a special case it may happen that two concave vertices with the
same x-coordinate are connected by a single vertical segment that is disjoint
from the rest of the input PSLG. In this case, the plane sweep algorithm will
produce this segment. Thus, no two segments produced by the algorithm overlap
or touch each other.)

The correctness of the algorithm is easy to see: it eliminates all concave
corners of PG by adding vertical line segments. Hence, in the resulting PSLG,
each face, except for the outer face, is a rectangle. The running time of this
algorithm is dominated by the cost of the plane sweep, which is O(m′ log m′)
according to well-known methods in computational geometry; see, e.g., [2].

We need to relate the number of vertices in the input PSLG to the number
of 2D rectangles. This is done in the following lemma:

Lemma 1. Any PSLG PG = (V,E) with |V | = m′ and minimum vertex degree
2 can be partitioned into b rectangles with b < m′ using O(m′ log m′) time.

3D Rectangulations and Geometric Matrix Multiplication 69

Proof. Let R denote the set of rectangles in the rectangular partition produced
by the plane sweep algorithm described above. We use a “charging scheme” to
prove the stated inequality. The charging scheme starts by giving each vertex
v ∈ V four tokens; thus, a total of 4m′ tokens are used. Each vertex v then
distributes its tokens in a certain way to the rectangles in R that are adjacent
to v. We will show that every rectangle in R receives at least four tokens. Since
we started by giving a total of 4m′ tokens to the vertices, this will prove that
there exist at most m′ rectangles, and thus b ≤ m′. Moreover, vertices adjacent
to the outer face do not give away more than three tokens. We will thus obtain
the strict inequality b < m′.

Now, we describe the details of the charging scheme. (More explanations and
illustrating figures are included in the full version.) Let v be any vertex of V . The
vertex v gives one token to each rectangle r in R which in any way is adjacent to
it, with one exception. The exception occurs when v is a concave vertex; then,
v is partitioned by a vertical segment er added by the algorithm. This segment
partitions the three quadrants at the concave corner around the vertex so that
one rectangle occupies one quadrant and one occupies the two others. Then v
distributes two tokens to the new rectangle occupying only one quadrant, which
therefore has a corner at v, and only one token to each one of the other rectangles
of R adjacent to v.

We now show that each rectangle receives at least four tokens. Let r be any
rectangle in R. First note that each vertical segment added by the algorithm has
at least one endpoint at a vertex in V . Moreover, for any rectangle r in R, each of
the vertical sides of r includes at least one vertex of V . Therefore, each rectangle
is adjacent to at least two vertices of V . We distinguish three cases, depending
on the number of vertices of V adjacent to r. Observe that the adjacencies are
not necessarily at the corners of r.

– Case 1: r is adjacent to at least four vertices of V . Since r will receive at
least one token from each of them we are done.

– Case 2: r is adjacent to precisely three vertices of V . Then at one of the
vertical sides of r there is only one vertex of V . Moreover, this vertex v must
be at a corner of r and fulfills the criteria for giving two tokens to r. The
remaining two adjacent vertices of V give at least one token each, so we are
done.

– Case 3: r is adjacent to precisely two vertices of V . This must mean that
both vertical sides of r are segments added by the algorithm, and that one
of the endpoints of each of these sides is a vertex of V at a corner of r. This
corresponds to the condition for receiving two tokens mentioned earlier. So
in total, r receives four tokens from the two corners, and we are done. ��

2.2 Partitioning a 3D Histogram into 3D Rectangles

We now explain how to obtain the projected PSLG from the 3D histogram P
and how to use the rectangular partition of this PSLG to yield a good partition
into 3D rectangles.

70 P. Floderus et al.

Definition 3. The planar projection PP is an orthogonal projection of the input
3D histogram P along the “down” direction onto the base plane in Definition 1.

We can interpret PP as a PSLG where each corner and each subdividing
point on a line segment corresponds to a vertex. The edges naturally correlate
to the connecting line segments between vertices. Each vertex in PP is the
vertical projection of at least two vertices of P . Two edges of the 3D histogram
may partially overlap in the 2D projection, but the edges in the 2D projection
are considered as non-overlapping. Thus, an edge of the 3D histogram may split
into several edges in the 2D projection, since vertices should only appear as
endpoints of edges.

