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There exist two well-known succinct representations of ordered trees: BP (balanced
parenthesis) (Munro and Raman, 2001) [20] and DFUDS (depth first unary degree
sequence) (Benoit et al., 2005) [1]. Both have size 2n + o(n) bits for n-node trees,
which asymptotically matches the information-theoretic lower bound. Importantly, many
fundamental operations on trees can be done in constant time on the word RAM when
using BP or DFUDS, for example finding the parent, the first child, the next sibling,
the number of descendants, etc. Although the space needed to store the BP or DFUDS
representation of an ordered tree matches the lower bound, this is not optimal when we
consider encodings for certain special classes of trees such as trees in which every internal
node has exactly two children. In this paper, we introduce a new, conditional entropy for
trees called the tree degree entropy, and give a succinct tree representation with matching
size. We call such a representation an ultra-succinct data structure. We show how to modify
the DFUDS representation to obtain a “compressed DFUDS”, and as a consequence, a tree
in which every internal node has exactly two children can be represented in n + o(n) bits.
We also describe applications of the compressed DFUDS representation to ultra-succinct
compressed suffix trees and labeled trees.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

A succinct data structure is a data structure which stores an object using space close to the information-theoretic lower
bound, while simultaneously supporting a number of primitive operations in constant time. Here the information-theoretic
lower bound for storing an object from a fixed universe with cardinality L is log L bits4 because in the worst case this
number of bits is necessary to distinguish two distinct objects. For example, the lower bound for storing a subset of the
ordered set {1,2, . . . ,n} is n because there are 2n different subsets, and that for an ordered tree with n nodes is 2n−Θ(log n)

because there exist
(2n−1

n−1

)
/(2n−1) = 22n/Θ(n

3
2 ) such trees [20]. Typical succinct data structures include the ones for storing

ordered sets [13,23–25], ordered trees [1,2,8,9,14,20–22,29], strings [6,10,11,26,28,30], functions [22], cardinal trees [1,5], etc.
The size of a succinct data structure storing an object from the universe is typically (1+o(1)) log L bits.5 Furthermore, many
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fundamental operations on those objects can be done in constant time on the word RAM model with word-length Θ(log n),
for example, counting the number of elements in a set which are smaller than a given value, finding the parent of a node
in a tree, etc.

This paper considers succinct data structures for ordered trees.6 Though there exist many such data structures in the
literature such as BP and DFUDS (reviewed in Section 2.2), they have the following disadvantages.

1. Though the space is asymptotically optimal in the worst case, it is not optimal for certain special classes of trees. For
example, any n-node tree whose internal nodes have exactly two children can be encoded in n bits if we do not require
efficient queries by writing 1 for internal nodes and 0 for leaves during the depth-first traversal of the tree, whereas
both the BP and the DFUDS use 2n bits.

2. There exist representations of ordered trees supporting many operations [3,9]. However they are based on the tree cover
technique and therefore auxiliary data structures for supported queries work only for the representations.

The first drawback causes severe problems for document processing. Nowadays, many huge collections of documents such
as web pages and genome sequences are available. To search such documents we can use suffix trees [17,33] or compressed
suffix trees [29] because they support efficient queries. The compressed suffix tree uses the BP (and some auxiliary informa-
tion) to encode the tree because lca is crucial, and the size of the BP is 4n + o(n) bits because the tree has 2n − 1 nodes in
the worst case (see Section 2.4). On the other hand, if we use the Patricia tree [18] to represent the suffix tree, its topology
can be encoded in 2n bits, though we do not know how to support efficient queries. Therefore we pay 2n bits extra for
supporting efficient queries. This cost is enormous for huge collections of documents. For example, an implementation of
compressed suffix tree for human genome [32] using the BP has size 8.5 GB in total, while the genome sequence itself is
stored in 750 MB. Therefore it is desirable to store the suffix tree structure as compactly as possible.?

