
In: Software Engineering and Development
Editor: Enrique A. Belini, pp. 3-12

ISBN 978-1-60692-146-3
c© 2009 Nova Science Publishers, Inc.

Expert Commentary A

SUCCINCT REPRESENTATION OF BIT VECTORS
SUPPORTING EFFICIENT rank AND select QUERIES

Jesper Jansson1,∗,† and Kunihiko Sadakane2,‡

1Ochanomizu University, 2-1-1 Otsuka,
Bunkyo-ku, Tokyo 112-8610, Japan

2Department of Computer Science and Communication Engineering,
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Abstract

In the design of succinct data structures, the main objective is to represent an object
compactly while still allowing a number of fundamental operations to be performed
efficiently. In this commentary, we consider succinct data structures for storing a bit
vector B of length n. More precisely, in this setting, one needs to represent B using
n + o(n) bits so that rank and select queries can be answered in O(1) time, where
for any i ∈ {1, 2, . . . , n}, rank0(B, i) is the number of 0s in the first i positions of B,
select0(B, i) is the position in B of the ith 0 (assuming B contains at least i 0s), and
rank1(B, i) and select1(B, i) are defined analogously. These operations are useful
because bit vectors supporting rank and select queries are employed as a building
block for many other more complex succinct data structures.

We first describe two succinct indexing data structures for supporting rank and
select queries on B in which B is stored explicitly together with some auxiliary infor-
mation. We then present some matching lower bounds. Finally, we discuss general-
izations and related open problems for supporting rank and select queries efficiently
on strings over non-binary alphabets.

1. Introduction

Let B ∈ {0, 1}n be a bit vector of length n. For any i ∈ {1, 2, . . . , n}, let B[i] denote the
value of B at position i, and for any i, j ∈ {1, 2, . . . , n} with i ≤ j, let B[i..j] be the bit

∗E-mail address: Jesper.Jansson@ocha.ac.jp
†Funded by the Special Coordination Funds for Promoting Science and Technology, Japan.
‡E-mail address: sada@csce.kyushu-u.ac.jp

4 Jesper Jansson and Kunihiko Sadakane

vector consisting of B[i], B[i + 1], . . . , B[j]. (If i > j then B[i..j] is defined to be ∅.)
Next, define the following operations:

• rank0(B, i) – Return the number of 0s in B[1..i].

• rank1(B, i) – Return the number of 1s in B[1..i].

• select0(B, i) – Return the position in B of the ith 0.

• select1(B, i) – Return the position in B of the ith 1.

In this commentary, we consider the problem of constructing a data structure for storing
any given B such that rank0(B, i), rank1(B, i), select0(B, i), and select1(B, i) queries
can be carried out efficiently. We focus on indexing data structures for B, where B is stored
verbatim in n bits and one is allowed to use o(n) extra bits of storage (called the index) to
efficiently support rank and select queries on B.

We assume the word-RAM model of computation with word length w = dlog ne bits1 in
order to handle pointers to the data structure in constant time. In the word-RAM model, the
CPU can perform logical operations such as AND and OR, and arithmetic operations such
as addition, subtraction, multiplication, and division between two integers in the interval
[0, 2w − 1] (w-bit integers) in constant time. The CPU can also read/write a w-bit integer
from/to a specific memory cell in constant time; in other words, if B is a stored bit vector
of length n, then for any given i ∈ {0, 1, . . . , n− w}, B[(i + 1)..(i + w)] can be obtained
in O(1) time.

The commentary is organized as follows: In Section 2., we outline how to construct in
O(n) time an index for B of size O(n log log n/ log n) = o(n) bits which allows each sub-
sequent rank or select query to be answered in O(1) time. The presentation in Section 2. is
based on [20] for rank and [28] for select . Next, in Section 3., we state some lower bounds
from [11] and [19] which match the upper bounds given in Section 2. Then, in Section 4.,
we discuss generalizations to non-indexing data structures as well as generalizations to non-
binary vectors, and finally, in Section 5., we provide examples of other data structures that
depend on efficient rank and select data structures for bit vectors and non-binary vectors,
and mention some directions for further research.