Remark 1. Every vertex in PP must have at least two neighbors. This follows
from the fact that each vertex of P (and of any orthogonal polyhedron) has at
least two incident horizontal edges. It may happen that some vertex of PP is
the vertical projection of up to four vertices of P , so those four vertices of P
may have a total of eight neighbors in P . But since PP is an orthogonal PSLG,
no vertex of PP has more than four neighbors.

Now we are ready to show the main theorem of this section.

Theorem 1. For any 3D histogram P with m corners, a 4-approximation R
of a partition of P into as few 3D rectangles as possible can be computed in
O(m log m) time.

Proof. We use the projection in Definition 3, let PG = PP , and apply Lemma
1 to compute a planar partition R′. The final 3D partition R is obtained from
R′ by reversing the projection so that each 2D rectangle corresponds to the top
of a 3D rectangle in R.

To analyze the approximation factor, denote the number of 3D rectangles in
an optimal solution R∗ by OPT and the number of 3D rectangles produced by
the algorithm described above by b. We denote by m′ the number of vertices
in PP . By Lemma 1, we have b < m′ since each 2D rectangle corresponds to
one 3D rectangle. Every vertex of P must be adjacent to at least one vertical
edge of a 3D rectangle in R∗. Hence, each vertex in PP has to be at a corner of
the vertical projection of at least one 3D rectangle in R∗ onto the base plane.
Since each 3D rectangle in R∗ only has 4 vertical edges, its vertical projection
can be adjacent to at most 4 vertices of PP . It follows that m′ ≤ 4OPT and
b < m′ ≤ 4OPT .

Since the projection can be obtained by contracting each corner in P and all
of its vertical neighbors into one vertex, the projection can be implemented in
O(m) time. Thus, the O(m log m)-term from Lemma 1 will dominate the time
complexity. ��

3 Geometric Algorithms for Arithmetic Matrix Product

3.1 Geometric Data Structures and Notation

Our algorithms for arithmetic matrix multiplication use some data structures
for interval and rectangle intersection. An interval tree is a leaf-oriented binary

3D Rectangulations and Geometric Matrix Multiplication 71

search tree that supports intersection queries for a set Q of closed intervals on
the real line as follows:

Fact 1 [11]. Suppose that the left endpoints of the intervals in a set Q belong
to a subset U of real numbers of size l and |Q| = q. An interval tree T of depth
O(log l) for Q can be constructed in O(l + q log lq) time using O(l + q) space.
The insertion or deletion of an interval with left endpoint in U into T takes
O(log l + log q) time. The intersection query is supported by T in O(log l + r)
time, where r is the number of reported intervals.

Remark 2. The interval tree of Fact 1 ([11]) can easily be generalized to the
weighted case, where with an interval to insert or delete an integer weight is
associated. It can be done by maintaining in each node of the interval tree
the sum of weights of intervals whose fragments it represents. In effect, the
generalized interval insertions or deletions as well the intersection query have the
same time complexity as those in Fact 1. Moreover, the generalized interval tree
supports a weight intersection query asking for the total weight of the intervals
containing the query point in O(log l + log q) time.

We use the following data structure, easily obtained by computing all prefix
sums:

Fact 2. For a sequence of integers a1, a2,. . . ,an, one can construct a data struc-
ture that supports a query asking for reporting the sum

∑j
k=i ak for 1 ≤ i ≤ j ≤ n

in O(1) time. The construction takes O(n) time.

In the rest of the paper, A and B denote two n×n matrices with nonnegative
integer entries, and C stands for their matrix product. We also need the following
concepts:

1. For an n×n matrix D with nonnegative integer entries, consider the [0, n]×
[0, n] integer grid whose unit cells are in one-to-one correspondence with the
entries ofD. The grid cell between the horizontal lines i − 1 and i (counting
from the top) and vertical lines j − 1 and j (counting from the left) corre-
sponds to Di,j (see Fig. 1a). Then, his(D) stands for the 3D histogram whose
base consists of all unit cells of the [0, n] × [0, n] integer grid corresponding
to positive entries of D and whose height over the cell corresponding to Di,j

is the value of Di,j (see Fig. 1b).
2. For the n × n matrix D, nonnegative integers 1 ≤ i1 ≤ i2 ≤ n, 1 ≤ k1 ≤

k2 ≤ n, and h1, h2, where h1 < h2 ≤ Di,j for i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2,
recD(i1, i2, k1, k2, h1, h2) is the 3D rectangle with the corners (i1 − 1, k1 −
1, hl), (i1 − 1, k2, hl), (i2, k1 − 1, hl), (i2, k2, hl), where l = 1, 2, lying within
his(D).