Note that no data structure can store any n-node tree using less than cn bits for c < 2 because it would surpass the
information-theoretic lower bound. However, if we consider only typical objects we can expect to reduce the size. This
is the main idea behind of data compression. We say a data structure storing an object is ultra-succinct if its size varies
according to the object and the size achieves some entropy bound of the object. In the literature, such data structures exist
for strings [6,10,30] and ordered sets [24], but not yet for ordered trees.

1.1. Our contributions

In this paper we solve the above problems by providing an ultra-succinct representation of ordered trees called com-
pressed DFUDS with the following properties:

1. It supports all previously defined fundamental operations on ordered trees listed in Section 2.2.1 in constant time.
2. Its size surpasses the information-theoretic lower bound and achieves the entropy of the tree defined below.
3. The representation of the tree topology is compressed but can be regarded as the original DFUDS because any one word

(Θ(log n) bits) of the representation can be decoded in constant time. Therefore the representation and the auxiliary
data structures for supporting the queries can be split and it is easy to add new operations.

We introduce the tree degree entropy of an ordered tree. First let us consider the information-theoretic lower bound of an
ordered tree, conditioned on the information that the tree comes from a class with specified degree multiplicities.

Lemma 1. (See Rote [27].) The number of ordered trees with n nodes, having ni nodes with i children, for i = 0,1, . . . , is

1

n

(
n

n0 n1 · · · nn−1

)
,

if
∑

i�0 ni(i − 1) = −1. If this equation does not hold, there are no such trees.

Let L denote this number. Then the information-theoretic lower bound for the condition is �log L�. By using Stirling’s
approximation, we obtain �log L� = ∑n−1

i=0 ni log n
ni

− Θ(log n). Therefore we define the tree degree entropy as follows, which
is an approximation of �log L�.

Definition 1 (Tree degree entropy). For an ordered tree T with n nodes, having ni nodes with i children, the tree degree
entropy H∗(T ) of T is defined as

H∗(T ) =
∑

i

ni

n
log

n

ni
.

6 An ordered tree is a non-labeled rooted tree in which the order of children of each internal node is significant.
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Note that |nH∗(T ) − �log L�| = O(log n).
Our main result is summarized as follows:

Theorem 1. For any rooted ordered tree T with n nodes, there exists a data structure using nH∗(T ) + O(n log log n/ log n) bits such
that any consecutive logn bits of DFUDS of T can be computed in constant time on word RAM.

Note that nH∗(T ) � 2n for any tree, implying that the size of our data structure is never more than BP nor DFUDS.
Theorem 1 also implies that we can assume we had the DFUDS in the original form. Then it is obvious that any operation
can be done on our ultra-succinct data structure in the same time complexity as the original DFUDS. Even if a new operation
on the DFUDS is proposed, it also works on our representation in the same time complexity.

Another contribution of this paper is to give an o(n)-bit auxiliary data structures for computing lca, depth, and level-
ancestor on the original DFUDS. Geary et al. [9] proposed a data structure for ordered trees which supports depth and
level-ancestor. However it does not support lca. Moreover, because it is based on a tree partition algorithm and the DFUDS is
used only for representing subtrees, it is not guaranteed that any algorithm on the original DFUDS also works on this data
structure. Therefore it is important to support these operations on the original DFUDS. We show the following:

Theorem 2. The lowest common ancestor between any two given nodes, the depth, and the level-ancestor of a given node can be
computed in constant time on the DFUDS using O(n(log logn)2/ log n)-bit auxiliary data structures.

Our new auxiliary data structures have another benefit. Their size is smaller than the existing ones which use
O(n log log n/

√
log n) bits [8,9] or O(n log log log n/ log log n) bits [3].

We also describe applications of our succinct representation of ordered trees. The first one is space reduction of the
succinct representation of labeled trees [5]. We can further compress a labeled tree into the tree degree entropy, while
preserving the same query time complexities. The next one is space reduction of the compressed suffix trees [29] which
uses the BP. We give operations on the DFUDS which are equivalent to the ones on BP. As a result we can perform any
operation for the suffix tree on a more compact data structure in the same time complexity as the original compressed
suffix trees.

