
Theory Comput Syst (2011) 48: 865–887
DOI 10.1007/s00224-010-9274-7

Algorithms for Finding a Most Similar Subforest

Jesper Jansson · Zeshan Peng

Published online: 8 June 2010
© Springer Science+Business Media, LLC 2010

Abstract Given an ordered labeled forest F (“the target forest”) and an ordered la-
beled forest G (“the pattern forest”), the most similar subforest problem is to find
a subforest F ′ of F such that the forest edit distance between F ′ and G is mini-
mum over all possible F ′. This problem generalizes several well-studied problems
which have important applications in locating patterns in hierarchical structures such
as RNA molecules’ secondary structures and XML documents. Algorithms for the
most similar subforest problem restricted to subforests which are either rooted sub-
trees or simple substructures exist in the literature; in this article, we show how to
solve the most similar subforest problem for two other types of subforests: sibling
substructures and closed subforests.

Keywords Approximate pattern matching · Forest edit distance · Simple
substructure · Sibling substructure · Closed subforest · Dynamic programming

A preliminary version of this article appeared in Proceedings of the 17th Annual Symposium on
Combinatorial Pattern Matching (CPM 2006), volume 4009 of Lecture Notes in Computer Science,
pp. 377–388, Springer-Verlag, 2006.
J. Jansson funded in part by JSPS (Japan Society for the Promotion of Science), Kyushu University,
and the Special Coordination Funds for Promoting Science and Technology.

J. Jansson (�)
Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
e-mail: Jesper.Jansson@ocha.ac.jp

Z. Peng
Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong,
Hong Kong
e-mail: zspeng@cs.hku.hk

mailto:Jesper.Jansson@ocha.ac.jp
mailto:zspeng@cs.hku.hk

866 Theory Comput Syst (2011) 48: 865–887

1 Introduction

An ordered labeled tree is a rooted tree in which the left-to-right ordering among
nodes is fixed and each node is labeled by a symbol from a given alphabet. An ordered
labeled forest is a sequence of ordered labeled trees. Ordered labeled trees and forests
are useful data structures for hierarchical data representation; for example, XML doc-
uments are basically ordered labeled trees [5] and RNA molecules’ secondary struc-
tures without pseudoknots can be represented by ordered labeled forests [10, 13, 20].
Below, we refer to ordered labeled trees and ordered labeled forests as trees and
forests, respectively.

This article studies the following problem which we call the most similar sub-
forest problem: Given a forest F (“the target forest”) and a forest G (“the pattern
forest”), find a subforest of F which is the most similar to G, where the forest edit
distance [16, 21, 25] is used to measure the similarity between forests. The forest
edit distance between two forests is the cost of a cheapest possible sequence of so-
called relabel, delete, and insert operations on nodes which transforms one forest into
the other; see Sect. 2.1 below for formal definitions. There are many ways to define
“subforest”, so we examine several alternatives and show how to solve all the result-
ing problems efficiently. Our techniques combine and extend the techniques of [10]
and [25].

1.1 Previous Results

This subsection contains a short survey of previous results. For any forest F , denote
the number of nodes in F by |F |, the depth of F by dp(F), the set of leaves in F

by L(F), and the set of all nodes in F by V (F). The subtree of F rooted at a node i

is written as F [i], and p(F) is an imaginary parent node of the roots of the trees in F .
See Sect. 2.1 for the definitions of the different types of subforests mentioned here:
rooted subtrees, simple substructures, sibling substructures, and closed subforests.

Tai [21] gave the first algorithm for computing the forest edit distance δ(F,G)

between two given forests F and G. Later, Zhang and Shasha [25] presented a faster
algorithm, Algorithm ZS-main, for computing δ(F,G) in O(|F | · |G| ·min{|L(F)|,
dp(F)} · min{|L(G)|,dp(G)}) time and O(|F | · |G|) space. (Actually, these pa-
pers assumed F and G to be trees, but it is simple to generalize their methods to
forests by letting every forest F contain the imaginary parent node p(F) introduced
in Sect. 2.1.) By applying different techniques, Klein [15] obtained an algorithm
that computes δ(F,G) in O(|F |2 · |G| · log |G|) time and O(|F |2 · |G| · log |G|)
space, and more recently, Demaine et al. [7] improved this result to O(|F |2 · |G| ·
(1 + log(|G|/|F |))) time and O(|F | · |G|) space. Chen [4] and Touzet [22] have de-
veloped algorithms that are even faster for certain types of inputs. Note, however, that
none of the existing algorithms beats all the others in every single case; e.g., Algo-
rithm ZS-main is still the fastest when dp(F) and dp(G) are small but slower than
the algorithm of Demaine et al. [7] in the worst case.

In short, Algorithm ZS-main computes and stores δ(F [i],G[j]) for all i ∈ V (F)

and j ∈ V (G) using bottom-up dynamic programming. By running ZS-main and
then selecting a node i ∈ V (F) which minimizes δ(F [i],G[p(G)]), one can there-
fore directly find one of the subtrees rooted at a node in F which is the most similar

Theory Comput Syst (2011) 48: 865–887 867

to G, i.e., a most similar rooted subtree. However, to identify a most similar simple
substructure, it is not practical to compute the forest edit distance between G and
every one of the possibly exponentially many (in |F |) simple substructures of F . To
cope with this issue, Zhang and Shasha [25] provided a variant of Algorithm ZS-
main, henceforth referred to as Algorithm ZS-simple, for finding a most simi-
lar simple substructure of F to G which runs in O(|F | · |G| · min{|L(F)|,dp(F)} ·
min{|L(G)|,dp(G)}) time and O(|F | · |G|) space. It is outlined in Sect. 3 below.

The problems of finding a most similar sibling substructure and a most similar
closed subforest have not been studied previously. Nevertheless, the algorithm of
Klein [15] in its simplified form [2] may be adapted to find a most similar closed
subforest, as we briefly discuss next. Following [2], define the (i, j)-deleted sub-
forest of F as the forest obtained from F by successively applying the delete op-
eration on the rightmost root j times and then on the leftmost root i times. The
simplified version of Klein’s algorithm in [2] computes δ(F ′,G) for all possible
(i, j)-deleted subforests F ′ of F , so the most similar closed subforest problem can
be solved in the same asymptotic complexity by inserting a step to remember the
smallest value of δ(F ′,G) computed so far for any (i, j)-deleted subforest F ′ whose
leftmost and rightmost roots are siblings; in order to test this last condition in O(1)

time, keep a pointer to the leftmost root and a pointer to the rightmost root of each
(i, j)-deleted subforest and check if they have the same parent in F in O(1) time.
This yields an algorithm for the most similar closed subforest problem running in
O(|F |2 · |G| · log |G|) time and O(|F |2 · |G| · log |G|) space. It seems difficult to ex-
tend the algorithm of Demaine et al. [7] in the same way to find most similar closed
subforests, though, as it does not compute δ(F ′,G) for all possible (i, j)-deleted
subforests F ′ of F .

1.2 Our Contributions

We focus on how to solve the most similar subforest problem where “subforest”
means “sibling substructure” or “closed subforest”.

Our first new result, an algorithm for finding a most similar sibling substruc-
ture (named Modified_ZS-simple), is obtained by proving that Zhang and
Shasha’s [25] Algorithm ZS-simple for simple substructures essentially already
solves the problem for us, so that only a small modification to their algorithm is
necessary. The second new result, an algorithm for efficiently finding a most simi-
lar closed subforest (named Most_similar_csf), is our main contribution. It is
based on a novel recurrence for expressing the value of δ for subforests of F and G

of a certain form (Lemma 12). The recurrence was designed to take advantage of the
observation that having access to the values of m(i) for all i ∈ V (F) (see Sect. 2.1 for
the definition of m(i)), it is easy to check if a given leaf � is a descendant of a given
node x in O(1) time (Lemma 2). We believe that this technique can be applied to
derive new recurrences for other combinatorial problems involving closed subforests
such as the small-in-large closed subforest similarity problem [10] (cf. Sect. 7) as
well, leading to more efficient dynamic programming-based solutions for such prob-
lems.

