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Abstract—We investigate the computational complexity of inferring a smallest

possible multilabeled phylogenetic tree (MUL tree) which is consistent with each of

the rooted triplets in a given set. This problem has not been studied previously in

the literature. We prove that even the very restricted case of determining if there

exists a MUL tree consistent with the input and having just one leaf duplication is

an NP-hard problem. Furthermore, we show that the general minimization problem

is difficult to approximate, although a simple polynomial-time approximation

algorithm achieves an approximation ratio close to our derived inapproximability

bound. Finally, we provide an exact algorithm for the problem running in

exponential time and space. As a by-product, we also obtain new, strong

inapproximability results for two partitioning problems on directed graphs called

ACYCLIC PARTITION and ACYCLIC TREE-PARTITION.

Index Terms—Phylogenetics; MUL tree; rooted triplet; acyclic tree-partition;

inapproximability; dynamic programming.
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1 INTRODUCTION

A phylogenetic tree is a rooted, unordered tree in which every
internal node has at least two children and where each leaf is
labeled by an element from a set of leaf labels. A phylogenetic tree
where each leaf label occurs at most once is called a singlelabeled
phylogenetic tree; similarly, a phylogenetic tree where each leaf label
may occur more than once is called a multilabeled phylogenetic tree,
or MUL tree for short [9], [10], [15], [16], [17], [21].1 For any MUL
tree M, denote the set of all leaf labels that occur in M by LðMÞ. For
any leaf label x 2 LðMÞ, the number of duplications of x is equal to
the number of occurrences of x in M minus 1. The number of leaf
duplications in M , denoted by dðMÞ, is the total number of
duplications of all leaf labels in LðMÞ. Define mðMÞ as the number
of leaves in M . Then, dðMÞ ¼ mðMÞ � jLðMÞj.

For any two nodes u; v in a rooted tree, lcaðu; vÞ denotes the

lowest common ancestor (lca) of u and v. For convenience, every

node is regarded to be an ancestor of itself, and the notation u � v
means that v is a proper ancestor of u, i.e., an ancestor of uwhich is not

u. A phylogenetic tree in which every internal node has exactly two

children is called binary, and a rooted triplet is a binary phylogenetic

tree with exactly three distinctly labeled leaves. The unique rooted

triplet on a leaf label set fx; y; zg satisfying lcað‘x; ‘yÞ � lcað‘x; ‘zÞ ¼
lcað‘y; ‘zÞ, where ‘x, ‘y, and ‘z are the three leaves labeled by x, y, and

z, respectively, is denoted byxyjz. If xyjz is an embedded subtree of a

MUL tree M in the sense that there exist three leaves ‘x, ‘y, ‘z in M

labeled by x, y, z such that lcað‘x; ‘yÞ � lcað‘x; ‘zÞ ¼ lcað‘y; ‘zÞ then

xyjz and M are said to be consistent with each other; otherwise, xyjz
and M are inconsistent. A setR of rooted triplets and a MUL tree M
are consistent with each other if every xyjz 2 R is consistent withM .
See Fig. 1 for an example.

In this paper, we consider the following new algorithmic
problem, named the smallest MUL tree from rooted triplets problem

(SMRT): Given a setR of rooted triplets over a leaf label setL, output
a MUL treeM withLðMÞ ¼ Lwhich is consistent withR and which
minimizes dðMÞ.2 Note that for any given instance of SMRT, there is
always at least one optimal solution which is binary. We also
consider the corresponding decision problem for any positive
integer d, termed d-SMRT: Given a setR of rooted triplets over a leaf
label set L, does there exist a MUL tree M with LðMÞ ¼ L which is
consistent with R and which satisfies dðMÞ � d?

From here on, we define k ¼ jRj and n ¼ jLj for any given
instance of SMRT or d-SMRT. We say that an algorithm A for
SMRT is an �-approximation algorithm (and that the approximation

ratio of A is at most �) if, for every inputR, the MUL tree output by
A is consistent with R and contains at most � � dðM�Þ leaf
duplications, where M� is an optimal MUL tree (i.e., having the
fewest possible number of leaf duplications) consistent with R.

1.1 Motivation

The problem of determining whether there exists a singlelabeled

phylogenetic tree consistent with all of the rooted triplets in a
given set, and if so, constructing such a tree, can be solved
efficiently by a classical algorithm of Aho et al. [2].3 When no such
tree exists because of conflicts in the branching information, one
may try to select a largest possible subset of the triplets which is
consistent with some tree (the maximum rooted triplets consistency

problem (MRTC)), find a largest possible subset of the leaves such
that the restriction of the input triplets to those leaves is consistent
with some tree (the maximum agreement supertree problem (MASP)
[3], [12], [18]), or build a phylogenetic network (an extension of a
phylogenetic tree in which internal nodes may have more than
a single parent) which contains all of the rooted triplets. See [5] for
a recent survey of related results and many references. In this
paper, we introduce a new approach: Allow leaf labels to be
repeated, but try to minimize the number of such repetitions.

The main application of phylogenetic trees is to describe tree-
like evolution for a set of objects; leaves represent the objects while
internal nodes correspond to their common ancestors. In the study
of evolutionary history, MUL trees arise from the modeling of
biological processes where it is necessary to use certain leaf labels
more than once in a tree. For example, a gene tree can contain
several leaves labeled by the same species due to gene duplication
events [9], [15], [16], [17], [21]. As another example, area
cladograms, where the names of geographical areas are used to
label the leaves, may apply the same label to more than a single
leaf and are widely used in Biogeography to infer clues about
ecological processes and events that affect the geographic dis-
tribution of organisms (see, e.g., [4], [10], [15], [17]). MUL trees are
also often employed to study host-parasite cospeciation [15], [17],
[20]. In short, MUL trees are not only a natural, but also a versatile
and useful generalization of singlelabeled phylogenetic trees.