1.2. Organization of paper

The rest of the paper is organized as follows. Section 2 reviews existing succinct data structures. Section 3 proposes
simple and space-efficient auxiliary data structures for lca, depth, and level-ancestor on the original DFUDS representation, as
summarized in Theorem 2. Section 4 gives the data structure to compress the DFUDS into the tree degree entropy and thus
proves Theorem 1. In Section 5, we show applications of our new representation of trees for reducing the size of labeled
trees and compressed suffix trees.

2. Preliminaries

First we explain some basic data structures used in this paper. For the computation model, we use the word RAM with
word-length Θ(log n) for representing an ordered tree with n nodes, where any arithmetic operation on two Θ(log n)-bit
numbers and reading/writing consecutive Θ(log n) bits of memory are done in constant time.

2.1. Succinct data structures for rank/select

Consider a string S[1..n] on an alphabet A with alphabet size σ . We define rank and select for S as follows. For any
c ∈ A, rankc(S, i) is the number of occurrences of c in S[1..i], and selectc(S, i) is the position of the i-th occurrence of c in
S . Note that rankc(S, selectc(S, i)) = i. We may omit S if it is clear from the context.

There exist many succinct data structures for rank/select [14,19,23,25]. A basic one [19] uses n + o(n) bits for σ = 2 and
supports rank/select in constant time on the word RAM with word length O(log n). The space can be reduced if the number
of 1’s is small. For a string with m 1’s, there exists a data structure for rank/select using log

(n
m

) + O(n log log n/ log n) =
m log n

m +Θ(m)+O(n log logn/ log n) bits [25]. This data structure is called fully indexable dictionary or fid. If m = O(n/ log n),
the space is O(n log log n/ log n). We extensively use fid in this paper to compress pointers.

For general alphabets, we use the following scheme to compress a string:

Theorem 3. (See Ferragina and Venturini [7].) A string S of length n with alphabet size σ can be compressed into at most
nHk(S) + O(n(k logσ + log log n)/ logσ n) bits for any k � 0 so that any substring of S of length O(logσ n) (i.e., O(log n) bits) is
decodable in constant time on word RAM.

The rank/select functions for the case σ = 2 can be extended to counting occurrences of multiple characters [21]. For
a pattern P on the alphabet, rankP (S, i) is the number of occurrences of the pattern P whose starting positions are in
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Fig. 1. Succinct representations of trees.

S[1..i], and selectP (S, i) is the starting position of the i-th occurrence of P . Note that occurrences of P may overlap in S .
Both functions take constant time and the size of the data structure is the same as that of fid if the pattern length is
constant.

A crucial technique for succinct data structures is table lookup. For small-size problems we construct a table which
stores answers to all possible queries. For example, for rank and select, we use a table storing all answers for all 0,1

patterns of length 1
2 log n. Because there exist only 2

1
2 logn = √

n different patterns, we can store all answers in a table using√
n · polylog(n) = o(n) bits, which can be accessed in constant time on the word RAM.

2.2. Succinct data structures for trees

We consider the set of all rooted ordered trees with n nodes. There exist
(2n−1

n−1

)
/(2n − 1) such trees [20]. Therefore

the information-theoretic lower bound of succinct data structures is 2n − Θ(log n) bits. Many data structures achieving a
matching upper bound asymptotically have been proposed [1,2,8,9,14,20–22,29].

2.2.1. Balanced parenthesis encoding (BP)
The most well-known representation of ordered trees is the balanced parenthesis representation [20], referred to as BP

in this paper. A tree is represented by a string P of balanced parentheses of length 2n. A node is represented by a pair of
matching parentheses (. . . ) and all subtrees rooted at the node are encoded in order between the matching parentheses
(see Fig. 1 for an example). To allow tree navigational operations, the following operations are supported in constant time
on the word RAM [20]:

• findclose(P , x), findopen(P , x): find the index of the closing (opening) parenthesis that matches a given opening (closing)
parenthesis P [x],

• enclose(P , x): find the index of the opening parenthesis of the pair that most tightly encloses P [x].