3. For the matrix D, rD is the minimum number of 3D rectangles
recD(i1, i2, k1, k2, h1, h2) which form a partition of his(D). Note that
rD ≤ n2.

72 P. Floderus et al.

3 3 2 2
2 2 2 3

2 1 1 1
1 1 0 0

0 1 2 3 4

1

2

3

4

(a)

3 3

2 2
2 2 2

3

2

1 1 1
1 1

0 0

(b)

Fig. 1. (a) A matrix D on a grid, and (b) its corresponding histogram his(D)

3.2 Algorithms

Our first geometric algorithm for nonnegative integer matrix multiplication relies
on the following key lemma.

Lemma 2. Let PA be a partition of the matrix A into 3D rectangles
recA(i1, i2, k1, k2, h1, h2) , and let PB be a partition of the matrix B into 3D
rectangles recB(k′

1, k
′
2, j1, j2, h

′
1, h

′
2). For any 1 ≤ i ≤ n, 1 ≤ j ≤ n, the entry

Ci,j of the matrix product C of A and B is equal to the sum of (h2 − h1)(h′
2 −

h′
1) × #[k1, k2] ∩ [k′

1, k
′
2]. over rectangle pairs recA(i1, i2, k1, k2, h1, h2) ∈ PA,

recB(k′
1, k

′
2, j1, j2, h

′
1, h

′
2) ∈ PB satisfying i ∈ [i1, i2] and j ∈ [j1, j2].

Proof. For 1 ≤ l1 < l2 ≤ n and 1 ≤ m1 < m2 ≤ n, let I(l1, l2,m1,m2) be the
n×n 0−1 matrix where I(l1, l2,m1,m2)i,k = 1 iff l1 ≤ i ≤ l2 and m1 ≤ k ≤ m2.

Clearly, we have A =
∑

recA(i1,i2,k1,k2,h1,h2)∈PA
(h2 − h1)I(i1, i2, k1, k2). Sim-

ilarly, we have B =
∑

recB(k′
1,k′

2,j1,j2,h′
1,h′

2)∈PB
(h′

2 − h′
1)I(k′

1,
′ k2, j1, j2).

It follows that C = A×B is the sum over pairs recA(i1, i2, k1, k2, h1, h2) ∈ PA,
recB(k′

1, k
′
2, j1, j2, h

′
1, h

′
2) ∈ PB of (h2 − h1)(h′

1 − h′
2)I(i1, i2, k1, k2) × I(k′

1, k
′
2,

j1, j2). It remains to observe that (I(i1, i2, k1 + 1, k2) × I(k′
1, k

′
2, j1 + 1, j2))i,j =

#[k1, k2] ∩ [k′
1, k

′
2] if i1 < i ≤ i2 and j1 < j ≤ j2 and it is equal to zero

otherwise. ��
Algorithm 1
Input: Two n × n matrices A, B with nonnegative integer entries.
Output: The arithmetic matrix product C of A and B.

1. Find a partition PA of his(A) into 3D rectangles recA(i1, i2, k1, k2, h1, h2)
whose number is within O(1) of the minimum.

2. Find a partition PB of his(B) into 3D rectangles recB(k′
1, k

′
2, j1, j2, h

′
1, h

′
2)

whose number is within O(1) of the minimum.
3. Initialize an interval tree S on the k-coordinates of the rectangles in PA and

PB. For each 3D rectangle recA(i1, i2, k1, k2, h1, h2) ∈ PA insert [k1, k2], with
a pointer to A(i1, i2, k1, k2, h1, h2), into S.

