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Ambiguities in the taxonomy dependent assignment of pyrosequencing reads are usually resolved by mapping each

read to the lowest common ancestor in a reference taxonomy of all those sequences that match the read. This

conservative approach has the drawback of mapping a read to a possibly large clade that may also contain many
sequences not matching the read. A more accurate taxonomic assignment of short reads can be made by mapping

each read to the node in the reference taxonomy that provides the best precision and recall. We show that given a

suffix array for the sequences in the reference taxonomy, a short read can be mapped to the node of the reference
taxonomy with the best combined value of precision and recall in time linear in the size of the taxonomy subtree

rooted at the lowest common ancestor of the matching sequences. An accurate taxonomic assignment of short reads

can thus be made with about the same efficiency as when mapping each read to the lowest common ancestor
of all matching sequences in a reference taxonomy. We demonstrate the effectiveness of our approach on several

metagenomic datasets of marine and gut microbiota.

Background

The advent of next-generation sequencers has been accompanied by new computational challenges to deal
with the ever increasing amounts of data produced.1 In particular, metagenomic analysis of microbial com-
munities2,3 has resulted in a plethora of tools for comparative studies, such as determining the richness and
diversity of communities,4–7 or test their similarity.8–11

A more fundamental problem is how to determine the composition of a particular community given the
set of pyrosequencing reads obtained from a sample, that is, what species (or strains) are present, and in what
proportion. Two strategies have been proposed, based on whether a taxonomy is assumed or not. Binning
approaches discard the use of bacterial taxonomies since they tend to be biased towards cultivable species, and
apply instead some unsupervised classification method (clustering) on the reads to determine the structure
of the population. Self-Organizing Maps,12,13 Support Vector Machines,14 z-score correlations,15 or nearest
neighbors16 have been successfully utilized for this purpose. Taxonomy-based approaches, on the other hand,
map the reads to known species in a given taxonomy, usually based on the 16S rRNA. Ambiguous fragments
that cannot be unequivocally assigned to a specific taxon are mapped to an inner node of the taxonomy,
usually the lowest common ancestor (LCA) of all sequences to which the read might be assigned.17–20

Both binning and taxonomy-based methods need to define a measure to compare sequences. Similarity-
based methods use sequence identity to determine how alike sequences are: BLAST18,19,21 and number of
mismatches22–25 are commonly used measures. Sequence composition methods use instead intrinsic features
of the sequences to determine their similarity, such as their GC-content26 or k-nucleotide frequencies.14,15,20

In this paper, we address the problem of how to assign ambiguous short reads with a taxonomy-based
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approach and a measure of similarity based on the number of mismatches between sequences. The hidden
assumption made by previous studies when assigning these fragments to the LCA is that a higher coverage
should be preferred to a higher accuracy (see Fig. 1). Our work is a generalization aimed at maximizing the
F -measure in order to assign ambiguous reads at inner nodes of the taxonomy that are not necessarily the
LCA. Notice that the use of the F -measure in this context is just one of the several possible assignment
strategies and it does not reflect the accuracy of the global assignment schema, which would also include
unambiguously assigned reads and be affected by the chosen measure of similarity between fragments.
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Fig. 1. Coverage and accuracy of assigning ambiguous reads to the LCA. The assignment of an ambiguous read to the

family Aquificaceae, the LCA of the six matching taxa H. hydrogenophilus, P. hydrogeniphila, P. marina, P. guaymasensis, S.
subterraneum, and S. azorense, marked up with a star, has a 100% coverage (recall) but a 6/14 = 43% accuracy (precision).
The assignment to the genus Persephonella, instead, has a coverage of 3/6 = 50% and an accuracy of 100%.

Methods

Given a reference taxonomy T , a set R of short reads, and a threshold value k of sequence similarity, let Ri

be the ith read, let Mi be the leaves of T matching Ri with up to k mismatches, let Ti be the subtree of T

rooted at the lowest common ancestor of Mi, and let Ni be the leaves of Ti not matching Ri with up to k

mismatches. Let also Li = Mi ∪ Ni.
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Further, consider some arbitrary, but fixed, ordering of the nodes of T , say in postorder, let Ti,j be the
subtree of T rooted at the jth node of Ti in postorder, let Mi,j be the leaves of Ti,j matching Ri with up to
k mismatches, and let Ni,j be the leaves of Ti,j not matching Ri with up to k mismatches.