Our motivation for developing new algorithms for constructing
MUL trees comes from the final discussion in [17] where Huber
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1. MUL trees are called rl-trees in [9] and area cladograms in [10].

2. Here, “smallest” refers to the number of leaf duplications. To infer a
singlelabeled phylogenetic tree consistent with a given set of rooted triplets
and having as few internal nodes as possible (a so-called “minimally
resolved supertree”) is a different problem, recently studied in [24].

3. The running time of the original implementation of the algorithm of
Aho et al. [2] was OðnkÞ. Henzinger et al. [13] later presented a faster
implementation of this algorithm, and replacing the dynamic graph
connectivity data structure used by [13] by a more recent one [14] further
reduces the complexity of the algorithm to minfOðnþ k log2 nÞ; Oðkþ
n2 lognÞg time [18].
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et al. conclude: “More importantly, more work needs to be done

concerning the inference of MUL trees from a set of gene trees and,

in particular, how to root such trees as the network construction

heavily relies on the position of the root.” Using rooted triplets as

input may be helpful here because computationally expensive

techniques such as maximum likelihood-oriented methods can

often yield accurate trees in reasonable time for small subsets of

the objects being studied (in particular, for subsets of cardinality

three [7]).

1.2 Our Results and Organization of the Paper

We present the first negative and positive results regarding the

computational complexity and polynomial-time approximability

of SMRT. Significantly, even the severely restricted case of

determining if there exists a MUL tree consistent with the input

and having just one leaf duplication turns out to be an NP-hard

problem. (In contrast, when leaf duplications are not allowed, the

corresponding problem can be solved in polynomial time by the

algorithm of Aho et al. [2], as mentioned in Section 1.1.) Moreover,

we show that the general case of SMRT is hard to approximate in

polynomial time by proving strong inapproximability bounds for a

problem on directed graphs named ACYCLIC TREE-PARTITION

(defined in Section 3.1) and then describing a measure-preserving

reduction from ACYCLIC TREE-PARTITION to SMRT. To

alleviate these negative results, we give a polynomial-time

approximation algorithm for SMRT whose performance is very

close to the derived inapproximability bound, as well as an exact,

exponential-time algorithm based on dynamic programming over

pairs of subsets of the leaf labels.
The rest of the paper is organized as follows: Section 2 provides

a simple polynomial-time n-approximation algorithm for SMRT.

On the negative side, Section 3 proves that d-SMRT is NP-hard

even if d ¼ 1, and that SMRT cannot be approximated within a

ratio of n1�� for any constant 0 < � � 1 in polynomial time, unless

P ¼ NP. (Section 3 also gives new inapproximability results for the

ACYCLIC PARTITION and ACYCLIC TREE-PARTITION pro-

blems.) Next, Section 4 presents an exact algorithm for SMRT

which runs in O�ð7nÞ time and Oð3nÞ space. Finally, Section 5

mentions some recent algorithmic results for other related

problems involving MUL trees.

2 STRAIGHTFORWARD n-APPROXIMATION OF SMRT

We start with the following simple observation.

Lemma 1. For any set R of rooted triplets over a leaf label set L with

jLj ¼ n, there exists a MUL tree with 2n leaves which is consistent

with R.

Proof. Let T be an arbitrary singlelabeled phylogenetic tree with n

leaves bijectively labeled by L. Let M be the MUL tree obtained

by taking two copies T1; T2 of T and joining their roots to a new

parent root node, as illustrated in Fig. 2.
Clearly, M has 2n leaves and any rooted triplet xyjz over L is

consistent with M since T1 contains leaves labeled by x; y and T2

contains a leaf labeled by z. tu

Consequently, SMRT admits a trivial polynomial-time n-

approximation algorithm: Using the algorithm of Aho et al. [2]
(see Section 1.1), determine if there exists a singlelabeled tree

consistent with R. If the answer is positive then output this tree,

otherwise output the MUL tree from Lemma 1 which has exactly n
leaf duplications.

Theorem 1. SMRT can be approximated within a ratio of n in

polynomial time.

3 HARDNESS RESULTS FOR SMRT

This section demonstrates that SMRT is computationally intract-

able. More precisely, we show that d-SMRT is NP-hard already for
d ¼ 1 and that SMRT is NP-hard to approximate within a ratio of

n1�� for any constant 0 < � � 1. (Recall that n denotes the number

of distinct leaf labels in the input set R.) To obtain our hardness
results, we first prove inapproximability bounds for a problem on

directed graphs named ACYCLIC TREE-PARTITION (defined
below), and then give a measure-preserving reduction from

ACYCLIC TREE-PARTITION to SMRT.

3.1 Hardness of ACYCLIC PARTITION and ACYCLIC

TREE-PARTITION

In this section, we define the ACYCLIC PARTITION and
ACYCLIC TREE-PARTITION problems and determine their

computational complexity.

Definition 1. Let D ¼ ðV ;AÞ be a directed graph. An acyclic partition

of D is a partition of V into subsets V1; . . . ; Vr called classes such that

each class induces an acyclic subgraph of D.

Definition 2. Let D ¼ ðV ;AÞ be a directed graph. An acyclic tree-

partition of D consists of a binary rooted tree T with a node set N

along with a partition fV ðxÞ : x 2 Ng of V (i.e., a subset V ðxÞ of V is

associated to each node x of the tree T ) such that:

1. for every x 2 N , V ðxÞ induces an acyclic subgraph of D,
2. for any x; y 2 N with x � y, D has no arc from V ðyÞ to

V ðxÞ.
Definitions 1 and 2 suggest the following natural problems.