2. Upper Bounds for Indexing Data Structures

Jacobson [15] presented a space-efficient indexing data structure for B which allows rank
and select queries on B to be answered in O(1) and O(log n) time, respectively, while
requiring only O(n log log n/ log n) bits for the index. A series of improvements to Jacob-
son’s data structure were made by Clark [4], Munro [20], Munro et al. [23], and Raman et
al. [28], reducing the time needed to answer each select query to O(1) while using an index
of size O(n log log n/ log n) bits.

Below, we describe two simplified indexing data structures for B based on [20] for
rank and [28] for select , respectively, of size O(n log log n/ log n) = o(n) bits. We

1Throughout this commentary, “log” denotes the base-2 logarithm and “logσ” denotes the base-σ logarithm.

Succinct Representation of Bit Vectors Supporting Efficient rank/select Queries 5

remark that Golynski [11] recently gave a more sophisticated implementation for sup-
porting both rank and select queries on B in O(1) time that uses an index of size
(1 + o(1))(n log log n/ log n) + O(n/ log n) bits only.

To make the presentation more readable, we omit “d”, “e”, “b”, and “c” symbols where
obvious.

Also, we allow the last block in any partition into blocks to be smaller than the specified
block size.

2.1. An Indexing Data Structure for rank Queries (based on [20])

Conceptually divide the bit vector B into blocks of length ` = log2 n each, and call
each such block a large block. Next, divide every large block into small blocks of length
s = 1

2 log n each. Create auxiliary data structures for storing the values of rank1 for the
boundaries of these blocks as follows: Use an integer array R`[0..n/`] in which every entry
R`[x] stores the number of 1’s in B[1..x`], and an integer array Rs[0..n/s] in which every
entry Rs[y] stores the number of 1’s in B[(b y

`/sc·` + 1)..ys], i.e., the number of 1’s in the
yth small block plus the total number of 1’s in all small blocks which belong to the same
large block as small block y and which occur before small block y. The space needed to
store R` is O(n

` · log n) = O(n
log n) bits because each of its entries occupies O(log n) bits,

and the space needed to store Rs is O(n
s · log(` + 1)) = O(n log log n

log n) bits because all of its
entries are between 0 and `.

To answer the query rank1(B, i) for any given i ∈ {1, 2, . . . , n}, compute x = b i
`c,

y = b i
sc, and z = i−ys, and use the relation rank1(B, i) = rank1(B, ys)+

∑z
q=1 B[ys+

q] = R`[x] + Rs[y] +
∑z

q=1 B[ys + q], where the first two terms are directly available
from R` and Rs. To compute the third term in constant time, the following table lookup
technique can be applied: In advance, construct a table Tr[0..(2s − 1), 1..s] in which each
entry Tr[i, j] stores the number of 1’s in the first j bits of the binary representation of i.
Then, whenever one needs to compute

∑z
q=1 B[ys + q], first read the memory cell storing

B[(ys + 1)..(ys + s)] (because s < w, this can be done in constant time), interpret this
s-bit vector as an integer p, where p ∈ {0, 1, . . . , 2s − 1}, and find the value Tr[p, z] in the
table. Hence, rank1(B, ys + z) can be computed in constant time. The size of the table Tr

is 2s · s · log(s + 1) = O(
√

n · log n · log log n) = o(n) bits, and all of the auxiliary data
structures R`, Rs, Tr may be constructed in O(n) time.

To compute rank0(B, i), no additional data structures are necessary because
rank0(B, i) = i− rank1(B, i). Therefore we have:

Theorem 1. Given a bit vector of length n, after O(n) time preprocessing and using an
index of size O(n log log n/ log n) bits, each rank1 and rank0 query can be answered in
O(1) time.