For the ith read and the jth node of Ti in postorder, the leaves of Ti can be partitioned in the following
four subsets (see Fig. 2):

• TP i,j = Mi,j (true positives)
• FP i,j = Ni,j (false positives)
• TN i,j = Ni \ Ni,j (true negatives)
• FN i,j = Mi \ Mi,j (false negatives)

Then, the precision of classifying Ri as Tj is Pi,j = |TP i,j |/(|TP i,j | + |FP i,j |), and the recall is Ri,j =
|TP i,j |/(|TP i,j |+ |FN i,j |). The combined F -measure of precision and recall is Fi,j = 2Pi,jRi,j/(Pi,j + Ri,j).

It is easy to see that Fi,j = 2Pi,jRi,j/(Pi,j + Ri,j) = 2|TP i,j |/(2|TP i,j | + |FP i,j | + |FN i,j |) =
2|TP i,j |/(|TP i,j | + |FP i,j | + |Mi|) = 2|Mi,j |/(|Li,j | + |Mi|). This gives a simple algorithm for comput-
ing the best possible taxonomic rank to which each read can be assigned, in time linear in the size of Ti.
Given the set Mi of matching sequences for a read Ri, it suffices to compute the sets Li,j and Mi,j for each
node j in Ti during a bottom-up traversal of Ti.27,28 Notice that it takes time linear in the size of Mi to find
the root of Ti, because T has constant height, and no additional preprocessing of T is required.29

Ti

Ti,j

Ni Ni,j Mi,j Mi

TN FP TP FN

Fig. 2. Precision and recall of assigning the ith read to the jth node of Ti in postorder.

Results and Discussion

It is not completely clear yet what microbial community structure different environments possess, but re-
sults so far seem to indicate a high degree of variability both in environmental30 and gut samples,31 with
significant differences between gut and other microbiomes.32 The distribution of functions seems to be more
conserved though,33 indicating that a core functionality can be achieved through different species distribu-
tions. Understanding this correlation requires accurate measurements of both variables, and our work aims
at reducing the amount of error introduced by the assignment of ambiguous fragments to the LCA of a group
of species.
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While feature-based and binning approaches13,14 require long fragments (more than 1K bp), taxonomical
methods can work with shorter reads, which can be as effective as longer sequences for taxonomic assignment
provided that the region of the 16S rRNA is adequately chosen.34,35 The algorithm we introduce here is also
very efficient and can process large number of fragments in time at most linear in the number of reference
sequences for each fragment, providing a useful tool to quickly test hypotheses about microbial communities.
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Fig. 3. Distribution of the 23,621 marine, 91,335 human gut, 776 human twins gut (V2 region), 94,999 human twins gut (V6
region), 4,395 chicken gut, and 31,509 rat gut pyrosequencing reads ambiguously matched with up to 2 mismatches to two or

more of the 5,165 sequences in the reference bacterial taxonomy.

In order to demonstrate the effectiveness of our approach, we have studied taxonomic assignment in
several microbial communities: marine,30 human gut,36 lean and obese human twins gut,31 chicken gut,37
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and rat gut38 samples. The samples themselves contain 454 pyrosequencing tags for a variable region of 16S
rRNA, between 50 and 329 bp in length, and for each of these bacterial communities, we have used both the
LCA approach and our approach to assign each of the pyrosequencing reads at the best possible taxonomic
rank, using a reference bacterial taxonomy of 5,165 near-full-length type cultures of high quality17 with a
uniform scheme of seven taxonomic ranks (domain, phylum, class, order, family, genus, species).

The taxonomy covers the whole spectrum of known bacteria, and the dominant phyla are Proteobacteria,
Actinobacteria, Firmicutes, Bacteroidetes, and Tenericutes, with 1,925, 1,285, 1,178, 355, and 160 species,
respectively. The near-full-length 16S reference sequences range from 1,202 to 1,780 bp.

The marine (V6 region) samples themselves range from 50 to 100 bp, with an average length of 62 bp;
the human gut (V6 and V3 regions) samples range from 50 to 165 bp, average 101 bp; the human twins gut
(V2 region) samples range from 50 to 317 bp, average 231 bp; the human twins gut (V6 region) samples
range from 50 to 129 bp, average 60 bp; the chicken gut (V6 region) samples range from 55 to 75 bp, average
60 bp; and the rat gut (V4 region) samples range from 50 to 329 bp, with an average length of 231 bp.