The ACYCLIC PARTITION problem takes as input a directed

graph D and seeks an acyclic partition of D with the smallest

possible number of classes; this number is denoted by apðDÞ.4
Similarly, the ACYCLIC TREE-PARTITION problem seeks an
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Fig. 2. The MUL tree M is consistent with every rooted triplet over the leaf label set

fa; b; . . . ; zg.

4. apðDÞ is also referred to in the literature as the dichromatic number of D.
It was introduced by Neumann-Lara in [19].

Fig. 1. The set of rooted triplets fabjc; acjd; dejb; cejbg is consistent with a MUL

tree containing one leaf duplication.



acyclic tree-partition of an input directed graph D with the
minimum number of internal nodes, denoted by atpðDÞ. For any
positive integer r, the two decision problems r-ACYCLIC
PARTITION and r-ACYCLIC TREE-PARTITION ask if an input
directed graph D satisfies apðDÞ � r and atpðDÞ � r, respectively.

Acyclic partitions and acyclic tree-partitions have several useful
properties:

Lemma 2. Let D be a directed graph and let ðT; fV ðxÞ : x 2 NgÞ be an
acyclic tree-partition of D. For any set X of ancestors of a leaf in T ,

the union
S
x2X V ðxÞ induces an acyclic subgraph of D.

Proof. Follows from Definition 2. tu
Lemma 3. For every directed graph D, atpðDÞ ¼ apðDÞ � 1.

Proof. atpðDÞ � apðDÞ � 1: Consider any acyclic partition of D
into q classes V1; . . . ; Vq and let T be an arbitrary binary tree with
q leaves l1; . . . ; lq . Let N denote the set of nodes in T and define
the partition P ¼ fV ðxÞ : x 2 Ng so that V ðliÞ ¼ Vi for every i 2
f1; . . . ; qg and V ðxÞ ¼ ; for every internal node x of T . Then,
ðT; P Þ is an acyclic tree-partition of D with q � 1 internal nodes
since T is binary.

apðDÞ � atpðDÞ þ 1: Let ðT; fV ðxÞ : x 2 NgÞ be any acyclic
tree-partition of D, where N denotes the set of nodes in T . Let q
be the number of internal nodes in T ; then, T contains q þ 1
leaves because T is binary. Define a set V 0‘ for every leaf ‘ of T ,
where V 0‘ � V , by applying the following procedure:

Initially, let S :¼ ;. For each leaf ‘ of T (in arbitrary order):
let X‘ be the set of all nodes which are ancestors of ‘ and not
already in S, define V 0‘ :¼

S
x2X‘

V ðxÞ, and let S :¼ S [X‘.
Each vertex in V belongs to exactly one of the sets V 0‘ .

Moreover, each V 0‘ induces an acyclic subgraph of D by
Lemma 2. Therefore, fV 0‘ : ‘ is a leaf of Tg forms an acyclic
partition of D with q þ 1 classes. tu

Next, we derive hardness results for the problems defined above.
In [19], Neumann-Lara noted that the chromatic number of any

undirected graph G ¼ ðV ;EÞ equals apðG�Þ, where G� ¼ ðV ;AÞ is
the directed graph obtained by replacing each undirected edge
fu; vg of E by two arcs ðu; vÞ; ðv; uÞ. Since GRAPH K-COLOR-
ABILITY is NP-hard for any fixed positive integer K � 3 (see, e.g.,
[11]), Neumann-Lara’s observation immediately implies that r-
ACYCLIC PARTITION is NP-hard for any fixed positive integer
r � 3. In Case (i) of Theorem 2, we establish an even tighter NP-
hardness result by reducing from a different problem; never-
theless, the simple reduction of Neumann-Lara is still useful as it
yields the strong inapproximability bounds for ACYCLIC PARTI-
TION in Case (ii) of Theorem 2.

Theorem 2. (i) r-ACYCLIC PARTITION is NP-hard for r ¼ 2.

(ii) ACYCLIC PARTITION cannot be approximated within n1��

for any constant 0 < � � 1 in polynomial time unless P ¼ NP, where

n is the number of vertices in the input graph.

Proof. (i) Reduce from NOT-ALL-EQUAL 3SAT, which is known
to be NP-hard [11]. Let I be a given instance of NOT-ALL-
EQUAL 3SAT with m clauses and construct a directed graph D
with 3m vertices as follows: For each clause C in I, let D contain
three vertices C1; C2; C3 forming a directed cycle in D that
represent the literals of C. In addition, for each pair of
conflicting literals Ci ¼ x and C0j ¼ :x, let D contain the two
arcs ðCi; C0jÞ and ðC0j; CiÞ. It is easy to see that there is a one-to-
one correspondence between the valid truth assignments for I
and the acyclic bipartitions of D: for any truth assignment �,
define a bipartition Vt; Vf of D by letting Vt (resp. Vf ) contain all
literals which are assigned the value true (resp. false) under �.

(ii) For any given undirected graph G ¼ ðV ;EÞ, the reduc-
tion of Neumann-Lara [19] constructs the directed graph G� ¼
ðV ;AÞ by replacing each undirected edge fu; vg of E by two arcs

ðu; vÞ; ðv; uÞ. For any V 0 � V , V 0 is an independent set of G if and
only if V 0 induces an acyclic subgraph of G�; thus, colorings of
G correspond to acyclic partitions of G�. It follows that the
above reduction is a measure-preserving reduction from
CHROMATIC NUMBER to ACYCLIC PARTITION, and there-
fore known inapproximability results for CHROMATIC NUM-
BER [8], [23] carry over directly to ACYCLIC PARTITION. tu

Corollary 1. (i) r-ACYCLIC TREE-PARTITION is NP-hard for r ¼ 1.