2.2. An Indexing Data Structure for select Queries (based on [28])

Define ` = log2 n and construct an array storing the position of the (i`)th occurrence of
a 1 in B for all i = 1, 2, . . . , n

` . Regions in B between two consecutive positions stored
in the array are called upper blocks. If the length of an upper block is at least log4 n, it is
sparse. For every sparse upper block, store the positions of all its 1’s explicitly in sorted

6 Jesper Jansson and Kunihiko Sadakane

order. Since the number of such blocks is at most n
log4 n

, the space required for storing the

positions of all 1’s in all sparse upper blocks is at most n
log4 n

· log2 n · log n = n
log n bits.

For every non-sparse upper block U , further divide it into lower blocks of length s =
1
2 log n each and construct a complete tree for U with branching factor

√
log n whose leaves

are in one-to-one correspondence with the lower blocks in U . The height of the tree is at
most 7, i.e., at most a constant, because the number of leaves is at most log4 n

s = 2 log3 n.
For each non-leaf node v of the tree, let Cv be an array of

√
log n integers such that Cv[i]

equals the number of 1’s in the subtree rooted at the ith child of v. (All Cv-arrays can be
computed in O(n) time preprocessing.) The entire bit vector B contains at most n

s = 2n
log n

lower blocks, so the total number of nodes in all trees representing all the upper blocks is
O(n

log n) and furthermore, the total number of entries in all Cv-arrays is at most this much.
Since the number of 1’s in any tree is at most log2 n, every entry in a Cv-array can be stored
in O(log log n) bits. Therefore, the total space needed to store all trees (including all the
Cv-arrays) is O(n

log n · log log n) bits.
To answer the select1(B, i) query in constant time, first divide i by ` to find the upper

block U that contains the ith 1, and check whether U is sparse or not. If U is sparse, the an-
swer to the select1 query is stored explicitly and can be retrieved directly. If U is not sparse,
start at the root of the tree that represents U and do a search to reach the leaf that corre-
sponds to the lower block with the jth 1, where j equals i modulo `. At each step, it is easy
to determine which subtree contains the jth 1 in O(1) time by a table lookup using the Cv-
array for the current node v, and then adjust j and continue to the next step. (For the lookup,
use an (

√
log n + 1)-dimensional table T such that entry T [c1, c2, . . . , c√

log n
, j] = x if

and only if the first subtree contains exactly c1 1’s, the second subtree contains exactly
c2 1’s, etc. and the jth 1 belongs to the xth subtree. The space needed to store T is
o(n) bits because the index of T is encoded in (

√
log n + 1) · 2 log log n ≤ 0.5 log n bits

for large enough n, so T has O(20.5 log n) = O(n0.5) entries which each need log log n
bits.) Finally, after reaching a leaf and identifying the corresponding lower block, find the
relative position of the jth 1 inside that lower block by consulting a global table of size
21/2 log n · 1

2 log n · log log n = O(
√

n log n log log n) bits which stores the relative position
of the qth 1 inside a lower block for every possible binary string of length 1

2 log n and every
possible query q in {1, 2, . . . , 1

2 log n}.
To answer select0 queries, construct data structures analogous to those for select1 de-

scribed above. We obtain the following.

Theorem 2. Given a bit vector of length n, after O(n) time preprocessing and using an
index of size O(n log log n/ log n) bits, each select1 and select0 query can be answered in
O(1) time.

3. Lower Bounds for Indexing Data Structures

By applying two different techniques, one consisting of a reduction from a vector addition
problem and the other one a direct information-theoretical argument involving reconstruct-
ing B from any given indexing data structure for B together with an appropriately defined
binary string, Miltersen [19] proved the following theorem. (Recall that B is assumed to be

Succinct Representation of Bit Vectors Supporting Efficient rank/select Queries 7

stored explicitly in addition to the bits used by the indexing data structure.)