By using findclose, findopen, and enclose, the following additional operations are supported [2,16,20,22,29]:

• parent(x),firstchild(x), sibling(x): the parent, the first child, the next sibling node of node x, respectively,
• depth(x): the depth of x,
• desc(x): the number of descendants of x,
• rank(x): the preorder of x,
• select(i): the node with preorder i,
• LA(x,d): the ancestor of x with depth d (level-ancestor),
• lca(x, y): the lowest common ancestor of nodes x and y,
• degree(x): the number of children of x,
• child(x, i): the i-th child of x,
• childrank(x): return i such that x is the i-th child of its parent.

These operations are done in constant time using o(n)-bit auxiliary data structures.

2.2.2. Depth-first unary degree sequence (DFUDS)
The DFUDS (depth-first unary degree sequence) representation [1,9] of an ordered tree is defined as follows. A tree with

only one leaf is represented as (), which is the same as the BP. If a tree T has k subtrees T1, . . . , Tk , the DFUDS of T
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Fig. 2. The suffix tree for the string “ababac$” and its DFUDS representation. Suffix links are shown in dotted lines.

is the concatenation of k + 1 (, a ), and DFUDS’s of T1, . . . , Tk , with the first ( for each T1, . . . , Tk being omitted. Then
the resulting DFUDS also forms a balanced parenthesis sequence (see Fig. 1 for an example). The leftmost ( of the DFUDS
of any tree is considered as an imaginary superroot. Ignoring the imaginary superroot, the DFUDS can be interpreted as a
preorder listing of the nodes where each node with degree k is encoded by k (’s, followed by a ). We use the position of
the leftmost parenthesis of the encoding of a node as its representative. Such parenthesis is ( for internal nodes, and ) for
leaves. We assume the position of parentheses begins with 0. Therefore the position of the root node is 1. The DFUDS [1]
uses the same space as BP, and supports all of the operations listed above in constant time, except for lca, depth, and LA.
However, depth and LA can be supported in a modified variant of DFUDS [9].

2.3. Range min–max trees

Sadakane and Navarro [31] gave a time and space efficient data structure for tree navigational operations on BP se-
quences. A BP sequence represents depths of nodes in the order of depth-first traversal of a tree. Let P [1..2n] be the BP
sequence of a tree with n nodes, and let E[i] = rank((P , i) − rank)(P , i). Then the array E stores node depths in preorder
and it is called excess array. Most of tree navigational operations such as finding the parent and the next sibling are reduced
to a linear scan on E . For example, to find w = LA(v,d), we scan the excess array from the position of v in the BP to the
left to find the first value E[x] such that E[x] = d − 1. To speed up the scan, a range min–max tree is used. It is a balanced
tree and leaves of the tree correspond to equally-partitioned blocks of the BP sequence. A leaf stores the minimum and the
maximum of E values in a block. An internal node stores the minimum and the maximum of the values in its child nodes.
Then a linear scan on E is reduced to a finger search on the range min–max tree, which is done in time proportional to tree
height. Precisely, for the BP sequence P , we assume the word length is w = Θ(log n). We partition the BP sequence into
huge blocks of length wc for some constant c > 0, and construct a range min–max tree for each huge block. Each internal
node of a range min–max tree has Θ(w/(c log w)) children, and the height of the tree is O(c). By using lookup tables, a
finger search is done in O(c2) time, which is constant.

2.4. Suffix trees and compressed suffix trees

The Suffix tree [17,33] is a useful data structure for string matching. Here, a given string S of length s is preprocessed in
O(s) time to build its suffix tree so that for any pattern P its occurrences in S can be determined quickly. Many problems
on string matching can be solved efficiently using the suffix tree [12], for example finding the longest common substring
of any two strings in linear time, finding the length of the longest common prefix of two suffixes in constant time, etc. For
this kind of problems, the rich structure of the suffix tree is important. An example of the suffix tree is given in Fig. 2.