868 Theory Comput Syst (2011) 48: 865–887

Table 1 The running times of different algorithms for finding a most similar subforest

Finding a Algorithm Time complexity

most similar

Rooted subtree ZS-main O(|F | · |G| · min{|L(F)|,dp(F)}
(Ref. [25]) ·min{|L(G)|,dp(G)})

Simple substructure ZS-simple O(|F | · |G| · min{|L(F)|,dp(F)}
(Ref. [25]; see also Sect. 3) ·min{|L(G)|,dp(G)})

Sibling substructure Modified_ZS-simple O(|F | · |G| · min{|L(F)|,dp(F)}
(Sect. 4) ·min{|L(G)|,dp(G)})

Closed subforest Most_similar_csf O(|F | · |G| · |L(F)|
(Sect. 5) ·min{|L(G)|,dp(G)})

The running times of Modified_ZS-simple and Most_similar_csf are
summarized in Table 1, along with the running times of ZS-main and ZS-simple
from [25]. All four algorithms run in O(|F | · |G|) space.

In comparison, Most_similar_csf is faster than the simplified version of
Klein’s algorithm [2, 15] (see Sect. 1.1) when L(F), L(G), or dp(G) is small, and it
uses much less space for all types of inputs.

1.3 Organization of Article

The rest of the article is organized as follows. Section 2 contains formal definitions of
the most similar subforest problem and the different types of subforests we consider.
Section 2 also examines some useful basic properties of the left-to-right postorder
numbering of the nodes (Lemmas 1–3), introduces additional notation needed to de-
scribe and analyze the algorithms in later sections, and explains the preprocessing
done by the algorithms. In Sect. 3, we review Algorithm ZS-simple from [25]
for finding a most similar simple substructure of F to G. Sections 4 and 5 present
our new algorithms for finding a most similar sibling substructure of F to G (Al-
gorithm Modified_ZS-simple) and a most similar closed subforest of F to G

(Algorithm Most_similar_csf), respectively. Next, Sect. 6 mentions applica-
tions for the most similar subforest problem. Finally, we discuss open problems in
Sect. 7.

2 Preliminaries

2.1 Notation, Terminology, and Problem Definition

Basic notation Let F be any forest. To simplify the presentation, we assume that
the roots of the trees in F share an imaginary parent node, denoted by p(F), which
is considered to belong to F and which is labeled by a special symbol ‘�’ different
from all other node labels in F . Let V (F) and L(F) represent the set of all nodes

Theory Comput Syst (2011) 48: 865–887 869

Fig. 1 A forest F consisting of
five trees (presented here
without node labels). K(F) is
the set of circled nodes.
According to the definitions, the
node marked i has number 14.
Also shown in the figure are the
imaginary parent node p(F) and
the node m(i)

belonging to F and the set of leaves in F , respectively. For convenience, denote the
number of nodes in F by |F |, i.e., |F | = |V (F)|. Define deg(F) (the degree of F)
as the maximum number of children over all nodes in V (F), and dp(F) (the depth
of F) as the number of edges on the longest path from a root node in F to a leaf of F .
For any i ∈ V (F), denote the parent of i by p(i) and the label of i by label(i).

Any i1, i2 ∈ V (F) are siblings if they have the same parent in F . (Thus, throughout
this article, every node is defined to be a sibling of itself.) If i1, i2 ∈ V (F) are sib-
lings and i1 �= i2 also holds then i1 and i2 are called proper siblings. Define the key
nodes of F as the set K(F) = {p(F)} ∪ {i | i ∈ V (F) and i has a left proper sibling}.
See Fig. 1 for an example.

Enumerate the nodes of F from 1 to |F | in accordance with the order in which they
are visited by a left-to-right postorder traversal of F , and associate each node with its
number. For any i1, i2 ∈ V (F), define i1 : i2 as the set of nodes whose numbers are
greater than or equal to i1 and less than or equal to i2. For any i1, i2 ∈ V (F), define
i1 · · i2 as the set of all nodes in i1 : i2 which are both siblings of i1 and siblings of i2
(recall that every node is a sibling of itself). By definition, if i1 and i2 are not siblings
or if they are siblings such that i1 > i2 then i1 · · i2 = ∅. Next, for any i ∈ V (F),
define m(i) as the smallest numbered node in the subtree consisting of i and all
proper descendants of i. Figure 1 illustrates m(i) for a given node i. Finally, for any
nodes x, y ∈ V (F), write y � x if y is a proper descendant of x in F or equal to x,
and y �� x otherwise.

From here on, we assume that all forests are labeled by a finite alphabet Σ with
� ∈ Σ and that there exists a special blank symbol ‘−’ which does not belong to Σ .
We also assume that a given function γ assigns a non-negative cost to every pair of
symbols from Σ ∪ {−}. To be precise, we require γ to be a pseudometric of the type
γ : (Σ ∪ {−}) × (Σ ∪ {−}) → R

+, where R
+ denotes the set of non-negative real

numbers. We also require that γ (−,−) = ∞, where ∞ represents any sufficiently
large real number, and γ (a,�) = γ (�, b) = γ (�,�) = γ (�,−) = γ (−,�) = 0.

Forest edit distance and edit mappings As in [21, 25], first define three edit opera-
tions on any forest F which may be used to modify the structure and labeling of F :

• Relabel: Change the label of a node i in F .
• Delete: Remove a node i and the edge between i and p(i) from F , while letting

the children of i (if any) become children of p(i) without changing the children’s
relative left-to-right ordering.

• Insert: Insert a new node i with any label into F (the inverse operation of delete).
Node i will become a child of an existing node j (where j is allowed to be the

870 Theory Comput Syst (2011) 48: 865–887

Fig. 2 Two examples of edit operations: (1) Relabeling node 8 in the forest F (whose label is h) with the
label c; and (2) deleting node 6 in F ′ (whose label is n) so that node 8 (the parent of node 6) in F ′ has
four children in the resulting forest F ′′

imaginary parent node) and the parent of a (possibly empty) consecutive subse-
quence of children of j .

Refer to Fig. 2 for examples of the relabel and delete operations. Without loss of gen-
erality, we do not allow imaginary parent nodes to be relabeled, deleted, or inserted.

The given function γ is overloaded to give the cost of any edit operation s (de-
noted by γ (s)) as follows: the cost of relabeling any node i by any label b ∈ Σ

is γ (label(i), b), the cost of deleting any node i is γ (label(i),−), and the cost of
inserting a new node with label b ∈ Σ is γ (−, b). Then, γ is naturally extended to
any sequence of edit operations S = s1, . . . , sk by setting γ (S) = ∑|S|

i=1 γ (si). Lastly,
the forest edit distance between two forests F and G, denoted by δ(F,G), is the
cost of the cheapest sequence of edit operations which transforms F into G, i.e.,
δ(F,G) = min{γ (S) | S is a sequence of edit operations transforming F to G}.

An equivalent formulation of the forest edit distance δ(F,G) is as the cost of
an optimal edit mapping between F and G [21, 25]. This formulation has the ad-
vantage of being well suited for dynamic programming solutions. Formally, an edit
mapping M between two forests F and G is a set of pairs of the form (i, j), where
i ∈ V (F) and j ∈ V (G), such that for any two pairs (i1, j1), (i2, j2) ∈ M , the follow-
ing properties are satisfied: (1) i1 = i2 if and only if j1 = j2; (2) i1 is an ancestor of i2
if and only if j1 is an ancestor of j2; and (3) i1 < i2 if and only if j1 < j2. For any
(i, j) ∈ M , we say that node i is linked with node j in M . Define the left-linked set
as MF = {i | ∃(i, j) ∈ M} and the left-unlinked set as UF = V (F) \ MF , and define
the right-linked set MG and right-unlinked set UG analogously. Any edit mapping M

between F and G induces a sequence of delete and relabel operations on F and G

such that the resulting forests F ′ and G′ are identical.1 Next, for any i ∈ V (F) and
j ∈ V (G), define f (i) = label(i) and g(j) = label(j), and define the cost of an edit
mapping M as:

δ(M) =
∑

(i,j)∈M

γ (f (i), g(j)) +
∑

i∈UF

γ (f (i),−) +
∑

j∈UG

γ (−, g(j)).

1More precisely, every i ∈ UF means “delete node i from F ”, every j ∈ UG means “delete node j

from G”, and every (i, j) ∈ M with label(i) �= label(j) means “relabel i with the label of j”.