Theorem 3. [19] It holds that:

1. Any indexing data structure for rank queries on B using word size w, index size r
bits, and query time t must satisfy 2(2r + log(w + 1))tw ≥ n log(w + 1).

2. Any indexing data structure for select queries on B using word size w, index size r
bits, and query time t must satisfy 3(r + 2)(tw + 1) ≥ n.

In particular, for the case t = O(1) and w = O(log n), Theorem 3 immediately implies
the lower bounds r = Ω(n log log n/ log n) for rank indexing data structures and r =
Ω(n/ log n) for select indexing data structures.

Using a counting argument based on binary choices trees, these lower bounds were
strengthened by Golynski [11] as follows:

Theorem 4. [11] If there exists an algorithm for either rank or select queries on B which
reads O(log n) different positions of B, has unlimited access to an index of size r bits, and
is allowed to use unlimited computation power, then r = Ω(n log log n

log n).

Hence, the upper bounds given in Theorems 1 and 2 are asymptotically optimal. Note
that Theorem 4 is very general; it does not impose any restrictions on the running time or
require the read positions of B to be consecutive for the lower bound to hold.

Golynski [11] also showed that:

Theorem 5. [11] Suppose that B has exactly m positions set to 1 for some integer m.
If there exists an algorithm for either rank or select queries on B which reads at most t
different positions of B, has unlimited access to an index of size r bits, and is allowed to
use unlimited computation power, then r = Ω(m

t · log t).

4. Generalizations

The indexing data structures in Sections 2. and 3. assume that the bit vector B is always
stored explicitly. However, the space used by this type of encoding is far from optimal if
the number of 1’s in B is much smaller than n, or close to n. This is because the number of
bit vectors of length n having m 1’s is

(n
m

)
≈ 2nH0 , where H0 = m

n log n
m + n−m

n log n
n−m

is the 0th order entropy of the bit vector, which may be much less than 2n, the number of
distinct bit vectors of length n. In fact, there exist data structures for rank /select using only
nH0 + O(n log log n/ log n) bits to store B such that any consecutive O(log n) bits of B
can still be retrieved in constant time2:

Theorem 6. [28] For a bit vector B of length n with m 1’s, after O(n) time preprocessing
and using nH0 + O(n log log n/ log n) bits, where H0 = m

n log n
m + n−m

n log n
n−m , each

rank1, rank0, select1, and select0 query can be answered in O(1) time. Moreover, any
consecutive O(log n) bits of B can be retrieved in O(1) time.

2Observe that these data structures do not store B directly, so to retrieve O(log n) consecutive bits of B in
O(1) time is no longer trivial.

8 Jesper Jansson and Kunihiko Sadakane

The rank /select data structures can be extended to non-binary vectors. A string S of
length n over an alphabet A is a vector S[1..n] such that S[i] ∈ A for 1 ≤ i ≤ n. Let σ
be the alphabet size, i.e., σ = |A|. We assume that A is an integer alphabet of the form
{0, 1, . . . , σ − 1} and that σ ≤ n. (Without loss of generality, we further assume that σ is
a power of 2.) Below, we consider succinct data structures for S supporting the following
operations for any i ∈ {1, 2, . . . , n} and c ∈ {0, 1, . . . , σ − 1}:

• access(S, i) – Return S[i].

• rank c(S, i) – Return the number of occurrences of c in S[1..i].

• selectc(S, i) – Return the position of the ith c in S.

S may be encoded in n log σ bits by the obvious representation using log σ bits for each
position S[i], but there exist other encodings which improve the rank and select query
time complexities at the cost of increasing the space complexity and the time needed to
retrieve S[i] for any given i ∈ {1, 2, . . . , n}. Hence, there is a trade-off between the size
of a data structure and the access/rank /select query times. Table 1 lists the performance of
two straightforward data structures D1 and D2 (explained below) and three improved data
structures proposed in [1, 12, 13].