A drawback of the suffix tree is that it requires huge space. The size of the data structure is O(s log s) bits, which is
not practical for large collections of documents. To reduce the size, compressed suffix trees have been proposed [29]. The
compressed suffix tree for a string S consists of three components: the tree topology, the string depths, and the compressed
suffix array [11] of S . Each occupies 2(s + t) + o(s) bits, 2s + o(s) bits, and |CSA(S)| bits, respectively, where t � s − 1 is the
number of internal nodes, and |CSA(S)| denotes the size of the compressed suffix array of S . In total, the compressed suffix
tree for a string S has size |CSA(S)| + 4s + 2t + o(s) bits [29].



624 J. Jansson et al. / Journal of Computer and System Sciences 78 (2012) 619–631
3. New operations on DFUDS

In this section, we propose simple algorithms and data structures for supporting lca, depth, level-ancestor, and childrank
on the original DFUDS in O(1) time. The algorithm for lca is completely new. For operations depth and level-ancestor, Geary
et al. [9] showed that the operations can be implemented on a modified version of DFUDS. However, the data structure
is complicated and is difficult to compress. In contrast, we propose the first data structures that support depth and level-
ancestor directly on the original DFUDS. These data structures are much simpler than those of [9]. More importantly, we
improve the lower order term of the size for level-ancestor. The previous ones use O(n log log n/

√
log n) bits [9,22], while

our new data structure uses O(n(log log n)2/ log n) bits. An algorithm for childrank is also proposed in [9] for the modified
DFUDS. We provide a simpler algorithm for the original DFUDS.

From here on, we identify the node with preorder x with its starting position in DFUDS, which is computed in constant
time by (select)(x − 1)) + 1 if x > 1, or 2 if x = 1.

3.1. LCA

Let U be the DFUDS of a tree T . The excess sequence E of U is defined so that E[i] = (number of ( in U [0..i]) −
(number of ) in U [0..i]). Note that for a BP sequence, the excess values correspond to node depths, but that they have
a slightly different interpretation for a DFUDS sequence.

We have the following property of the excess values.

Lemma 2. Consider an internal node v of T , which has k > 0 subtrees T1, . . . , Tk as its children. Suppose that U [l0..r0] stores the
DFUDS for the subtree rooted at v. We also assume that U [li ..ri] stores the DFUDS for Ti for 1 � i � k (li = ri−1 + 1). Then we have
the following.

E[ri] = E[ri−1] − 1 = E[r0] − i (1 � i � k),

E[ j] > E[ri] (li � j < ri).

Proof. By the construction of DFUDS, if we add a ( at the beginning of the parenthesis sequence U [li ..ri] for a subtree Ti ,
it becomes balanced. In a balanced parenthesis sequence the number of open and close parentheses are the same. Therefore
in U [li ..ri] the number of close parentheses is one more than that of open parentheses, and we have E[ri] = E[ri−1] − 1 for
1 � i � k. Hence, we have E[ri] = E[r0] − i. The second property E[ j] > E[ri] (li � j < ri ) is obvious because the sequence is
balanced if an open parenthesis is added at the beginning. �

The following lemma shows that computing lca is reduced to a range minimum query. A range minimum query RMQ E(i, j)
returns the position of the smallest element in E[i.. j]. If there is a tie, RMQ returns the leftmost position. For a balanced
parenthesis sequence of length n, RMQ can be computed in constant time using an O(n(log logn)2/ log n)-bit auxiliary data
structure [29].

Lemma 3. Let x and y be two nodes with x < y and x is not an ancestor of y. Let x′ = select ) (x) and y′ = select ) (y) be the ending

positions of nodes x and y in DFUDS, respectively. Then the lowest common ancestor z = lca(x, y) can be computed in constant time
by

w = RMQ E
(
x′, y′ − 1

) + 1,

z = parent(w).