Theory Comput Syst (2011) 48: 865–887 871

Fig. 3 Various kinds of subforests of a given forest F . (a) The subtree of F rooted at a node i, denoted
by F [i]; (b) a closed subforest of F , denoted by F [i1 · · i2]; (c) a simple substructure of F ; and (d) a sibling
substructure of F

Finally, an optimal edit mapping between two forests F and G is an edit mapping
with the minimum cost: min{δ(M)} over all possible M . This cost is equal to the
forest edit distance δ(F,G) between F and G [21, 25].

Subforest definitions We consider the following five types of subforests of a for-
est F . See Fig. 3 for some examples.

• For any node i in F , the subtree of F rooted at i is the subtree consisting of i and
all proper descendants of i, and is denoted by F [i]. (F [i] is also called a rooted
subtree of F .)

• For any siblings i1, i2 in F , the set of subtrees rooted at i1 · · i2 forms a closed
subforest of F , denoted by F [i1 · · i2].2

• A simple substructure of F is any connected subgraph of F .
• A sibling substructure of F is any set of disjoint simple substructures of F whose

roots are siblings (not necessarily consecutive) in F .
• Given any subset S of the nodes in F , the restriction of F to S, denoted by F‖S ,

is defined as the forest obtained from F by deleting all nodes not in S.

Observe that F [i1 · · i1] = F [i1] for any node i1 in F .

Problem definition Using any one of the above definitions for “subforest”, we say
that a most similar subforest of a forest F to a forest G is a subforest F ′ of F that

2Closed subforests were introduced by Höchsmann et al. [10].

872 Theory Comput Syst (2011) 48: 865–887

minimizes δ(F ′,G). The most similar subforest problem (again, using any one of the
above definitions for “subforest”) is:

Given two forests F and G, find a most similar subforest of F to G.

2.2 Simple Observations

We start with two simple but useful lemmas:

Lemma 1 Let F be a forest. Then:

(a) For any i ∈ V (F), m(i) is the leftmost leaf in F [i].
(b) m(p(F)) is the node with number 1.
(c) For any siblings i1 and i2 in V (F), F [i1 · · i2] = F‖m(i1):i2 .
(d) For any i ∈ V (F), F [i] = F‖m(i):i .

Proof

(a) First, suppose that m(i) is not a leaf. Then m(i) has at least one child c. c is also
a proper descendant of i, but c < m(i) by the definition of postorder traversal,
which leads to a contradiction. Thus, m(i) must be a leaf. Next, suppose there
exists some leaf l �= m(i) such that l � i and l lies to the left of m(i). Then,
l < m(i) according to the left-to-right postorder traversal, which is also a contra-
diction.

(b) Follows immediately from part (a).
(c) Follows from part (a) and the left-to-right postordering of the nodes.
(d) F [i] = F [i · · i] = F‖m(i):i by part (c) because i is a sibling of itself. �

Lemma 2 For any nodes x, y ∈ V (F), y � x if and only if m(x) ≤ y ≤ x.

Proof If y � x then y ≤ x by the postorder numbering and m(x) ≤ y by the definition
of m(x). To prove the other direction, note that Lemma 1(a) and the left-to-right pos-
torder numbering imply that the set {m(x), . . . , x} is exactly the set of nodes in F [x].
Therefore, if m(x) ≤ y ≤ x then y must belong to F [x], and then y is either a proper
descendant of x or equal to x. �

2.3 Nearest Key Node Ancestors

For each node i in a given forest F , define A(i) (the nearest key node ancestor of i)
by: If i ∈ K(F) then let A(i) = i; otherwise, let A(i) be the nearest ancestor of i

which belongs to K(F). Then:

Lemma 3 For any i ∈ V (F), m(i) = m(A(i)).

Proof If i ∈ K(F) then m(i) = m(A(i)) is trivially true. If i �∈ K(F) then i has no left
proper sibling so m(i) = m(p(i)) by Lemma 1(a), where p(i) is the parent of i. By
induction, m(i) = m(x) for every node x belonging to the path between i and A(i),
and in particular, m(i) = m(A(i)). �

Theory Comput Syst (2011) 48: 865–887 873

2.4 The Cut Operation and Definition of Ψ

To describe the algorithms in later sections, we need an additional edit operation
called cut. It was originally introduced by Zhang and Shasha in [25].3

Let F be a forest. For any node i in F , cutting at node i means removing the
entire subtree F [i] (along with the parent edge of i) from F at cost 0.4 For any two
nodes u and v in F with u �= v, u and v are said to be consistent if u is not a proper
descendant of v and v is not a proper descendant of u. A set C of nodes from F is
consistent if every pair of nodes in C is consistent. Denote the set of all consistent
sets of nodes in F by C(F), and for any C ∈ C(F), let F � C be the forest obtained
from F by cutting all nodes in C. Lemma 4 below follows directly from the definition
of a simple substructure.

Lemma 4 Let i be a node in a forest F . F ′ is a simple substructure of F rooted at i

if and only if F ′ = F [i] � C for some C ∈ C(F [i]).

Next, for any given forests F and G, define:

Ψ (F,G) = min
C∈C(F)

{δ(F � C, G)}.

Although not explicitly stated by Zhang and Shasha in [25], the following lemma
forms the basis for their Algorithm ZS-simple.

Lemma 5 The value mini∈V (F){Ψ (F [i],G)} is equal to the cost of an optimal edit
mapping between G and a most similar simple substructure of F to G.

Proof For any forest X and any node i ∈ V (X), let S(X) denote the set of all sim-
ple substructures of X and let S i (X) denote the set of simple substructures of X

with root node i. To prove the lemma, we will show that minF ′∈S(F){δ(F ′,G)} =
mini∈V (F) {Ψ (F [i],G)}.

Every simple substructure has a root, which gives minF ′∈S(F){δ(F ′,G)} =
mini∈V (F) minF ′∈S i (F){δ(F ′,G)}. Next, for any fixed i ∈ V (F), the expression
minF ′∈S i (F){δ(F ′,G)} can be rewritten according to Lemma 4 as
minC∈C(F [i]){δ(F [i] � C, G)}, which equals Ψ (F [i],G) by the definition of Ψ .
Thus, we have minF ′∈S(F){δ(F ′,G)} = mini∈V (F){Ψ (F [i],G)}. �

2.5 Preprocessing Step

As a preprocessing step to the algorithms below, we calculate and store the elements
of the sets K(F), K(G), and L(F) according to their postorders in three auxiliary
arrays KF, KG, and LF. At the same time, m(i) for all i ∈ V (F) ∪ V (G) are also
precomputed and stored. More precisely, we first traverse F in left-to-right postorder

3In [25], the cut operation is called removing at a node.
4Observe that the cut operation differs from the delete operation defined in Sect. 2.1 since it removes all
the nodes in a subtree of F and is for free.

874 Theory Comput Syst (2011) 48: 865–887

to create two auxiliary arrays KF and LF which list all nodes belonging to K(F)

and L(F), respectively, in the order that they are visited. During the traversal, we
also compute and store m(i) for all i ∈ V (F) by utilizing Lemma 1(a). Next, in the
same way, we traverse G to obtain an auxiliary array KG storing the nodes from K(G)

according to postorder as well as m(i) for all i ∈ V (G). Clearly, this preprocessing
takes O(|F | + |G|) time.

2.6 Traceback Step

The algorithms presented in the following sections compute the cost of an optimal
edit mapping, but can be modified to also output a corresponding optimal edit map-
ping as well as a most similar subforest of F to G within the same asymptotic running
time and space bounds by applying standard traceback techniques as suggested in,
e.g., [25]. For example, to identify a simple substructure F ′ of F for which δ(F ′,G)

is optimal (and not just compute the value δ(F ′,G)), one may use a stronger version
of Lemma 5:

Lemma 6 For any i∗ ∈ V (F) and C∗ ∈ C(F [i∗]) which satisfy the two rela-
tions {Ψ (F [i∗],G)} = mini∈V (F){Ψ (F [i],G)} and δ(F [i∗] � C∗,G) =
minC∈C(F [i∗]){δ(F [i∗] � C,G)}, it holds that F [i∗] � C∗ is a most similar simple
substructure of F to G.