4. Initialize interval lists Startj , Endj , for j = 1, . . . , n. For each rectangle
recB(k′

1, k
′
2, j1, j2, h

′
1, h

′
2) ∈ PB report all intervals [k1, k2] in S that intersect

[k′
1, k

′
2]. For each such interval [k1, k2], with pointer to recA(i1, i2, k1, k2, h1, h2),

insert the interval [i1, i2] with the weight (h2 − h1) × (h′
2 − h′

1) × #[k1, k2] ∩
[k′

1, k
′
2] into the lists Startj1 and Endj2 .

3D Rectangulations and Geometric Matrix Multiplication 73

5. Initialize a weighted interval tree U on endpoints 1, . . . , n. For j = 1, . . . , n,
iterate the following steps. For j > 1, remove all weighted intervals [i1, i2] on
the list Endj−1 from U. Insert all weighted intervals [i1, i2] on the list Startj
into U. For i = 1, . . . , n, set Ci,j to the value returned by U in response to
the weight query at i.

Lemma 3. Let int(PA, PB) stand for the number of pairs recA(i1, i2, k1, k2,
h1, h2) ∈ PA, recB(k′

1, k
′
2, j1, j2, h

′
1, h

′
2) ∈ PB, for which [k1, k2] ∩ [k′

1, k
′
2] �= ∅.

Algorithm 1 runs in time Õ(n2 + int(PA, PB)) = Õ(n2 + rArB).

Proof. To implement steps 1 and 2 in Õ(n2) time, use the algorithm from the pre-
ceding section (Theorem 1). Step 3 can be implemented in Õ(n+rA+rB) = O(n2)
time by Fact 1. In Step 4, the queries to S take Õ(int(PA, PB)) time by Fact 1.
In Step 5, the initialization of the data structure U takes Õ(n) time by Lemma 2.
Next, the updates of the data structure U take Õ(int(PA, PB)) time by Lemma 2,
while computing all columns of C takes Õ(n2) time by Remark 2. ��
Theorem 2. The matrix product of two n × n matrices A, B with nonnegative
integer entries can be computed in Õ(n2 + rArB) time.

Proof. Algorithm 1 yields the theorem. Its correctness follows from Lemma 2
that basically says that for each pair of 3D rectangles, recA(i1, i2, k1, k2, h1, h2) ∈
PA and recB(k′

1, k
′
2, j1, j2, h

′
1, h

′
2) ∈ PB, Ci,j should be increased by (h2 − h1) ×

(h′
2−h′

1)×#[k1, k2]∩[k′
1, k

′
2] for i ∈ [i1, i2] and j ∈ [j1, j2]. In Step 4, two identical

intervals [i1, i2] corresponding to the left and right edge of the submatrix of C
whose entries should be increased by the aforementioned value are inserted in
the lists Startj1 and Endj2 , respectively. In both cases, they are weighted by the
aforementioned value. In Step 5, in iteration j1, the weighted interval [i1, i2] from
Startj1 is inserted into the weighted interval tree U , and in iteration (j2 + 1),
it is removed from U as its copy is in Endj2 . In the iterations j = j1, . . . , j2 in
Step 5, when the interval [i1, i2] is kept in the weighted interval tree, U and the
entries of the submatrix Ci,j , i1 ≤ i ≤ i2, j1 ≤ j ≤ j2, are evaluated, the weight
of the interval contributes to their value. The upper time bound follows from
Lemma 3. ��

When only one of the matrices A and B admits a partition of its 3D histogram
into relatively few 3D rectangles and we have to assume the trivial partition of
the other one into n2 3D rectangles, the upper bound of Theorem 2 in terms
of rA, rB and n seems too weak. In this case, an upper bound in terms of
int(PA, PB) and n in Lemma 3 may be much better. To derive a better upper
bound in terms of just min{rA, rB} and n, we shall design another algorithm
based on the slicing of the 3D histogram admitting a partition into relatively
few 3D rectangles.