(ii) ACYCLIC TREE-PARTITION cannot be approximated

within n1�� for any constant 0 < � � 1 in polynomial time unless

P ¼ NP, where n is the number of vertices in the input graph.

Proof. Use the same reductions from NOT-ALL-EQUAL 3SAT and

CHROMATIC NUMBER as in the proofs of Cases (i) and (ii) of

Theorem 2, and apply Lemma 3. tu

3.2 Hardness of SMRT

We first reduce ACYCLIC TREE-PARTITION to a constrained

variant of SMRT that forbids duplications of certain labels

(Proposition 1). We then reduce the constrained variant to the

unconstrained SMRT problem (Proposition 2). When combined,

these reductions yield the desired hardness results for SMRT, as

summarized in Theorem 3.
The constrained variant of SMRT is defined as follows:

Definition 3. Let R be a set of rooted triplets over a leaf label set L and

U � L. The labels belonging to U are called unique labels. An MUL

tree M is consistent with the pair ðR; UÞ if: 1) M is consistent with

R; and 2) M has only one occurrence of each label in U .

The CONSTRAINED-SMRT problem (C-SMRT) takes as input a

pair ðR; UÞ and seeks a MUL tree consistent with ðR; UÞ containing

the minimum number of leaf duplications. We have:

Proposition 1. There exists a measure-preserving reduction from

ACYCLIC TREE-PARTITION to C-SMRT.

Proof. Given an instance D ¼ ðV ;AÞ of ACYCLIC TREE-PARTI-

TION, construct an instance ðR; UÞ of C-SMRT with leaf label

set L :¼ V [ fzg, where z is a new label not belonging to V . The

set R contains exactly the following triplets: for each arc

ðu; vÞ 2 A, let zujv 2 R. The set of unique labels is U ¼ V ,

meaning that only z is allowed to be duplicated. To prove that

the reduction is measure-preserving, we show that for every

r � jV j, the following are equivalent:

1. D admits an acyclic tree-partition with r internal nodes;
2. ðR; UÞ admits a consistent MUL tree with r duplica-

tions.

1Þ ) 2Þ: Suppose D has an acyclic tree-partition consisting of a

binary tree T ¼ ðN;EÞ with r internal nodes and a partition

fVx : x 2 Ng of V . We construct a MUL tree M from T by

labeling each leaf by z, and then, above each node x of T ,

attaching the elements of Vx in the order given by a topological

ordering of D½Vx	 (where D½Vx	 denotes the subgraph of D

induced by vertices of Vx).
Let us describe the construction of M formally. First,

introduce the following additional notation: given a MUL tree
M and a sequence of labels s ¼ x1; . . . ; xn, let RðM; sÞ be the tree
obtained by starting with a caterpillar with nþ 1 leaves
l0; . . . ; ln (with l0; l1 being farthest from the root), substituting
l0 with M , and labeling each leaf li; i � 1 by xi. We inductively
define two MUL trees Mx;M

0
x for each node x of T : 1) if x is a

leaf then Mx consists of a single leaf labeled by z; 2) if x is an
internal node with two children y; y0 then Mx is the MUL tree
obtained by joining M 0

y and M 0
y0 to a common parent root node;

and 3) for any node x of T , let sx be a topological ordering of
D½Vx	 (which is acyclic by Point 1 of Definition 2) and define
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M 0
x :¼ RðMx; sxÞ. See Fig. 3 for an illustration of points 2) and 3).

Finally, let M :¼M 0
t, where t is the root of T .

Now consider the constructed MUL tree M . Clearly, only z
is duplicated in M ; since fVx : x 2 Ng is a partition of V , each
vertex from Vx will appear only once in M (namely, as the label
of a leaf which is directly attached to the path between the root
of M 0

x and the root of Mx). Also observe that the leaves of M
labeled by z correspond to the leaves of T , so their number is
rþ 1; hence M has r duplications. Next, we show by case
analysis that M is indeed consistent with R. Consider any
zujv 2 R. Then, ðu; vÞ 2 A by the construction of R. Let x; y be
the nodes of T such that u 2 Vx; v 2 Vy. Four cases are possible:

. x ¼ y: Then both u and v belong to Vx. Consider
M 0

x ¼ RðMx; sxÞ. Mx contains a leaf labeled by z.
Furthermore, since ðu; vÞ 2 A and sx is a topological
ordering of D½Vx	, it follows that u precedes v in sx.
Then, M 0

x (and thus M) is consistent with zujv.
. x � y in T : Consider M 0

y ¼ RðMy; syÞ. The condition x �
y in T implies that M 0

x is a subtree of My and so My

contains leaves labeled by z and u. On the other hand, v
appears in sy. Therefore, M 0

y (and thus M) is consistent
with zujv.

. y � x in T : This is impossible according to Point 2 of
Definition 2.

. Both x 6� y and y 6� x in T : Let c ¼ lcaðx; yÞ in T and
let cx; cy be the two distinct children of c such that
x 
 cx; y 
 cy. Consider the MUL tree Mc obtained by
joining M 0

cx
and M 0

cy
to a common parent root node.

M 0
cx

contains leaves labeled by z and u, while M 0
cy

contains a leaf labeled by v; hence Mc (and M) is
consistent with zujv.