Proof Firstly, according to the choice of i∗ and C∗ and the definition of Ψ ,
mini∈V (F){Ψ (F [i],G)} = Ψ (F [i∗],G)} = minC∈C(F [i∗]){δ(F [i∗] � C,G)} =
δ(F [i∗] � C∗,G). Secondly, mini∈V (F){Ψ (F [i],G)} = minF ′∈S(F){δ(F ′,G)} by
Lemma 5, where S(F) denotes the set of all simple substructures of F . Thus,
δ(F [i∗] � C∗,G) = minF ′∈S(F){δ(F ′,G)}, so F [i∗] � C∗ is a most similar simple
substructure of F to G. �

Analogous versions of Lemma 6 for most similar sibling structures and most sim-
ilar closed subforests are straightforward.

3 Review of Zhang and Shasha’s Algorithm for Finding a Most Similar Simple
Substructure

In this section, we review Algorithm ZS-simple by Zhang and Shasha [25] for
finding a most similar simple substructure of F to G.

Algorithm ZS-simple computes mini∈V (F){Ψ (F [i],G)} by dynamic program-
ming. (According to Lemma 5 above, the cost of an optimal edit mapping be-
tween G and a most similar simple substructure of F to G is given by this value.)
The algorithm is listed in Fig. 4. After performing the preprocessing described in
Sect. 2.5, the main loop considers all pairs of indices i ∈ K(F) and j ∈ K(G)

in bottom-up order, and for each such pair (i, j), it calls a procedure named
Compute_Psi to obtain Ψ (F‖m(i):x,G‖m(j):y) for every x ∈ V (F [i]) and y ∈
V (G[j]). (In [25], the procedure Compute_Psi is named SUBTREE REMOVAL.)

Theory Comput Syst (2011) 48: 865–887 875

Main loop:
Input: A target forest F and a pattern forest G.
Output: The cost of an optimal edit mapping between G and a most similar simple substructure

of F to G.
1: Preprocessing: Compute the arrays KF and KG and the values of m(i) for all i ∈ V (F) ∪ V (G).
2: Ψ (∅,∅) := 0.
3: for i1 := 1, . . . , |K(F)| do
4: for j1 := 1, . . . , |K(G)| do
5: i := KF[i1]; j := KG[j1]; Call Compute_Psi(i, j).
6: end for
7: end for
8: return mini∈V (F){Ψ (F [i],G)}.
Procedure Compute_Psi(i, j):
/* Given nodes i and j , computes Ψ (F‖m(i):x,G‖m(j):y) for all x ∈ V (F [i]) and y ∈ V (G[j]). */
1: for x := m(i), . . . , i do Ψ (F‖m(i):x,∅) := 0 end for
2: for y := m(j), . . . , j do Ψ (∅,G‖m(j):y) := Ψ (∅,G‖m(j):y−1) + γ (−, g(y)) end for
3: for x := m(i), . . . , i do
4: for y := m(j), . . . , j do
5: Calculate Ψ (F‖m(i):x,G‖m(j):y) according to Lemma 8.
6: end for
7: end for

Fig. 4 Algorithm ZS-simple from [25] for finding a most similar simple substructure of F to G

Finally, Algorithm ZS-simple returns the value mini∈V (F){Ψ (F [i],G)}, which
satisfies the relation mini∈V (F){Ψ (F [i],G)} = mini∈V (F){Ψ (F‖m(i):i ,G‖1:p(G))} =
mini∈V (F){Ψ (F‖m(i):i ,G‖m(p(G)):p(G))} according to Lemma 1(b) and (d).
Compute_Psi uses Lemmas 7 and 8 below to compute Ψ (F‖m(i):x,G‖m(j):y)

for every x ∈ {m(i), . . . , i} and y ∈ {m(j), . . . , j}. Intuitively, when treating nodes x

and y, if the subtree F [x] is very dissimilar to G[y] then it will be better to cut x

(in other words, remove the entire subtree F [x] at once at no additional cost), in
which case F‖m(i):x becomes just F‖m(i):m(x)−1. On the other hand, if F [x] is similar
to G[y] then x and y should be linked, or one of x and y should be deleted, and then
the remaining parts of F [x] and G[y] linked.

Lemma 7 Ψ (∅,∅) = 0; Ψ (F,∅) = 0; Ψ (∅,G) = ∑
j∈V (G) γ (−, g(j)).

Lemma 8 For any i ∈ V (F), j ∈ V (G), x ∈ {m(i), . . . , i}, y ∈ {m(j), . . . , j}, the
expression Ψ (F‖m(i):x,G‖m(j):y) is equal to the minimum of the following four val-
ues:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ (F‖m(i):m(x)−1,G‖m(j):y);
Ψ (F‖m(i):x−1,G‖m(j):y) + γ (f (x),−);
Ψ (F‖m(i):x,G‖m(j):y−1) + γ (−, g(y));
⎧
⎪⎪⎨

⎪⎪⎩

Ψ (F‖m(i):x−1,G‖m(j):y−1)

+γ (f (x), g(y)), if m(i) = m(x), m(j) = m(y);
Ψ (F‖m(i):m(x)−1,G‖m(j):m(y)−1)

+Ψ (F [x],G[y]), otherwise.

876 Theory Comput Syst (2011) 48: 865–887

For proofs of Lemmas 7 and 8, see Lemma 8 in [25]. The result of [25] regarding
simple substructures can be summarized as:

Theorem 1 [25] Given two forests F and G, Algorithm ZS-simple correctly com-
putes the forest edit distance between G and a most similar simple substructure of F

to G over all simple substructures of F . Furthermore, Algorithm ZS-simple can
be implemented to run in O(|F | · |G| · min{|L(F)|,dp(F)} · min{|L(G)|,dp(G)})
time and O(|F | · |G|) space.

4 An Algorithm for Finding a Most Similar Sibling Substructure

We now give an algorithm for finding a most similar sibling substructure of F to G.
It is named Algorithm Modified_ZS-simple and is based on Algorithm ZS-
simple [25] described in Sect. 3 since finding a most similar sibling substructure is
closely related to finding a most similar simple substructure, as shown next.

Lemma 9 Let F ′ be any sibling substructure of F . F ′ is a most similar sibling sub-
structure of F to G if and only if δ(F ′,G) = mini∈V (F){Ψ (F‖m(i):i−1,G)}.

Proof The proof is similar to our proof of Lemma 5. For any forest X and any
node i ∈ V (X), let S B(X) denote the set of all sibling substructures of X and
let S B i (X) be the set of sibling substructures of X whose component simple sub-
structures’ roots are children of the node i. To prove the lemma, we will show that
minF ′∈S B(F){δ(F ′,G)} = mini∈V (F){Ψ (F‖m(i):i−1,G)}.

For any given sibling substructure, there exists a single node which is the par-
ent of all of its component simple substructures, i.e., minF ′∈S B(F){δ(F ′,G)} =
mini∈V (F) min

F ′∈S B i (F)
{δ(F ′,G)}. Next, for any non-leaf node i ∈ V (F), let Fi

denote the closed subforest F [i1 · · iq], where i1 and iq are the leftmost and
rightmost children of i, respectively; if i is a leaf then define Fi = ∅. Then, for
any fixed i ∈ V (F), we may rewrite the expression min

F ′∈S B i (F)
{δ(F ′,G)} as

minC∈C(Fi){δ(Fi �C, G)}, which equals Ψ (Fi,G) by the definition of Ψ . This shows
that minF ′∈S B(F){δ(F ′,G)} = mini∈V (F){Ψ (Fi,G)}. Lastly, it follows from the pos-
torder numbering of V (F) and Lemma 1(d) that for any i ∈ V (F), the subforest
F‖m(i) : i−1 is the rooted subtree F [i] with the node i removed, i.e., Fi . Therefore,
minF ′∈S B(F){δ(F ′,G)} = mini∈V (F){Ψ (F‖m(i):i−1,G)}. �

According to Lemma 9, we can find a most similar sibling substructure of F to G

by computing the value mini∈V (F){Ψ (F‖m(i):i−1, G)}. In contrast, by Lemma 1(d)
and Lemma 5, finding a most similar simple substructure amounts to comput-
ing mini∈V (F){Ψ (F‖m(i):i ,G)}. Since Algorithm ZS-simple computes
Ψ (F‖m(i):i−1,G) before Ψ (F‖m(i):i ,G) for every i ∈ V (F), Lemma 9 makes it
very easy for us to find a most similar sibling substructure of F to G. To be precise,
we modify Algorithm ZS-simple in Fig. 4 to obtain Algorithm Modified_ZS-
simple as follows: Allocate O(|F |) extra space Z to also store the values of

Theory Comput Syst (2011) 48: 865–887 877

Ψ (F‖m(i):i−1,G) for all i ∈ V (F) as they are computed; then, change Step 8 of
the main loop to return mini∈V (F){Ψ (F‖m(i):i−1,G)}, found by checking Z, instead.
Clearly, the asymptotic time and space complexities for Algorithm Modified_ZS-
simple are the same as those for Algorithm ZS-simple.