For an n × n matrix D with nonnegative integer entries and i = 1, . . . , n, let
slicei(D) stand for the part of his(D) between the two planes perpendicular to
the Y axis whose intersection with the XY plane are the horizontal lines i − 1
and i on the [0, n] × [0, n] grid. In other words, slicei(D) is a 3D histogram for

74 P. Floderus et al.

0 1 2 3 4

3 3

2 2

(a)

0 1 2 3 4

2 2 2

3

(b)

Fig. 2. Let slice1(D) be the 2D histogram on the left and slice2(D) the 2D histogram
on the right. Differentiating strips are shaded. Here, gd(slice1(D), slice2(D)) = 2.

the i-th row. Also note that a slicei(D) can be identified with a rectilinear 2D
histogram; see Fig. 2 for an example. We define a geometric distance between
two rectilinear 2D histograms H1 and H2 with a common base as the number of
maximal vertical strips s such that:

1. for i = 1, 2, s contains exactly one maximal subsegment ei of an edge of Hi

different from and parallel to the base of the histograms, and
2. the subsegments e1 and e2 do not overlap.

See Fig. 2. We shall call such strips differentiating strips. For slicei(D) and
slicek(D), we define the geometric distance gd(slicei(D), slicek(D)) as that for
the corresponding rectilinear 2D histograms.

Lemma 4. For an n × n matrix D with nonnegative integer entries,∑n−1
i=1 gd(slicei(D), slicei+1(D)) = O(rD) holds.

Proof. Each differentiating strip contributes, possibly jointly with one or two
neighboring differentiating strips, to two vertices in the projected planar graph
considered in the proof of Theorem 1. Thus, it contributes to the parameter
m′ in the aforementioned proof with at least 1. It follows

∑n−1
i=1 gd(slicei(D),

slicei+1(D)) ≤ m′. Hence, the inequality m′ ≤ 4OPT established in the proof
of Theorem 1 yields the thesis. ��
Algorithm 2
Input: Two n × n matrices A and B with nonnegative integer entries.
Output: The matrix product C of A and B.

1. For i = 1, . . . , n−1, find the differentiating strips for slicei(A) and slicei+1(A)
and for each such strip s the indices k1(s) and k2(s) of the interval of entries
Ai,k1(s), . . . , Ai,k2(s) in the i-th row of A corresponding to it, as well as the
difference h(s) between the common value of each entry in Ai,k1(s), . . . , Ai,k2(s)

and the common value of each entry in Ai+1,k1(s), . . . , Ai+1,k2(s).
2. For j = 1, . . . , n, iterate the following steps:

(a) Initialize a data structure Tj for counting partial sums of continuous
fragments of the j-th column of the matrix B.

(b) Compute C1,j .
(c) For i = 1, . . . , n − 1, iterate the following steps:

3D Rectangulations and Geometric Matrix Multiplication 75

i. Set Ci+1,j to Ci,j .
ii. For each differentiating strip s for slicei(A) and slicei+1(A), compute

∑k2(s)
k=k1(s)

Bk,j using Tj and set Ci+1,j to Ci+1,j +h(s)
∑k2(s)

k=k1(s)
Bk,j .

Lemma 5. Algorithm 2 runs in Õ(n(n + rA)) time.

Proof. Step 1 can be easily implemented in O(n2) time. Step 2 (a) takes Õ(n)
time according to Fact 2 while Step 2 (b) can be trivially implemented in
O(n) time. Finally, based on Step 1, Step 2 (c) (ii) takes Õ(gd(slicei(D),
slicei+1(D)) time. It follows that Step 2 (c) can be implemented in Õ(

∑n−1
i=1 gd

(slicei(A), slicei+1(A))) time, i.e., in Õ(rA) time by Lemma 4. Consequently,
Step 2 takes Õ(n(n + rA)) time. ��
Theorem 3. The arithmetic matrix product of two n × n matrices A, B with
nonnegative integer entries can be computed in Õ(n(n + min{rA, rB})) time.

Proof. The correctness of Algorithm 2 follows from the observation that a differ-
entiating strip s for slicei(A) and slicei+1(A) yields the difference h(s)

∑k2(s)
k=k1(s)

Bk,j between Ci+1,j and Ci,j just on the fragment corresponding to Ai,k1(s), . . . ,
Ai,k2(s) and Ai+1,k1(s), . . . , Ai+1,k2(s), respectively. Lemma 5 yields the upper
bound Õ(n(n + rA)). The symmetric one Õ(n(n + rB)) follows from the equali-
ties AB = (BT AT)T , his(B) ≡ his(BT), and consequently rB = rBT . ��

In Algorithm 2, the linear order in which the Ci,j are updated to Ci+1,j

for i = 1, . . . , n − 1, along the row order of the matrix A is not necessarily
optimal. Following the Boolean case [3,5], it may be more efficient to update
Ci,j while traversing a minimum spanning tree for the slices of his(A) under the
geometric distance. Here, however, we encounter the difficulty of constructing
such an optimal spanning tree or a close approximation in substantially subcubic
time. The next lemma will be useful.