To conclude, M is a MUL tree with r duplications that is

consistent with ðR; UÞ.
2Þ ) 1Þ: Let M be a MUL tree with r duplications which is

consistent with ðR; UÞ. We may assume w.l.o.g. that M is
binary. By definition, only the label z is duplicated in M. Let T
be the topological restriction of M to leaves labeled by z, i.e., the
binary tree obtained from M by deleting all nodes which are not
on any path from the root to a leaf labeled by z along with their
incident edges, and then contracting every edge between a node
having just one child and its child (see Fig. 4). For each node x
in T , define pðxÞ as the node in M corresponding to the parent
of x in T ; in case x is the root of T then define pðxÞ to be an
imaginary parent node of the root of M . Next, for each node x
in T , let Vx consist of every label y from V such that lcaðx; yÞ in
M is different from x and such that pðxÞ is a proper ancestor of
lcaðx; yÞ in M . (Thus, each Vx contains those labels from V that
are attached along the path in M between pðxÞ and the node
corresponding to x.)

Let N be the set of nodes of T . We now show that ðT; fVx :

x 2 NgÞ is an acyclic tree-partition of D with r internal nodes.

The leaves of T correspond to the leaves in M labeled by z, and

there are rþ 1 such leaves; therefore, it is clear that T has r

internal nodes. Moreover, T is binary and fVx : x 2 Ng forms a
partition of V since each label of V occurs only once in M . It

remains to verify Points 1 and 2 of Definition 2:

. Point 1: To show that D½Vx	 is acyclic for any x 2 N , let

T1; . . . ; Tq be the subtrees of M hanging along the path

between the node corresponding to x inM and pðxÞ, and

numbered according to increasing distance from x.

Then, the trees Ti are singlelabeled, have disjoint label

sets, and the union of their label sets is Vx. Let sx be any

linear ordering of Vx which ranks the elements of LðTiÞ
before the elements of LðTiþ1Þ for each 1 � i < q. We

need to prove that sx is in fact a topological ordering of

D½Vx	. For this purpose, suppose that ðu; vÞ is an arc of

D½Vx	. Observe that if u appears in Ti and v appears in Tj
with j � i then zujv cannot be consistent withM (since Ti
does not contain z). However, zujv 2 R by the construc-

tion ofR, and since zujv is consistent withM , this implies

by the above observation that u 2 LðTiÞ and v 2 LðTjÞ
with i < j. Hence, u appears before v in sx, i.e., sx is a

topological ordering of D½Vx	, so D½Vx	 is acyclic.
. Point 2: Consider any x; y 2 N with x � y, and let P be

the path in M joining the node corresponding to x to
the root of M (note that P must pass through the node
corresponding to y). Now, if u 2 Vx and v 2 Vy, there
exist two disjoint singlelabeled trees TA; TB attached
along P such that TB contains the only occurrence of u,
TA contains the only occurrence of v, and TA is above
TB. Suppose by contradiction that D contains an arc
ðv; uÞ. Then, by the construction ofR, we have zvju 2 R.
But the only way for M to be consistent with zvju is if z
appears in TA, which is not the case. We conclude that
D cannot contain an arc from Vy to Vx.

tu

We next describe a reduction from the constrained to the

unconstrained variant of SMRT.

Proposition 2. There exists a measure-preserving reduction from C-

SMRT to SMRT.

Proof. Let ðR; UÞ be any given instance of C-SMRT, where R is a

triplet set over a set L of n leaf labels and U � L is a set of

unique labels. We construct an instance R0 of SMRT by

replacing each element of U by nþ 1 copies. Formally, R0 has

a leaf label set L0 consisting of: 1) for each x 2 U , labels xi
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Fig. 3. Suppose that node x has two children y; y0 in T , and that Vx ¼ fa; b; cg with

a < b < c in the topological ordering sx. Then, Mx is obtained by joining M 0
y and

M 0
y0 to a new parent node, and M 0

x :¼ RðMx; sxÞ. Note that both of M 0
y and M 0

y0

contain at least one leaf labeled by z.
Fig. 4. T is the topological restriction of M to leaves labeled by z. The node pðxÞ for
the marked node x is shown. In this example, Vx ¼ fa; b; cg.



(1 � i � nþ 1); and 2) for each x 2 LnU , a single element x1.
The set R0 consists of the following triplets: for each xyjz 2 R
and each i; j; k, let xiyjjzk 2 R0.

Assume w.l.o.g. that r � n. We show that ðR; UÞ has a
consistent MUL tree M with r duplications if and only if R0 has
a consistent MUL tree M 0 with r duplications.

() ): Let M be a MUL tree with r duplications consistent

with ðR; UÞ. Construct a MUL tree M 0 from M by substituting

each leaf u having label x by an arbitrary singlelabeled binary

tree Tu over fx1; . . . ; xjg, where j equals either 1 or nþ 1.

Observe that: 1) for each x 2 U , each label xi occurs exactly once

in M 0; and 2) for each x 2 LnU , the number of occurrences of x

in M equals the number of occurrences of x1 in M 0. It follows

that dðM 0Þ ¼ dðMÞ ¼ r. In addition, for any triplet xiyjjzk 2 R0,
there exist three leaves u, v, w in M labeled by x, y, z,

respectively, such that the corresponding xyjz 2 R is consistent
with M; by selecting the leaves in M 0 labeled by xi, yj, zk in

subtrees Tu, Tv, Tw, we see that xiyjjzk is consistent with M 0.