Table 1. The trade-off between the size (in bits) and the time needed to answer each
access , rank c, and selectc query for various data structures. |S| denotes the number
of bits to encode S, H0 is the 0th order entropy of S, and α = log log σ log log log σ.

Reference Size of data structure access time rank c time selectc time
D1 in Section 4. n(H0 + log e) + σ · o(n) O(σ) O(1) O(1)
D2 in Section 4. |S|+ (σ + 1) · o(n) O(1) O(log σ) O(log σ)
[13] nH0 + log σ · o(n) O(log σ) O(log σ) O(log σ)
[12] n log σ + n · o(log σ) O(log log σ) O(log log σ) O(1)
[1] |S|+ n · o(log σ) O(1) O(α log log σ) O(α)

The first straightforward data structure D1 stores σ bit vectors V0, V1, . . . , Vσ−1 of
length n such that Vc[i] = 1 if and only if S[i] = c, along with rank1 and select1 indexing
data structures for these bit vectors. Then rank c(S, i) = rank1(Vc, i) and selectc(S, i) =
select1(Vc, i), and therefore they can be obtained in constant time. On the other hand,
access requires O(σ) time because it must examine all of V0[i], V1[i], . . . , Vσ−1[i]. Each bit
vector Vc can be encoded in log

(n
mc

)
≈ mc(log e + log n

mc
) bits by Theorem 6, where

mc denotes the number of c’s in S. In total, the space is
∑

c{mc(log e + log n
mc

) +
O(n log log n/ log n)} = n(H0 + log e) + σ · O(n log log n/ log n) bits. The second
straightforward data structure D2 stores S explicitly in n log σ bits. In addition, it stores
a rank1 and select1 indexing data structure for each of the bit vectors V0, V1, . . . , Vσ−1

of D1. The bit vectors V0, V1, . . . , Vσ−1 are not stored explicitly, so to answer rankc and
selectc queries, D2 must have a method to compute any consecutive log n bits of Vc that
are required by the indexing data structure for Vc. This can be done in O(log σ) time by
repeating the following steps 2 log σ times, each time obtaining 1

2 logσ n bits of Vc: In

Succinct Representation of Bit Vectors Supporting Efficient rank/select Queries 9

O(1) time, read 1
2 log n consecutive bits from S and put them in a bit vector r. To find the

1
2 logσ n bits of Vc that correspond to r, let s be the bit vector of length 1

2 log n consisting of
1
2 logσ n copies of the length-(log σ) pattern 000 . . . 01, let t be s multiplied by c, and and
let u be the bitwise exclusive-or between r and t. Note that for any non-negative integer i,
the length-(log σ) pattern of u starting at position i · log σ equals 000 . . . 00 if and only if the
corresponding position in S contains the symbol c. Finally, look up entry u in a table having
21/2 log n =

√
n entries to obtain a bit vector of size 1

2 logσ n containing a 1 in position i if
and only if u[(i · log σ)..((i + 1) · log σ) − 1] = 000 . . . 00. Thus, rank c and selectc take
O(log σ) time. The access query takes constant time because S is explicitly stored. The
total space is that of storing S plus σ ·O(n log log n/ log n) bits for the rank1 and select1
indexing data structures, plus the size of the lookup table which is

√
n · 1

2 logσ n = o(n)
bits.

In Table 1, |S| denotes the number of bits to encode S. It is n log σ if S is not com-
pressed; however, it can be reduced by applying a compression algorithm which supports
instant decoding [8]:

Theorem 7. There exists a succinct data structure for storing a string S[1..n] over an
alphabet A = {0, 1, . . . , σ − 1} in

nHk + O
(

n(log logσ n + k log σ)
logσ n

)
bits for any k ≥ 0, where Hk is the kth order empirical entropy of S, such that any substring
of the form S [i . . . i + O(logσ n)] with i ∈ {1, 2, . . . , n} can be decoded in O(1) time on
the word-RAM.