For completeness, we now show that the value of Ψ (F‖m(i):i−1, G) for every
i ∈ V (F) is indeed computed, even when i �∈ K(F). (This is not proved explicitly
in [25].) Let i be any given node in F . By the definition of the procedure Sub-
tree_Removal, it holds that for each k ∈ K(F), Algorithm ZS-simple com-
putes Ψ (F‖m(k):x, G) for all x ∈ {m(k), . . . , k}. In particular, the algorithm will com-
pute Ψ (F‖m(A(i)):i−1, G) when k = A(i) and x = i − 1. By Lemma 3, this is equal
to Ψ (F‖m(i):i−1, G). Thus, for any given i ∈ V (F), Algorithm ZS-simple (and
therefore also Algorithm Modified_ZS-simple) computes Ψ (F‖m(i):i−1,G) at
some point during its execution.

We obtain:

Theorem 2 Given two forests F and G, Algorithm Modified_ZS-simple
correctly computes the forest edit distance between G and a most similar sib-
ling substructure of F to G over all sibling substructures of F in O(|F | · |G| ·
min{|L(F)|,dp(F)}·min{|L(G)|,dp(G)}) time and O(|F |·|G|) space.

5 An Algorithm for Finding a Most Similar Closed Subforest

Here, we present an efficient algorithm for finding a most similar closed subforest
of F to G. Neither Algorithm ZS-simple in [25] nor Modified_ZS-simple
from the previous section is suitable for this variant of the problem because if,
for example, i1 and i2 are siblings in F with i1 < i2 and i1 ∈ K(F) then the
value of δ(F‖m(i1):i2,G) is not calculated by either of the two algorithms, whereas
F‖m(i1):i2 = F [i1 · · i2] might in fact be a most similar closed subforest of F to G.
Therefore, we have to develop another approach.

In Sect. 5.1, we first extend the results of [25] by deriving a new recurrence
for computing certain values of δ that are not covered by Lemma 8. More pre-
cisely, we derive a recurrence for δ(F‖l:x,G‖m(j):y) for any l ∈ L(F), j ∈ K(G),
x ∈ {l, . . . , |F |}, and y ∈ {m(j), . . . , j}. In Sect. 5.2, we subsequently employ the
new recurrence to obtain our algorithm named Algorithm Most_similar_csf
for finding a most similar closed subforest of F to G based on locating a subforest
of F of the form F‖m(i1):i2 which minimizes δ(F‖m(i1):i2,G) among all siblings i1, i2
in F . Finally, Sect. 5.3 analyzes the time and space complexity of our algorithm.

5.1 New Recurrences for δ

It is easy to show that:

Lemma 10 δ(∅,∅) = 0; δ(F,∅) = ∑
i∈V (F) γ (f (i),−);

δ(∅,G) = ∑
j∈V (G) γ (−, g(j)).

878 Theory Comput Syst (2011) 48: 865–887

Proof (Lemma 3 in [25]) The first case is trivial as there is no cost for the empty
edit mapping between two empty forests. To prove the second case, observe that for
any edit mapping M between F and ∅, the left-unlinked set contains all the nodes
in F and the right-unlinked set is empty, so the cost of M is

∑
i∈V (F) γ (f (i),−).

The third case is symmetric to the second case. �

For the general case, we have:5

Lemma 11 For any l ∈ L(F), j ∈ K(G), x ∈ {l, . . . , |F |}, y ∈ {m(j), . . . , j}, the
expression δ(F‖l:x,G‖m(j):y) is equal to the minimum of the following three val-
ues:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(F‖l:x−1,G‖m(j):y) + γ (f (x),−);
δ(F‖l:x,G‖m(j):y−1) + γ (−, g(y));
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ(∅,G‖m(j):m(y)−1)

+ δ(F‖l:x−1,G‖m(y):y−1) + γ (f (x), g(y)), if l � x;
δ(F‖l:m(x)−1, G‖m(j):m(y)−1)

+ δ(F‖m(x):x−1,G‖m(y):y−1) + γ (f (x), g(y)), if l �� x.

Proof Let M be an optimal edit mapping between F‖l:x and G‖m(j):y . Consider the
nodes x and y. There are three main cases:

(1) x �∈ MF : Then x belongs to the left-unlinked set UF of M , i.e., x is deleted in the
optimal solution given by M , so δ(M) = δ(F‖l:x−1,G‖m(j):y) + γ (f (x),−).

(2) y �∈ MG: Then y belongs to the right-unlinked set UG of M , i.e., y is deleted in
the optimal solution given by M , so δ(M) = δ(F‖l:x,G‖m(j):y−1)+γ (−, g(y)).

(3) x ∈ MF and y ∈ MG: Then x must be linked with y in M . In this case, there are
two subcases:
(i) l � x: This means that x is a common ancestor of all nodes in the set l :

x − 1. Furthermore, by the postordering of the nodes, y is always a common
ancestor of all nodes in the set m(y) : y − 1. Since x is linked with y, all
nodes in {m(j), . . . , m(y) − 1} must be deleted from G‖m(j):y , so δ(M) =
δ(∅,G‖m(j):m(y)−1) + δ(F‖l:x−1,G‖m(y):y−1) + γ (f (x), g(y)). See Fig. 5
for an illustration.

(ii) l �� x: Since x is linked with y, the nodes {l, . . . , m(x) − 1} are mapped
to the nodes {m(j), . . . , m(y) − 1}, and the nodes {m(x), . . . , x − 1}
are similarly mapped to the nodes {m(y), . . . , y − 1}. We obtain δ(M) =
δ(F‖l:m(x)−1, G‖m(j):m(y)−1)+δ(F‖m(x):x−1, G‖m(y):y−1)+γ (f (x), g(y)).
See Fig. 6.

5Remark: Since Algorithm ZS-main and Algorithm ZS-simple in [25] only compute values of δ of the
form δ(F‖m(i):x,G‖m(j):y), where x ∈ {m(i), . . . , i}, y ∈ {m(j), . . . , j}, the recurrences derived in [25]
did not need to distinguish between the cases l � x and l �� x.

Theory Comput Syst (2011) 48: 865–887 879

Fig. 5 Illustrating the proof of Lemma 11, subcase (i) of case (3). Here, l � x in F . Nodes x and y are
linked, forcing nodes {l, . . . , x − 1} in F‖l:x to be mapped to nodes {m(y), . . . , y − 1} in G‖m(j):y

Fig. 6 Illustrating the proof of Lemma 11, subcase (ii) of case (3). In this subcase, l �� x in F . Nodes x

and y are linked, so nodes {l, . . . , m(x) − 1} in F‖l:x must be mapped to nodes {m(j), . . . , m(y) − 1}
in G‖m(j):y , and nodes {m(x), . . . , x − 1} in F‖l:x must be mapped to nodes {m(y), . . . , y − 1}
in G‖m(j):y

Thus, δ(M) equals the minimum of the values obtained from case (1), case (2), and
the appropriate subcase of case (3). �

To simplify the implementation in Sect. 5.3, rewrite the recurrence in Lemma 11
as follows so that δ(F‖l:x,G‖m(j):y) can be computed without accessing the values
of δ(F‖l:x−1,G‖m(y):y−1) and δ(F‖m(x):x−1,G‖m(y):y−1). By eliminating the depen-
dency on values of the form δ(. . . , G‖m(y):y−1) and δ(F‖m(x):x−1, . . .), we also save

a lot of space by not having to store those values throughout the algorithm’s entire
execution.