Lemma 6. Consider the family of rectilinear planar histograms with the base
[0, n], n ≥ 2 and integer coordinates of its vertices in [0, 2M − 2], M = O(log n).
There is a simple O(n)-time transformation of any histogram H in the fam-
ily into an 0 − 1 string t(H), such that for any H1 and H2 in the family
gd(H1,H2) ≤ ch(t(H1), t(H2)) ≤ Mgd(H1,H2), where ch(,) stands for the
Hamming distance.

Proof. Any histogram H in the family is uniquely represented by the vector
(H[1], . . . ,H[n]) ∈ {1, . . . , 2M − 1}n, where H[1], . . . ,H[n] are the values of Y
coordinates of the points on the “roof” of H increased by one with X coordinates
0.5, 1.5, . . . , n − 0.5 respectively.

For any y ∈ {0, . . . , 2M −1} denote its binary representation of length exactly
M (padded with leading zeros if necessary) as bin(y).

Let f(H, i) =

{
bin(H[i]), i = 1 ∨ i > 1 ∧ H[i] �= H[i − 1]
bin(0), otherwise.

76 P. Floderus et al.

The transformation t is then defined as t(H) = f(H, 1) . . . f(H,n). We have
ch(t(H1), t(H2)) =

∑n
i=1 ch(f(H1, i), f(H2, i)) and

gd(H1,H2) =

{
1, H1[1] �= H2[1]
0, otherwise

+

+
n∑

i=2

{
1, (H1[i] �= H1[i − 1] ∨ H2[i] �= H2[i − 1]) ∧ (H1[i] �= H2[i])
0, otherwise.

Consider all possibilities that contribute exactly one to gd(H1,H2):

1. H1[1] �= H2[1]. In this case f(H1, 1) = bin(H1[1]), f(H2, 1) = bin(H2[1]) and
0 ≤ ch(bin(H1[1]),bin(H2[1])) ≤ M .

2. 2 ≤ i ≤ n ∧ H1[i] �= H1[i − 1] ∧ H2[i] = H2[i − 1] ∧ H1[i] �= H2[i]. In this case
f(H1, i) = bin(H1[i]), f(H2, i) = bin(0) and 1 ≤ ch(bin(H1[i]),bin(0)) ≤ M .

3. 2 ≤ i ≤ n ∧ H1[i] = H1[i − 1] ∧ H2[i] �= H2[i − 1] ∧ H1[i] �= H2[i]. See case 2.
4. 2 ≤ i ≤ n ∧ H1[i] �= H1[i − 1] ∧ H2[i] �= H2[i − 1] ∧ H1[i] �= H2[i]. See case 1.

To complete the proof, observe that in all other cases ch(f(H1, i), f(H2, i)) = 0.
��

Fact 3 [6]. For ε > 0, a (1 + ε)-approximation minimum spanning tree for a set
of n points in Rd with integer coordinates in O(1) under the L1 or L2 metric
can be computed by a Monte Carlo algorithm in O(dn1+1/(1+ε)) time.

By combining the transformation of Lemma 6 with Fact 3 applied to the L1

metric in {0, 1}n and selecting ε = log n, we obtain a Monte Carlo O(log2 n)-
approximation algorithm for the minimum spanning tree of the slices of his(A)
under the geometric distance, which runs in Õ(n2) time. This yields a gener-
alization of Algorithm 2 to Algorithm 3, described in the full version of our
paper. By an analysis of Algorithm 3 analogous to that of Algorithm 2 and a
proof analogous to that of Theorem 3, we obtain a randomized generalization of
Theorem 3:

Theorem 4. Let A, B be two n × n matrices A, B with nonnegative integer
entries in [0, nO(1)]. Next, for D ∈ {A,BT }, let MD be the minimum cost of a
spanning tree of slicei(D) for i = 1, . . . , n. The arithmetic matrix product of A
and B can be computed by a randomized algorithm in Õ(n(n+min{MA, MBT }))
time with high probability.