By using this theorem, we can compress S into nHk + o(n log σ) bits. Furthermore,
we can regard the compressed data as an uncompressed string. Therefore the query time in
Table 1 does not change.

5. Concluding Remarks

Succinct data structures that support efficient rank and select queries on bit vectors and
non-binary vectors are important because they form the bases of several other more com-
plex data structures. Some examples include succinct data structures for representing
trees [2, 6, 10, 16, 17, 22, 23], graphs [3, 15], permutations and functions [21, 24], text
indexes [7, 14, 29, 30], prefix or range sums [26], and polynomials and others [9]. In these
data structures, a typical use of rank and select queries on bit vectors is to encode pointers
to blocks of data. For example, suppose that to compress some data we partition it into
blocks, compress each block independently into a variable numbers of bits, and concate-
nate the result into a bit vector C. Then we can use another bit vector B[1..|C|] such that
B[i] = 1 if and only if the ith bit of C is the starting position of a block, and apply select1

queries on B to find the correct starting and ending positions in C when decompressing
the data corresponding to a particular block. Some directions for further research include
dynamization to support operations that allow B to be modified online [27], proving lower
bounds on the size of succinct data structures [5, 11, 19] (note that the lower bounds shown

10 Jesper Jansson and Kunihiko Sadakane

in Section 3. hold only if the bit vector is stored explicitly using n bits, and thus do not hold
for bit vectors stored in a compressed form), and practical implementation [25]. Although
the sizes of the known indexing data structures for bit vectors are asymptotically optimal,
the o(n) additional space needed by an index is often too large for real data and cannot be
ignored. Therefore, for practical applications, it is crucial to develop other implementations
of succinct data structures. Another open problem involves access/rank /select operations
on non-binary vectors. No single data structure listed in Table 1 supports constant time
access , rank and select queries. What are the best possible lower and upper bounds on
the number of bits required to achieve this? Finally, a related topic is compressed suffix
arrays [14], which are data structures for efficient substring searches. The suffix array [18]
uses n log n bits for a string of length n with alphabet size σ, while the compressed suffix
array uses only O(n log σ) bits, which is linear in the string size. On the other hand, the
compressed suffix array does not support constant time retrieval of an element of the suffix
array. An important open problem is to establish whether there exists a data structure using
linear space and supporting constant time retrieval.

References

[1] J. Barbay, M. He, J. I. Munro, and S. S. Rao. Succinct indexes for strings, binary
relations and multi-labeled trees. In Proceedings of the 18 thAnnual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2007), pages 680–689, 2007.

[2] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Repre-
senting Trees of Higher Degree. Algorithmica, 43(4):275–292, 2005.

[3] D. K. Blandford, G. E. Blelloch, and I. A. Kash. Compact representations of sepa-
rable graphs. In Proceedings of the 14 th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2003), pages 679–688, 2003.

[4] D. Clark. Compact Pat Trees. PhD thesis, The University of Waterloo, Canada, 1996.

[5] E. D. Demaine and A. López-Ortiz. A Linear Lower Bound on Index Size for Text
Retrieval. Journal of Algorithms, 48(1):2–15, 2003.

[6] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled trees
for optimal succinctness, and beyond. In Proceedings of the 46 th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2005), pages 184–196, 2005.

[7] P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM,
52(4):552–581, 2005.

[8] P. Ferragina and R. Venturini. A simple storage scheme for strings achieving entropy
bounds. Theoretical Computer Science, 372(1):115–121, 2007.

[9] A. Gál and P. B. Miltersen. The cell probe complexity of succinct data structures.
In Proceedings of the 30 th International Colloquium on Automata, Languages and
Programming (ICALP 2003), volume 2719 of Lecture Notes in Computer Science,
pages 332–344. Springer-Verlag, 2003.