880 Theory Comput Syst (2011) 48: 865–887

Lemma 12 For any l ∈ L(F), j ∈ K(G), x ∈ {l, . . . , |F |}, y ∈ {m(j), . . . , j}, the
expression δ(F‖l:x,G‖m(j):y) is equal to the minimum of the following three values:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δ(F‖l:x−1,G‖m(j):y) + γ (f (x),−);
δ(F‖l:x,G‖m(j):y−1) + γ (−, g(y));
⎧
⎪⎨

⎪⎩

δ(F‖l:x−1,G‖m(j):y−1) + γ (f (x), g(y)), if l � x and m(j) = m(y);
δ(∅,G‖m(j):m(y)−1) + δ(F‖l:x,G[y]), if l � x and m(j) �= m(y);
δ(F‖l:m(x)−1,G‖m(j):m(y)−1) + δ(F [x],G[y]), if l �� x.

Proof We prove this lemma by showing that the new recurrence is equivalent to the
one given in Lemma 11. Note that only the terms in the innermost bracket differ from
Lemma 11. There are three possible cases:

(a) l � x and m(j) = m(y): In this case, {m(j), . . . ,m(y) − 1} = ∅ and hence
δ(∅,G‖m(j):m(y)−1) = 0 by Lemma 10. Also, the equality m(j) = m(y) gives
δ(F‖l:x−1,G‖m(y):y−1) = δ(F‖l:x−1,G‖m(j):y−1).

(b) l � x and m(j) �= m(y):
By the definition of δ,

δ(F‖l:x,G‖m(j):y) ≤ δ(∅,G‖m(j):m(y)−1) + δ(F‖l:x,G[y]). (1)

Thus, inserting the right-hand side of (1) into the minimum-expression in
Lemma 11 does not affect the expression’s value, so for l � x we can write
δ(F‖l:x,G‖m(j):y) = min{. . . , δ(∅,G‖m(j):m(y)−1) + δ(F‖l:x,G[y])}, where . . .

denotes the three terms from Lemma 11 with the third term corresponding to the
condition l � x. Now, by case (a) above, δ(F‖l:x,G[y]) = δ(F‖l:x,G‖m(y):y)
≤ δ(F‖l:x−1,G‖m(y):y−1) + γ (f (x), g(y)), so the third term in the min-
expression is redundant and can be deleted.

(c) l �� x:
Here, the definition of δ implies that

δ(F‖l:x,G‖m(j):y) ≤ δ(F‖l:m(x)−1,G‖m(j):m(y)−1) + δ(F [x],G[y]).
Therefore, when l �� x, the minimum-expression in Lemma 11 can be written as
δ(F‖l:x,G‖m(j):y) = min{. . . , δ(F‖l:m(x)−1,G‖m(j):m(y)−1) + δ(F [x],G[y])},
where . . . denotes the three terms from Lemma 11 with the third term cor-
responding to the condition l �� x. Again, by applying case (a) above, we
have δ(F [x],G[y]) = δ(F‖m(x):x,G‖m(y):y) ≤ δ(F‖m(x):x−1,G‖m(y):y−1) +
γ (f (x), g(y)), so the third term in the new min-expression is not needed. �

5.2 Description of Algorithm Most_similar_csf

We are now ready to present the main algorithm of this section, named Algo-
rithm Most_similar_csf. It calculates the minimum forest edit distance among
all closed subforests of F to the forest G by dynamic programming.

Algorithm Most_similar_csf is listed in Fig. 7. Its overall structure resem-
bles that of Algorithm ZS-simple [25], but it exhibits some crucial differences

Theory Comput Syst (2011) 48: 865–887 881

Main loop:
Input: A target forest F and a pattern forest G.
Output: The cost of an optimal edit mapping between G and a most similar closed subforest of F to G.
1: Preprocessing: Compute the arrays LF and KG and the values of m(i) for all i ∈ V (F) ∪ V (G).
2: result := 0.
3: δ(∅,∅) := 0.
4: for l1 := |L(F)|, . . . ,1 do
5: for j1 := 1, . . . , |K(G)| do
6: l := LF[l1]; j := KG[j1]; Call Compute_delta(l, j).
7: end for
8: end for
9: return result.

Procedure Compute_delta(l, j):
/* Given nodes l and j , computes δ(F‖l:x,G‖m(j):y) for all x ∈ {l, . . . , |F |} and y ∈ V (G[j]). */
1: for x := l, . . . , |F | do δ(F‖l:x,∅) := δ(F‖l:x−1,∅) + γ (f (x),−) end for
2: for y := m(j), . . . , j do δ(∅,G‖m(j):y) := δ(∅,G‖m(j):y−1) + γ (−, g(y)) end for
3: for x := l, . . . , |F | do
4: for y := m(j), . . . , j do
5: Calculate δ(F‖l:x,G‖m(j):y) according to Lemma 12.
6: if j = p(G), y = |G|, x has a sibling s with m(s) = l, and result > δ(F‖l:x,G‖m(j):y)

7: then result := δ(F‖l:x,G‖m(j):y).
8: end for
9: end for

Fig. 7 Algorithm Most_similar_csf for finding a most similar closed subforest of F to G. Note that
line 4 of the main loop iterates on the leaves of F in right-to-left order

due to Lemma 12. The main loop treats all pairs of indices l ∈ L(F) and j ∈ K(G) in
right-to-left and bottom-up order, respectively. For each such pair of indices (l, j), the
algorithm calls a procedure named Compute_delta to obtain δ(F‖l:x,G‖m(j):y)
for all x ∈ {l, . . . , |F |} and y ∈ {m(j), . . . , j} based on Lemmas 10 and 12. Finally, it
returns the value of min{δ(F‖m(i1):i2,G) | i1, i2 are siblings in F }.

Significantly, the main loop only considers the leaves of F , and moreover, the
order in which they are handled is right-to-left. This is because such an ordering
allows an implementation having low time complexity and low space complexity
based on exploiting our new recurrence from Lemma 12, as described in detail in
Sect. 5.3 below (cf. Lemma 13 and its proof).

A global variable named result keeps track of the minimum value so far among
all δ of the form δ(F‖m(i1):i2,G), where i1 and i2 are siblings in F , during successive
calls to Compute_delta. The current value of result is updated in Steps 6 and 7
of Compute_delta whenever j = p(G), y = |G|, and x has a sibling s satisfying
m(s) = l. Here, s does not necessarily have to be a proper sibling of x, i.e., s = x is
allowed.

The following theorem proves the algorithm’s correctness.

Theorem 3 Given two forests F and G, Algorithm Most_similar_csf correctly
computes the forest edit distance between G and a most similar closed subforest of F

to G over all closed subforests of F .

Proof By Lemmas 10 and 12, Algorithm Most_similar_csf calculates δ cor-
rectly for all subforests that are considered. Suppose that F [a · · b] is a most similar

882 Theory Comput Syst (2011) 48: 865–887

closed subforest of F to G. We need to prove that the algorithm will at some point
consider F [a · · b] together with G. For this purpose, observe that m(a) ∈ L(F) and
b ∈ {m(a), . . . , |F |}, and G = G‖m(p(G)):|G| where p(G) ∈ K(G), so when l = m(a),
x = b, j = p(G), and y = |G|, the algorithm will compute δ(F‖l:x,G‖m(j):y) =
δ(F‖m(a):b,G‖m(p(G)):|G|) = δ(F [a · · b],G) and store it in result. �

5.3 Computational Complexity of Algorithm Most_similar_csf

The structure of the expression in Lemma 12 as well as the structure of the algorithm’s
loops were designed to allow an implementation running in O(|F | · |G| · |L(F)| ·
min{|L(G)|, dp(G)}) time and O(|F | · |G|) space. In this subsection, we explain
how such an implementation can be achieved.

We start by showing how to evaluate the expression in Lemma 12 efficiently.
The first point to note is that whenever Algorithm Most_similar_csf uses

the recurrence in Lemma 12, it needs to check the descendant relationship between �

and x in order to know which subcase of the third case applies. This is where
Lemma 2 comes in handy. After having precomputed m(i) for all i ∈ V (F) in the
preprocessing step (see Sect. 2.5), it is possible to immediately test in O(1) time
whether or not l � x for any given l ∈ L(F) and x ∈ V (F) simply by checking if the
condition m(x) ≤ l ≤ x is true.