This proves that M 0 is consistent with every triplet in R0.
(( ): Let M 0 be a MUL tree with r duplications consistent

with R0. For each x 2 L, define ix 2 f1; . . . ; nþ 1g as follows: if
x 2 U , let ix be an index such that the leaf label xix is not
duplicated in M 0 (since M 0 has r < nþ 1 duplications, for each
x 2 U there exists at least one such index); if x 2 LnU , let ix ¼ 1.
Next, let M 00 be a subtree of M 0 such that: 1) for each x 2 U , M 00

contains the unique occurrence of xix and no occurrences of xj
for j 6¼ ix; and 2) for each x 2 LnU , M 00 contains every
occurrence of x1. Finally, for each leaf xix in M 00, change its
label to x, and let M be the resulting MUL tree.

First note that M has � r duplications and the labels of U are
not duplicated. Indeed, for any x 2 U , M has only one
occurrence of x, while for each x 2 LnU , the number of
occurrences of x in M equals the number of occurrences of x1

in M 0. It follows that dðMÞ � dðM 0Þ ¼ r.
Second, consider any triplet xyjz 2 R, and let i ¼ ix;

j ¼ iy; k ¼ iz. Then, xiyjjzk 2 R0, and this triplet must be present
in M 0 since M 0 is consistent with R0. Thus, there exist leaves
‘x; ‘y; ‘z in M 0 labeled by xi; yj; zk such that lcað‘x; ‘yÞ �
lcað‘x; ‘zÞ ¼ lcað‘y; ‘zÞ. By the definition of i; j; k, these leaves
are also present in M with the same relationships, but having
the labels x; y; z. We conclude that xyjz is consistent with M .

Therefore, M is a MUL tree with � r duplications which is
consistent with ðR; UÞ. tu

Propositions 1 and 2 together with the hardness results for
ACYCLIC TREE-PARTITION in Corollary 1 give us the next
theorem.

Theorem 3. (i) d-SMRT is NP-hard for d ¼ 1; (ii) SMRT cannot be
approximated within n1�� for any constant 0 < � � 1 in polynomial
time, unless P ¼ NP.

We remark that the analogous MINIMUM DUPLICATION
SUPERSEQUENCE problem [9] for strings behaves quite differ-
ently: it is equivalent to the DIRECTED FEEDBACK VERTEX SET
problem, and as such it is FPT with respect to r (by a result of [6])
and approximable within Oðlogn log lognÞ in polynomial time (by
a result of [22]).

4 AN EXACT ALGORITHM for SMRT

Here, we present an exact, exponential-time algorithm for SMRT.
Let R be a given set of rooted triplets over a leaf label set L. We

use a dynamic programming approach, exploiting the recursive
structure of the problem as follows: if a binary MUL tree M is an
optimal solution for R, then its two child subtrees M1;M2 should
be optimal solutions for some subproblems. A first idea would be

to use the leaf label sets directly to define suitable subproblems,
but difficulties arise with this approach for two main reasons. First,
the two child subtrees M1;M2 may have overlapping leaf label sets,
and it is not clear how to check the consistency of labels in the
intersection. Second, it is possible that one Mi has the same leaf
label set as M (i.e., not a proper subset), thus we cannot ensure that
a given subproblem is broken into strictly smaller subproblems.

To handle these issues, we do dynamic programming on pairs of

subsets. More precisely, we consider pairs of subsets of L of the form

ðA;BÞ such that B � A � L. For a given pair ðA;BÞ, we will restrict

our attention to specific MUL trees given by the following definition:

Definition 4. Let ðA;BÞ be a pair of subsets of L with B � A � L. A

binary MUL tree M leaf-labeled by A complies with ðA;BÞ if and

only if for each uvjw 2 R with u; v; w 2 A and w 62 B, it holds that

uvjw is consistent with M.

Intuitively, by selecting a subset A of L, we focus on rooted

triplets in R involving leaf labels from A only. The specified subset

B of A then further allows certain triplets over the leaf label set A

to be “ignored”; a MUL tree that complies with ðA;BÞ does not

have to be consistent with the triplets from R of the form � � jw
where w 2 B.

Subproblems in our dynamic programming approach corre-

spond to pairs ðA;BÞ with B � A � L. For any pair ðA;BÞ, let

nðA;BÞ denote the minimum value of dðMÞ taken over every

binary MUL tree M leaf-labeled by A which complies with ðA;BÞ.
We compute the values nðA;BÞ by dynamic programming. The

base cases are when jAj � 2 or B ¼ A, and we obtain nðL; ;Þ as

the desired value at the end of the computation. To compute a

value nðA;BÞ, we break the computation into two subproblems of

the form ðA1; Þ; ðA2; Þ, where A1; A2 are the label sets of the two

child subtrees. In order to explain this in detail, we introduce a

few more definitions.

Definition 5. Let ðA;BÞ be a pair such that B � A � L. A split of

ðA;BÞ is a pair ðA1; A2Þ of subsets of A such that A1 [A2 ¼ A.

Definition 6. Let ðA1; A2Þ be a split of ðA;BÞ. We say that ðA1; A2Þ is a

nice split of ðA;BÞ if and only if the following holds: for each

u; v; w 2 A, if uvjw 2 R and u 2 AinAj, v 2 AjnAi with i 6¼ j then

w 2 B.

Observe that A1; A2 in Definition 5 are not necessarily disjoint,

and that the definition does not actually depend on B. Also, B may

intersect with both A1 and A2, as shown in Fig. 5. From here on, we

let Bi denote the intersection of B with Ai, and define C ¼ A1 \ A2.

The next property describes the recursive structure of the

problem, characterizing the fact that M complies with ðA;BÞ by

conditions on its child subtrees.