Note that it is easy to check if x is an ancestor of y or not in constant time by findclose(U , enclose(U , x)) � y, and if it
is, lca(x, y) = x.

Proof. Let v be the true lca(x, y), T1, . . . , Tk be the subtrees of v , and U [li ..ri] be the DFUDS for Ti (1 � i � k). Then x and
y are in some subtrees Tα and Tβ (α < β), respectively. Assume that E[rβ ] = d. Then from Lemma 2, E[rβ−1] = d + 1 and
E[i] > d + 1 for l1 � i < rβ−1 and lβ � i � rβ − 2. There are two cases: Case (1) If y < rβ (i.e., if y is not the rightmost leaf
of Tβ ), E[y − 1] > d + 1, and by the range minimum query we obtain w = rβ−1. Case (2) If y = rβ , E[y − 1] = d + 1, and
therefore there are two minimum values d + 1 in E[x..y − 1]. By the range minimum query we can find the left one, which
is rβ−1. In either case, we have w + 1 = lβ , which is the position of a subtree of v . By computing z = parent(w + 1), we
obtain lca(x, y). �
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Fig. 3. Pioneers for blocks of size B = 6 in the DFUDS sequence for the tree shown in Fig. 1.

3.2. Depth

We represent the depth information using a two-level data structure. First we explain the general data structure for both
levels. We partition the DFUDS U of a tree T into blocks of size B . For a fixed subset M of the nodes of T , the data structure
for each level stores the following information.

We identify a node with its starting position in DFUDS. For a node v , we denote by f (v) the farthest ancestor that
belongs to the same block as v . For every node v ∈ M , we need the relative pointer from v to f (v). We also need the
difference of depths between them. We call this information I1.

Let p(v) denote the parent of the node v , and B(v) denote the block that contains v . We call an edge (v, p(v)) of T a far
edge if B(v) �= B(p(v)). We call nodes p(v) of far edges far nodes. If there exist one or more far edges (vi, p(vi)) (1 � i � k,
vi ∈ M , v1 > v2 > · · · > vk) such that B(v1) = · · · = B(vk) and B(p(v1)) = · · · = B(p(vk)), we say that p(v1), . . . , p(vk) form
a group and call p(v1) the pioneer of the group. Note that p(v1) � p(v2) � · · · � p(vk) because the edges (vi, pi(v)) are
nested. We need a relative pointer from each far node p(vi) to its pioneer and the difference between the depth of p(vi)

and that of its pioneer. We call this information I2.
We show that the number of pioneers is at most 2n/B − 3 as in [8,14,20]. Consider a graph G = (V , E) whose nodes

correspond to all the blocks. For each pair (p( f (v)), f (v)) such that v ∈ M and p( f (v)) is a pioneer, we create an edge of
G between nodes for B(p( f (v))) and B( f (v)). Then the graph is outer-planar, and there are no multiple edges. Therefore
the number of edges is at most 2n/B − 3, which is an upper-bound of the number of pioneers. Fig. 3 shows the pioneers
for the example tree in Fig. 1. The bold arcs show the edges of the graph.

Now we explain the two-level data structure. For the lower level, we use block size B L = 1
2 log n and ML is the set

of all nodes of T . We call the blocks small blocks. We call pioneers for small blocks lower level pioneers. The information
I1 is computed in constant time using o(n)-bit tables. For I2, we store the positions of lower level pioneers by fid. Let
J s be a bit-vector of length 2n such that J s[i] = 1 if U [i] is a lower level pioneer. Because the number of lower level
pioneers is O(n/BL) = O(n/ log n), J s is stored in O(n log log n/ log n) bits. The lower level pioneer of a node v is computed
by select1( J s, rank1( J s, v)) because the tree nodes are encoded in depth-first order. Because each far node and its lower
level pioneer belongs to the same small block of size B L = 1

2 log n, the difference of depths between them can be computed
in constant time by table lookups.