Succinct Representation of Bit Vectors Supporting Efficient rank/select Queries 11

[10] R. F. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal representation
for balanced parentheses. In Proceedings of the 15 th Annual Symposium on Combi-
natorial Pattern Matching (CPM 2004), volume 3109 of Lecture Notes in Computer
Science, pages 159–172. Springer-Verlag, 2004.

[11] A. Golynski. Optimal lower bounds for rank and select indexes. Theoretical Computer
Science, 387(3):348–359, 2007.

[12] A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large alphabets: a
tool for text indexing. In Proceedings of the 17 th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2007), pages 368–373, 2006.

[13] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes.
In Proceedings of the 14 th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2003), pages 841–850, 2003.

[14] R. Grossi and J. S. Vitter. Compressed Suffix Arrays and Suffix Trees with Applica-
tions to Text Indexing and String Matching. SIAM Journal on Computing, 35(2):378–
407, 2005.

[15] G. Jacobson. Space-efficient static trees and graphs. In Proceedings of the 30 thAnnual
Symposium on Foundations of Computer Science (FOCS 1989), pages 549–554, 1989.

[16] J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct Representation of Ordered
Trees. In Proceedings of the 18 th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2007), pages 575–584, 2007.

[17] H.-I. Lu and C.-C. Yeh. Balanced Parentheses Strike Back. To appear in ACM Trans-
actions on Algorithms, 2008.

[18] U. Manber and G. Myers. Suffix arrays: A New Method for On-Line String Searches.
SIAM Journal on Computing, 22(5):935–948, October 1993.

[19] P. B. Miltersen. Lower bounds on the size of selection and rank indexes. In Proceed-
ings of the 16 thAnnual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005),
pages 11–12, 2005.

[20] J. I. Munro. Tables. In Proceedings of the 16 th Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS 1996), volume 1180 of
Lecture Notes in Computer Science, pages 37–42. Springer-Verlag, 1996.

[21] J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of permuta-
tions. In Proceedings of the 30 th International Colloquium on Automata, Languages
and Programming (ICALP 2003), volume 2719 of Lecture Notes in Computer Sci-
ence, pages 345–356. Springer-Verlag, 2003.

[22] J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing, 31(3):762–776, 2001.

12 Jesper Jansson and Kunihiko Sadakane

[23] J. I. Munro, V. Raman, and S. S. Rao. Space efficient suffix trees. Journal of Algo-
rithms, 39(2):205–222, 2001.

[24] J. I. Munro and S. S. Rao. Succinct Representations of Functions. In Proceedings
of the 31 st International Colloquium on Automata, Languages and Programming
(ICALP 2004), volume 3142 of Lecture Notes in Computer Science, pages 1006–
1015. Springer-Verlag, 2004.

[25] D. Okanohara and K. Sadakane. Practical Entropy-Compressed Rank/ Select Dictio-
nary. In Proceedings of the Workshop on Algorithm Engineering and Experiments
(ALENEX 2007), 2007.

[26] C. K. Poon and W. K. Yiu. Opportunistic Data Structures for Range Queries. In
Proceedings of Computing and Combinatorics, 11 thAnnual International Conference
(COCOON 2005), volume 3595 of Lecture Notes in Computer Science, pages 560–
569. Springer-Verlag, 2005.

[27] R. Raman, V. Raman, and S. S. Rao. Succinct dynamic data structures. In Proceed-
ings of Algorithms and Data Structures, 7 th International Workshop (WADS 2001),
volume 2125 of Lecture Notes in Computer Science, pages 426–437. Springer-Verlag,
2001.

[28] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications
to encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms,
3(4):Article 43, 2007.

[29] K. Sadakane. New Text Indexing Functionalities of the Compressed Suffix Arrays.
Journal of Algorithms, 48(2):294–313, 2003.

[30] K. Sadakane. Compressed Suffix Trees with Full Functionality. Theory of Computing
Systems, 41(4):589–607, 2007.