Lemma 4. Let ðA;BÞ be a pair such that B � A � L with jAj � 2, and

let M be a binary MUL tree over A consisting of two MUL trees

M1;M2 joined by a parent root node. Write A1 ¼ LðM1Þ,
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Fig. 5. A Venn diagram illustrating the relationships between the sets

A1; A2; B; C, where ðA1; A2Þ is a split of ðA;BÞ and C is defined by

C ¼ A1 \A2. If both A1 and A2 are proper subsets of A then ðA1; A2Þ is called

a proper split according to Case 1 in Definition 7.



A2 ¼ LðM2Þ, C ¼ A1 \ A2, and Bi ¼ B \Ai. Then, the following

are equivalent:

1. M complies with ðA;BÞ;
2. ðA1; A2Þ is a nice split of ðA;BÞ, and for i 2 f1; 2g, Mi

complies with ðAi; Bi [ CÞ.
Proof. 1Þ ) 2Þ: Suppose thatM complies with ðA;BÞ. We first show

that Mi complies with ðAi;Bi [ CÞ. Suppose that uvjw 2 R with
u; v; w 2 Ai and w 62 Bi [ C. Then, we also have u; v; w 2 A and
w 62 B, which implies that uvjw is consistent with M (since M
complies with ðA;BÞ). Therefore, M has leaves ‘u; ‘v; ‘w labeled
by u; v; w such that lcað‘u; ‘vÞ � lcað‘u; ‘wÞ ¼ lcað‘v; ‘wÞ. What we
need to show is that these three leaves all appear in Mi. If this
was not the case, we would have ‘w appearing in Mj(j 6¼ i),
which would imply that w 2 C, contradicting the hypothesis. It
follows that ‘u; ‘v; ‘w all appear in Mi, thus uvjw is consistent
with Mi.

Next, we show that ðA1; A2Þ is a nice split of ðA;BÞ. Let
u; v; w 2 A. Suppose that u 2 AinAj, v 2 AjnAi with i 6¼ j, and
w 62 B. If R contained the rooted triplet uvjw, then uvjw would
be consistent with M since M complies with ðA;BÞ and since
w 62 B. But this is impossible since u only appears in Mi and v
only appears in Mj.

2Þ ) 1Þ: To prove that M complies with ðA;BÞ, take any
uvjw 2 R with u; v; w 2 A and w 62 B and show that uvjw is
always consistent with M. There are four (partially over-
lapping) cases:

1. u; v; w 2 Ai and w 62 C: Then, w 62 Bi [ C. Since Mi

complies with ðAi; Bi [ CÞ, we conclude that uvjw is
consistent with Mi, and thus with M .

2. u; v 2 Ai; w 2 Aj with i 6¼ j: Then, u; v appear in Mi and
w appears in Mj, hence uvjw is consistent with M .

3. u; w 2 Ai; v 2 Aj with i 6¼ j: For this case, we have the
following three possible subcases.

a. u; v 62 C: Then, R contains uvjw with u 2 AinAj; v 2
AjnAi and w 62 B. This contradicts the assumption
that ðA1; A2Þ is a nice split of ðA;BÞ.

b. v 2 C: Then, u; v; w 2 Ai, and we are in Case 1.
c. u 2 C: Then, u; v 2 Aj; w 2 Ai, and we are in

Case 2.
4. v; w 2 Ai; u 2 Aj with i 6¼ j: This case is symmetric to

the previous case.

tu

Lemma 4 yields recurrence relations for nðA;BÞ as stated in
Lemma 5 below.

Definition 7. A split ðA1; A2Þ of ðA;BÞ is a proper split if and only if

either: 1) both A1 and A2 are proper subsets of A; or 2) Ai ¼ A and

Aj 6� B, where i 6¼ j.

The two possible cases of Definition 7 are displayed in Figs. 5
and 6, respectively.5

Lemma 5. The following recurrence relations for nðA;BÞ hold:

1. Let ðA;BÞ be a pair with jAj � 2. Then, nðA;BÞ ¼ 0.
2. Let ðA;BÞ be a pair with B ¼ A. Then, nðA;BÞ ¼ 0.
3. Let ðA;BÞ be a pair with jAj � 3 and B �6 A. Given a split

S ¼ ðA1; A2Þ of ðA;BÞ, let C ¼ A1 \A2; Bi ¼ B \Ai, and
define mðSÞ ¼ jCj þ nðA1; B1 [ CÞ þ nðA2; B2 [ CÞ. Then,
nðA;BÞ equals the minimum value of mðSÞ taken over every
nice split S of ðA;BÞ which is proper.

Proof. The first two points are immediate. Let us prove Point 3. Let

n0ðA;BÞ denote the minimum value of mðSÞ taken over every

nice split S of ðA;BÞ which is proper.
We first show that nðA;BÞ � n0ðA;BÞ. Consider a nice split

S ¼ ðA1; A2Þ of ðA;BÞ which is proper, and such that
n0ðA;BÞ ¼ mðSÞ. For i 2 f1; 2g, let Mi be a MUL tree complying
with ðAi; Bi [ CÞ and having a minimum number of leaf
duplications, and let ðM1;M2Þ be a MUL tree obtained by
joining M1 and M2 to a common parent root node. By Lemma 4,
M ¼ ðM1;M2Þ complies with ðA;BÞ, thus

nðA;BÞ � dðMÞ ¼ jCj þ dðM1Þ þ dðM2Þ
¼ jCj þ nðA1; B1 [ CÞ þ nðA2; B2 [ CÞ ¼ mðSÞ ¼ n0ðA;BÞ:

We next show that n0ðA;BÞ � nðA;BÞ. Let M be a binary
MUL tree complying with ðA;BÞ, and having a minimum
number of nodes. Since jAj � 2, we have M ¼ ðM1;M2Þ. Let
Ai ¼ LðMiÞ for i 2 f1; 2g. Then, S ¼ ðA1; A2Þ is a split of ðA;BÞ.
By Lemma 4, S is a nice split of ðA;BÞ and Mi complies with
ðAi;Bi [ CÞ, implying that nðAi;Bi [ CÞ � dðMiÞ.