We have built a suffix array for the 5,165 sequences in the reference bacterial taxonomy using the GEM-
do-index tool,39 and have matched each of the pyrosequencing reads to the 5,165 reference sequences using
the GEM-mapper tool39 with appropriate parameter settings for finding all matching sequences with up to
2 mismatches, which is about 99% identity for reads of 200 bp. The distribution of those pyrosequencing
reads that could not be unambiguously matched to a single sequence in the reference bacterial taxonomy is
given in Fig. 3.

The pyrosequencing reads that matched two or more sequences in the reference bacterial taxonomy were
assigned to the LCA of the matching sequences in the taxonomy, and they were also assigned at the best
possible taxonomic rank using our method. The distribution of reads assigned at the taxonomic rank of
domain, phylum, class, order, family, and genus using the LCA of the matching sequences in the taxonomy
is shown in Table 1, and the distribution of reads assigned at the taxonomic rank of class, order, family,
genus, and species using the new method is shown in Table 2.

Table 1. Number of ambiguous pyrosequencing reads assigned at various

taxonomic ranks using the LCA of the matching sequences in the reference

bacterial taxonomy of 5,165 sequences.

taxonomic number of reads

rank marine human twins twins chicken rat
V6 V6, V3 V2 V6 V6 V4

domain 40 1
phylum 29 5,498 3 13,133 130 49

class 12,099 2,354 1,854 154 3

order 976 5 13 8 8 35
family 3,428 49,647 371 2,343 1,441 3,582

genus 7,089 33,831 349 77,661 2,662 27,839

23,621 91,335 776 94,999 4,395 31,509

Table 2. Number of ambiguous pyrosequencing reads assigned at various
taxonomic ranks using our method in the reference bacterial taxonomy of

5,165 sequences.

taxonomic number of reads
rank marine human twins twins chicken rat

V6 V6, V3 V2 V6 V6 V4

class 2
order 4 2
family 860 2,150 16 195 3 57

genus 17,705 8,441 411 2,353 210 3,622

species 5,056 80,744 343 92,451 4,182 27,828

23,621 91,335 776 94,999 4,395 31,509
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These results show that only 3,213 of the 23,621 marine ambiguous reads (13.60%), 4,231 of the 91,335
human gut ambiguous reads (4.63%), 35 of the 776 human twins gut (V2 region) ambiguous reads (4.51%),
635 of the 94,999 human twins gut (V6 region) ambiguous reads (0.67%), 45 of the 4,395 chicken gut
ambiguous reads (1.02%), and 48 of the 31,509 rat gut ambiguous reads (0.15%) were actually assigned to
the LCA of the matching sequences using our method.

The remaining 96.67% of the ambiguous reads were assigned at a deeper taxonomic rank than the LCA
of the matching sequences using the new method. While assigning a read to the LCA of the matching
sequences in the taxonomy tends to produce assignments at the ranks of class, order, family, and genus, the
new method produces more accurate assignments at the ranks of genus and species.

Conclusions

We have shown in this paper that ambiguities in the taxonomy dependent assignment of pyrosequencing
reads can be resolved in an accurate way by mapping each read to the node of a reference taxonomy with the
best combined value of precision and recall, in time linear in the size of the taxonomy subtree rooted at the
lowest common ancestor of the matching sequences, given a suffix array for the sequences in the reference
taxonomy. We have demonstrated the effectiveness of this approach on several metagenomic datasets of
marine and gut microbiota, by showing that most reads are actually assigned at a deeper taxonomic rank
than the LCA of the matching sequences in the reference taxonomy.

The experimental results were obtained using a reference bacterial taxonomy of 5,165 near-full-length
type cultures of high quality.17 The incompleteness and bias towards cultivable species of the taxonomy
might affect these results. Most species in the gut of an individual are rare,40 and the microbiome has
a small number of deep-branching taxa with large diversity at the leaves, with different humans showing
different patterns of abundance of microbial species.41 As our knowledge of the human microbiome expands,
we expect the number of unclassified species to diminish and the effectivenes of taxonomical methods to
improve consequently.
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