Secondly, we can use three tables M1, M2, and M3 to store the computed optimal
solutions to certain subproblems:

• M1 temporarily stores δ(F‖l:x,G‖m(j):y) for all x ∈ {l − 1, . . . , |F |} and y ∈
{m(j)−1, . . . , j} as they are computed by Compute_delta for a given l ∈ L(F)

and a given j ∈ K(G) inside the main loop. Each call to Compute_delta reuses
this space.

• M2 temporarily stores δ(F‖l:x,G[y]) for all x ∈ {l, . . . , |F |} satisfying l � x and
all y ∈ V (G) as they are computed for the current l ∈ L(F), i.e., for each fixed l in
the outermost loop of the main program, M2 keeps these δ-values during |K(G)|
calls to Compute_delta, and reuses the space when the next l ∈ L(F) is con-
sidered.

• M3 stores all computed values of the form δ(F [x],G[y]), where x ∈ V (F), y ∈
V (G), during the entire execution of the algorithm.

The next lemma proves that M1, M2, and M3 are sufficient for evaluating the expres-
sion in Lemma 12 in O(1) time. As in Sect. 2.3, for any j ∈ V (G), A(j) denotes the
nearest key node ancestor of j .

Lemma 13 Immediately before Step 5 in Compute_delta is performed, every
value of δ referred to by the expression in Lemma 12 will already have been computed
and therefore stored in M1, M2, or M3.

Proof First, note that δ(F‖l:x−1,G‖m(j):y), δ(F‖l:x,G‖m(j):y−1), δ(F‖l:x−1,

G‖m(j):y−1), δ(∅,G‖m(j):m(y)−1), and δ(F‖l:m(x)−1,G‖m(j):m(y)−1) are always
available in M1 since Steps 3 and 4 in Compute_delta consider x and y in in-
creasing order.

Theory Comput Syst (2011) 48: 865–887 883

If l � x and m(j) �= m(y), the value of δ(F‖l:x,G[y]) is also needed. But this
value has already been computed and stored in M2 because y ∈ {m(j), . . . , j} and
m(j) �= m(y) means m(j) < m(y) and thus m(j) < m(A(y)) by Lemma 3. This in
turn implies A(y) < j , so the algorithm must have called Compute_delta(l,A(y))

and hence have computed δ(F‖l:x,G‖m(A(y)):y) = δ(F‖l:x,G[y]) previously.
On the other hand, if l �� x then the required value δ(F [x],G[y]) is available

in M3 because l �� x and l < x imply l < m(x) and because the outermost loop
of the algorithm handles the leaves of F in decreasing order, so the algorithm has
already called Compute_delta(m(x), y) and obtained δ(F‖m(x):x,G‖m(y):y) =
δ(F [x],G[y]). �

Next, we demonstrate how to do the check in Step 6 of Compute_delta(l, j)

in O(1) time.

Lemma 14 For any fixed l ∈ L(F), after O(|F |) time preprocessing and using
O(|F |) extra space, one can test in O(1) time if any given node in F has a sibling s

with m(s) = l.

Proof Define Ql = {i | i ∈ V (F) and m(i) = l}. By the definition of m(i), Ql induces
a path in F such that every node in F can have at most one child on this path. Ac-
cordingly, for each i ∈ V (F), define Cl(i) as the unique child of i that belongs to
Ql if such a child exists, and 0 otherwise. Cl(x) for all x ∈ V (F) can easily be com-
puted in O(|F |) time: initially, set all Cl(x) to 0, and then find the non-zero values
by traversing F upwards from l until a node i with m(i) �= l is found. Then, to check
in O(1) time if a given node x in F has a sibling s such that m(s) = l, just check if
Cl(p(x)) �= 0. �

Finally, we have:

Theorem 4 Algorithm Most_similar_csf can be implemented to run in O(|F | ·
|G| · |L(F)| · min{|L(G)|,dp(G)}) time and O(|F | · |G|) space.

Proof The preprocessing in Step 1 of the main loop takes O(|F | + |G|) time. We
add a step between Steps 4 and 5 in the outermost for-loop which performs the pre-
processing of Lemma 14 for the current l ∈ L(F); summing over all l ∈ L(F), this
takes a total of O(|F | · |L(F)|) time. Now, according to Lemma 13 and Lemma 14,
Steps 5–7 of Compute_delta take O(1) time which means the algorithm’s total
running time is O(|F | + |G|) + O(|F | · |L(F)|) + O(

∑
l∈L(F)

∑
j∈K(G) |F‖l:|F || ·

|G[j]|). By Lemma 7 in [25],
∑

j∈K(G) |G[j]| ≤ |G| · min{|L(G)|,dp(G)}, so the
total running time can be rewritten as O(|F | · |G| · |L(F)| · min{|L(G)|,dp(G)}).

The O(|F |) additional space required by Lemma 14 may be reused for each l ∈
L(F). Moreover, the tables M1, M2, and M3 take O(|F | · |G|), O(dp(F) · |G|), and
O(|F | · |G|) space, respectively, so the total space complexity is O(|F | · |G|). The
theorem follows. �

884 Theory Comput Syst (2011) 48: 865–887

6 Applications

The most similar subforest problem generalizes several other well-studied problems.
For example, in the forest inclusion problem, the objective is to determine whether a
given forest G can be obtained from another given forest F by only deleting nodes
from F , and if so, finding the smallest subforest of F in which G is included (this
problem and a constrained variant have been studied in, e.g., [14, 24]). However, in
case G is not included in F , one might still need to find a subforest F ′ of F such
that G is very similar to F ′, or to measure how far from being included in F the
pattern forest G is. This is precisely “the most similar subforest problem”. As another
example, consider the approximate string matching problem [23]: Given two strings S

and T , find a substring of S which is as similar as possible to T , using string edit
distance. This problem has numerous applications to Stringology, Bioinformatics,
Signal processing, Speech recognition, Text retrieval, e-mail spam filtering, Image
compression, etc. (see, e.g., [6, 9, 18, 19, 23] and the many references therein). Since
any string S can be represented by a tree where all non-leaf nodes have exactly one
child and every connected subgraph corresponds to a substring of S, the approximate
string matching problem is just a special case of the most similar subforest problem.

Next, we describe some potential applications for algorithms that compute most
similar subforests.

– Subforests in general: When investigating post-transcriptional gene regulation
events or evolutionary relationships between RNA molecules, it is useful to look
for substructures of RNA molecules’ secondary structures called motifs that rep-
resent important functional or structural regions [10]. A number of methods of
representing the secondary structure of an RNA molecule without pseudoknots by
a forest have been proposed in the literature [10, 13, 20]. In such forest represen-
tations, motifs correspond to subforests [8, 10, 12], and moreover, the functional
similarity of two RNA secondary structures is related to the similarity of their two
forest representations [10, 13, 17, 20]. Hence, our algorithms may help in the auto-
matic identification of motifs in RNA secondary structures as follows: to classify
a newly discovered RNA secondary structure F , our algorithms can be applied to
find several different types of subforests (candidate functional regions) of F which
are similar to the functional regions of various known families, and then one can
filter out those families which are too unlike F by using some other method. This
could be a useful step in RNA structure comparison and classification.

– Sibling substructures: The ability to detect changes in electronic documents and
hierarchically structured data such as XML files is critical for information man-
agement and data archiving applications. Often, the entire history of modifications
made to a data file is unavailable but snapshots of previous versions of the file can
be obtained and then analyzed and compared to the current version [3]. Suppose
that a hierarchically structured data file is represented by a tree and we need to
check if a given pattern forest G extracted from an old version of the file occurs
somewhere in the current version. Then, algorithms for finding a most similar sib-
ling substructure could be used to search for G when not only the node labels of G

itself may have changed but also many extra nodes may have been inserted into the
part of the file where G originally occurred.

Theory Comput Syst (2011) 48: 865–887 885

Fig. 8 A gapped subforest of a
given forest F

– Closed subforests: By comparing various subtrees or subforests of an ordered la-
beled tree representing a computer program, one can locate fragments of the source
code which are identical or nearly identical to each other. Detecting and replacing
such “clones” by, e.g., subroutines or macros can improve the structure of (and
thus decrease the maintenance costs of) software [1]. Our algorithms may be help-
ful here since a section of the code that is to be replaced by a subroutine or macro
would typically consist of a contiguous code fragment and also start and end on
the same nesting level, and thus correspond to a closed subforest.