To see that S is proper, suppose on the contrary that Ai ¼ A
and C � B. Then, Mi complies with ðAi; Bi [ CÞ ¼ ðA;BÞ,
contradicting the minimality of M.

We conclude that n0ðA;BÞ � mðSÞ ¼ jCj þ nðA1; B1 [ CÞ þ
nðA2; B2 [ CÞ � jCj þ dðM1Þ þ dðM2Þ ¼ dðMÞ ¼ nðA;BÞ, a n d
the result follows. tu

At each level of the recursion, jAj decreases or jBj increases, so

Lemma 5 allows us to compute nðA;BÞ in bottom-up order over all

pairs ordered by: ðA;BÞ � ðA�; B�Þ if and only if jAj < jA�j or

(jAj ¼ jA�j and jBj � jB�j). This yields a dynamic programming

algorithm for solving SMRT. At the end of the algorithm, nðL; ;Þ
gives the value of an optimal solution, and a corresponding

optimal MUL tree can be obtained by performing a traceback.

Theorem 4. SMRT can be solved in O�ð7nÞ time and Oð3nÞ space.

Proof. To prove the correctness of the algorithm, we verify that the

definition of the relation� on pairs is compatible with the above

relations. Indeed, whenever computing nðA;BÞ according to

Point 3 in Lemma 5, we recursively call nðAi;Bi [ CÞ. Then

either: 1) Ai �6 A, in which case we have ðAi;Bi [ CÞ < ðA;BÞ; or

2)Ai ¼ A, thenC 6� B since the split is proper, thereforeB �6 Bi [
C and ðAi;Bi [ CÞ < ðA;BÞ.

We now analyze the complexity of the algorithm. Fix an

integer p � n. For any A � L of size p, there are 2p pairs ðA;BÞ,
so the number of pairs ðA;BÞ with jAj ¼ p is ðnpÞ2p. It follows

that the total number of pairs considered is
Pn

p¼0ðnpÞ2p ¼ 3n,

giving the claimed space complexity. Next, for each pair ðA;BÞ
with jAj ¼ p, there are 3p splits to consider, and each split is

processed in Oðn3Þ time (i.e., the time required to check that the

split is nice and to perform the set operations). Hence, the time

complexity is Oð
Pn

p¼0ðnpÞ2p3pn3Þ ¼ Oð7nn3Þ. tu
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5. The reason why the case Ai ¼ A and Aj � B with i 6¼ j is excluded
from the definition is that here Bi ¼ B \Ai ¼ B and C ¼ Ai \Aj ¼ Aj,
giving us ðAi; Bi [ CÞ ¼ ðA;B [AjÞ ¼ ðA;BÞ, which would not take us any
closer to the base cases of the recursion.

Fig. 6. Illustrating case 2 in Definition 7. When A1 ¼ A or A2 ¼ A, the split ðA1; A2Þ
is a proper split if C 6� B.



5 RELATED WORK

Although the problem of inferring a MUL tree from an input set of
singlelabeled phylogenetic trees that minimizes the number of leaf
duplications has not been studied before, Huber et al. [15] recently
introduced another approach to inferring MUL trees based on
bipartitions of a multiset, and asked: can a given collection of
bipartitions of a multiset be represented by an unrooted MUL tree?
They proved the NP-hardness of a restricted case of the problem,
and gave a fixed-parameter algorithm for the general problem in
terms of a parameter associated to the given multiset that counts the
total number of duplications in the multiset. Note that the problem
studied in [15] differs from SMRT; for example, a collection of
bipartitions of a multiset might not be representable by any MUL
tree at all (see Section 1 in [15]), whereas any set of singlelabeled
phylogenetic trees can trivially be merged into a consistent MUL
tree just by attaching all the trees to a new parent root node.

Also related to this line of research are several recently
published combinatorial algorithms for manipulating already-known

MUL trees:

. Huber et al. [17] presented a method for constructing a
phylogenetic network from an input MUL tree. The
network output by their method is binary and has the
fewest possible reticulation nodes among all binary
networks which exhibit the structural information of the
input MUL tree (see [16] for the precise mathematical
definition of “to exhibit”).

. Ganapathy et al. [10] gave algorithms for identifying
common patterns in two MUL trees based on maximum
agreement subtrees, and presented a simple linear-time
algorithm for checking if two input MUL trees are
isomorphic which extends the classical tree isomorphism
algorithm in [1].

. Scornavacca et al. [21] considered some computational
problems involving the extraction of the unambiguous
parts of an input MUL tree. More precisely, [21] proposed
linear-time algorithms to identify every so-called observed
duplication node in a MUL tree, testing if two MUL trees
are isomorphic (using a different idea than the algorithm of
Ganapathy et al. [10] mentioned above), and computing a
largest duplication-free rooted subtree of a MUL tree. They
also showed that it is an NP-hard problem to prune all of
the MUL trees in a given set at observed duplication nodes
to singlelabeled trees in such a way that the obtained set
of trees can be merged without conflicts into a singlela-
beled tree.

We believe that many interesting combinatorial properties and

algorithms for inferring and comparing MUL trees remain to be

discovered. In light of the negative results established in this

paper, it is probably necessary to consider structurally restricted

MUL trees of some kind in order to obtain efficient algorithms for

SMRT as well as for other related problems.
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