4 Final Remarks

A natural question is: Would it help to apply an algorithm that optimally rect-
angulates the 2D projection in Section 2.2? Although it would yield improved
results in certain cases, it would not give a better approximation factor than
4 in general for the minimum rectangular 3D partition. An example of this is
when the optimal 3D partition consists of k cubes lying on top of each other.

3D Rectangulations and Geometric Matrix Multiplication 77

Then the 2D projection is k concentric squares of different sizes and an optimal
rectangulation of the corresponding 2D projection consists of 4k − 3 rectangles.
Hence, for large k, the approximation factor tends to 4.

The 4-approximation algorithm for minimum rectangular partition of a 3D
histogram in case the histogram is his(D) for an input n × n matrix D with
nonnegative integer entries can easily be implemented in O(n2) time. Also note
that the resulting partition of his(D) can be used to form a compressed repre-
sentation of D requiring solely Õ(rD) bits if the values of the entries in D are
nO(1)-bounded.

Our geometric algorithms for integer matrix multiplication can also be applied
to derive faster (1+ε)-approximation algorithms for integer matrix multiplication;
if the range of an input matrix D is [0, nO(1)], then round each entry to the smallest
integer power of (1+ε) that is not less than the entry. The resulting matrix D′ has
only a logarithmic number of different entry values and hence rD′ may be much
less than rD.

Our algorithms and upper time bounds for integer n×n matrix multiplication
can easily be extended to include integer rectangular matrix multiplication.

References

1. Bansal, N., Williams, R.: Regularity Lemmas and Combinatorial Algorithms.
Theory of Computing 8(1), 69–94 (2012)

2. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational
Geometry: Algorithms and Applications. 3rd edn. Springer, Santa Clara (2008)

3. Björklund, A., Lingas, A.: Fast boolean matrix multiplication for highly clustered
data. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125,
p. 258. Springer, Heidelberg (2001)

4. Dielissen, V.J., Kaldewai, A.: Rectangular Partition is Polynomial in Two Dimen-
sions but NP-Complete in Three. Information Processing Letters 38(1), 1–6 (1991)

5. Gasieniec, L., Lingas, A.: An Improved Bound on Boolean Matrix Multiplication
for Highly Clustered Data. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003.
LNCS, vol. 2748, pp. 329–339. Springer, Heidelberg (2003)

6. Indyk, P., Motwani, R.: Approximate Nearest Neighbors: Towards Removing the
Curse of Dimensionality. In: Proc. of STOC 1998, pp. 604–613 (1998)

7. Keil, J.M.: Polygon Decomposition. Survey, Dept. Comput. Sc. Univ. Saskatchewan
(1996)

8. Le Gall, F.: Powers of Tensors and Fast Matrix Multiplication. In: Proc. of the
39th ISSAC, pp. 296–303 (2014)

9. Lingas, A.: A Geometric Approach to Boolean Matrix Multiplication. In: Bose, P.,
Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 501–510. Springer, Heidelberg
(2002)

10. Lipski, W.: Finding a Manhattan path and related problems. Networks 13(3),
399–409 (1983)

78 P. Floderus et al.

11. Mehlhorn, K.: Data Structures and Algorithms 3: Multi-dimensional Searching and
Computational Geometry. EATCS Monographs on Theo. Comput. Sc., Springer
(1984)

12. Muthukrishnan, S., Poosala, V., Suel, T.: On Rectangular Partitionings in Two
Dimensions: Algorithms, Complexity, and Applications. In: Beeri, C., Bruneman,
P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 236–256. Springer, Heidelberg (1998)

13. Sack, J.-R., Urrutia, J. (ed).: Handbook of Computational Geometry. Elsevier
(2000)

	3D Rectangulations and Geometric Matrix Multiplication
	1 Introduction
	2 3D Histograms and Their Rectangular Partitions
	2.1 Partitioning a Rectilinear PSLG into 2D Rectangles
	2.2 Partitioning a 3D Histogram into 3D Rectangles

	3 Geometric Algorithms for Arithmetic Matrix Product
	3.1 Geometric Data Structures and Notation
	3.2 Algorithms

	4 Final Remarks
	References