7 Concluding Remarks

It is straightforward to generalize the algorithms presented here to find a subfor-
est F ′ of F and a subforest G′ of G that are the most similar for any combina-
tion of the types of subforests considered above. For example, if F ′ should be a
closed subforest and G′ should be a simple substructure then we can modify Algo-
rithm Most_similar_csf to allow nodes in G to be cut as in Sect. 3.

We wonder if it is possible to reduce the running time of Most_similar_csf
from O(|F | · |G| · |L(F)| ·min{|L(G)|,dp(G)}) to O(|F | · |G| ·min{|L(F)|,dp(F)} ·
min{|L(G)|,dp(G)}) while keeping the O(|F | · |G|) space requirement. Such a result
would match the complexities of the other three algorithms ZS-main, ZS-simple,
and Modified_ZS-simple.

Another important open question is: Is it possible to extend the algorithms in this
article to other types of subforests? For example, one might consider gapped sub-
forests (introduced in [12]), where a gapped subforest of F is obtained by removing
from any closed subforest F ′ of F a set C of closed subforests such that no two closed
subforests in C have the same parent in F ′ (see Fig. 8). One may also consider sub-
forests of F formed by successively applying the delete operation on the rightmost
root of F any number of times and then on the leftmost root any number of times;6

this type of subforest was called an (i, j)-deleted subforest of F in [2], and it includes
closed subforests as a special case.

Furthermore, it could be useful in practical applications to have a candidate set
of nearly optimal solutions which may then be further evaluated by some additional
criteria. Therefore, it would be interesting to generalize the algorithms to return all

6Klein’s algorithm in its simplified form [2, 15] may be used here. See Sect. 1.1 for a short discussion.

886 Theory Comput Syst (2011) 48: 865–887

subforests of F which are within forest edit distance k of G, where k is an input pa-
rameter. Indeed, much work on the analogous approximate string matching problem
mentioned in Sect. 6 has focused on variants where this kind of threshold parameter
is provided [9, 18, 23].

An alternative measure of the similarity between two forests is the forest align-
ment distance (see [13] or [16] for a formal definition). Although the edit distance
and alignment distance are equivalent for strings, they are not equivalent for trees
and forests [13, 16]. The algorithm of Jiang et al. [13] for computing the forest
alignment distance runs in O(|F | · |G| · (deg(F) + deg(G))2) time, and its running
time was improved for similar inputs in [11]. The algorithm of Jiang et al. com-
putes an optimal global alignment between F and G, meaning that all nodes of F

and G contribute to the cost of the final solution. Later, Höchsmann et al. [10] gave
an algorithm for computing an optimal local alignment between F and G which
finds a closed subforest F ′ of F and a closed subforest G′ of G having the mini-
mum forest alignment distance. A more efficient algorithm for this problem, running
in O(|F | · |G| · (deg(F) + deg(G))2) time and O(|F | · |G| · (deg(F) + deg(G)))

space, along with some extensions to other types of subforests were given in [12].
Höchsmann et al. [10] also considered the problem of finding a closed subforest F ′
of F which minimizes the alignment distance to G (i.e., the analogue of our “most
similar closed subforest problem” but using alignment distance instead of edit dis-
tance), which they called the small-in-large closed subforest similarity problem, and
showed how to solve it in O(|F | · |G| · deg(F) · deg(G) · (deg(F) + deg(G))) time
and O(|F | · |G| · deg(F) · deg(G)) space. It remains to further reduce the time and
space complexities of their algorithm.

Acknowledgements We thank the anonymous referees whose suggestions helped us improve the pre-
sentation of our results.

References

1. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using abstract syntax
trees. In: Proceedings of the IEEE International Conference on Software Maintenance (ICSM 1998),
pp. 368–377 (1998)

2. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci. 337(1–3), 217–239
(2005)

3. Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change detection in hierarchically
structured information. In: Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD 1996), pp. 493–504 (1996)

4. Chen, W.: New algorithm for ordered tree-to-tree correction problem. J. Algorithms 40(2), 135–158
(2001)

5. Cobéna, G., Abiteboul, S., Marian, A.: Detecting changes in XML documents. In: Proceedings of the
18th IEEE International Conference on Data Engineering (ICDE 2002), pp. 41–52 (2002)

6. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, London (1994)
7. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition algorithm for tree

edit distance. ACM Trans. Algorithms 6(1) (2009). Article 2
8. Griffiths-Jones, S.: The microRNA registry. Nucleic Acids Res. 32, D109–D111 (2004)
9. Grossi, R., Luccio, F.: Simple and efficient string matching with k mismatches. Inf. Process. Lett.

33(3), 113–120 (1989)
10. Höchsmann, M., Töller, T., Giegerich, R., Kurtz, S.: Local similarity in RNA secondary structures. In:

Proceedings of the IEEE Computational Systems Bioinformatics Conference (CSB 2003), pp. 159–
168 (2003)

Theory Comput Syst (2011) 48: 865–887 887

11. Jansson, J., Lingas, A.: A fast algorithm for optimal alignment between similar ordered trees. Fundam.
Inf. 56(1–2), 105–120 (2003)

12. Jansson, J., Ngo, T.H., Sung, W.-K.: Local gapped subforest alignment and its application in finding
RNA structural motifs. J. Comput. Biol. 13(3), 702–718 (2006)

13. Jiang, T., Wang, L., Zhang, K.: Alignment of trees—an alternative to tree edit. Theor. Comput. Sci.
143, 137–148 (1995)

14. Kilpeläinen, P., Mannila, H.: Ordered and unordered tree inclusion. SIAM J. Comput. 24(2), 340–356
(1995)

15. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Proceedings of the 6th
European Symposium on Algorithms (ESA 1998), pp. 91–102 (1998),

16. Kuboyama, T., Shin, K., Miyahara, T., Yasuda, H.: A theoretical analysis of alignment and edit prob-
lems for trees. In: Proceedings of the 9th Italian Conference on Theoretical Computer Science (ICTCS
2005). Lecture Notes in Computer Science, vol. 3701, pp. 323–337. Springer, Berlin, Heidelberg
(2005)

17. Ma, B., Wang, L., Zhang, K.: Computing similarity between RNA structures. Theor. Comput. Sci.
276, 111–132 (2002)

18. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–88 (2001)
19. Sankoff, D., Kruskal, J.B. (eds.): Time Warps, String Edits, and Macromolecules: The Theory and

Practice of Sequence Comparison. Addison-Wesley, Reading (1983)
20. Shapiro, B.A., Zhang, K.: Comparing multiple RNA secondary structures using tree comparisons.

Comput. Appl. Biosci. 6(4), 309–318 (1990)
21. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26(3), 422–433 (1979)
22. Touzet, H.: Comparing similar ordered trees in linear-time. J. Discrete Algorithms 5(4), 696–705

(2007)
23. Ukkonen, E.: Approximate string-matching with q-grams and maximal matches. Theor. Comput. Sci.

92(1), 191–211 (1992)
24. Valiente, G.: Constrained tree inclusion. J. Discrete Algorithms 3(2–4), 431–447 (2005)
25. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related prob-

lems. SIAM J. Comput. 18(6), 1245–1262 (1989)

	Algorithms for Finding a Most Similar Subforest
	Abstract
	Introduction
	Previous Results
	Our Contributions
	Organization of Article

	Preliminaries
	Notation, Terminology, and Problem Definition
	Basic notation
	Forest edit distance and edit mappings
	Subforest definitions
	Problem definition

	Simple Observations
	Nearest Key Node Ancestors
	The Cut Operation and Definition of Psi
	Preprocessing Step
	Traceback Step

	Review of Zhang and Shasha's Algorithm for Finding a Most Similar Simple Substructure
	An Algorithm for Finding a Most Similar Sibling Substructure
	An Algorithm for Finding a Most Similar Closed Subforest
	New Recurrences for delta
	Description of Algorithm Most_similar_csf
	Computational Complexity of Algorithm Most_similar_csf

	Applications
	Concluding Remarks
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