For the upper level, we use block size BU = log2 n and MU is the set of lower level pioneers defined above. We call
the blocks large blocks and pioneers for large blocks upper level pioneers. Let fU (v) denote the farthest ancestor of v inside
the large block of v . For information I1, we store for each node v ∈ MU the relative pointer from v to fU (v) and the
difference of their depth explicitly. Because both v and fU (v) belong to the same large block of size BU = log2 n, the
information can be stored in O(log BU ) bits. Because there are |MU | = O(n/ log n) nodes we can store I1 in O(|MU | log BU ) =
O(n log log n/ log n) bits.

For information I2, we explicitly store the relative pointers and the differences of depths between far nodes and their
pioneers. This information can be also stored in O(n log log n/ log n) bits because each pair of far node and its pioneer belong
to the same large block. For upper level pioneers we store their depths explicitly using log n bits. Because the number of
upper level pioneers is at most 2n/BU − 3 = O(n/ log2 n), we need only O(n/ log n) bits.

The query for a node v is done as follows. First we find f L(v) which is the farthest ancestor of v in the small block of v
as follows. Let b be the bit-pattern of the small block. This information is not enough to compute f L(v) because the first
node in the block is not determined by only b. Precisely, assume that a prefix of b is k (’s, followed by a ). There are two
cases: (1) this represents a node r with k children, (2) this is a part of the representation of a node u with more than k
children, whose starting position is in another small block. In case (1), the first node of the small block is r, and we can
determine which nodes in b are descendants of r from the bit pattern of b. For such node v , f L(v) = r, and for other nodes
in b, f L(v) = v itself. In case (2), the first node is encoded from the (k + 2)-th position of b, and we can also determine its
descendants in b from the bit pattern of b by ignoring the first k + 1 bits. We can determine which case occurs in constant
time from the last bit of a small block which is in the left of the small block of v . If the position of the first node in the
small block is known, we can find f L(v) in constant time by a table lookup with b.
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Fig. 4. The BP sequence and the excess array of a tree. In the left figure, big circles represent lower level pioneers, and numbers along with nodes represent
their depths. In the right figure, E ′ is the excess array and m is an array of minimum excess values of small blocks. All the excess values belong to the
same large block, and the range min–max tree for the block is built on m.

Then we compute the parent w = p( f L(v)). We can determine if it is a lower level pioneer by using fid. If it is not, its
lower level pioneer must be the closest one on U to the left, because the graph is planar. Therefore we can find the lower
level pioneer z by rank and select. We can compute the relative depth of w from z by table lookups. Next we use data
structures for large blocks. For the node z, fU (z) is stored as a relative pointer from z. If p( fU (z)) is not an upper level
pioneer, we move to the upper level pioneer by using the pointer stored for the node. Then we can obtain the depth of the
upper level pioneer because it is explicitly stored. Obviously the query takes O(1) time.

3.3. Level-ancestor

We give auxiliary data structures for computing level-ancestors in O(1) time. We use the range min–max tree for the
BP sequence representing the given tree, instead of the DFUDS sequence. Note that this BP sequence is only conceptual and
not stored.

In the same way as when computing depths, we partition the DFUDS sequence U of length 2n for a tree T into small
blocks of length BL = 1

2 logn. Consider computing w = LA(v,d). If w belongs to the same small block as v , it is found in
constant time by a table lookup, similarly to computing depths. Therefore we consider only the other case. Let z be the
lower level pioneer of p( f L(v)) where f L(v) is the farthest ancestor of v that belongs to the same small block, the same
as computing depths. If w is on the path between v and z, it is found in constant time by table lookups. Therefore we
consider only the case that w is an ancestor of z. If we find an ancestor of z which is a lower level pioneer and which
belongs to the same block as w , the answer is also found in constant time by table lookups. Therefore it is enough to
consider to compute level-ancestors only for the lower level pioneers for the small blocks. Let v1, v2, . . . denote the lower
level pioneers in preorder.

We consider the excess array E ′ of the BP sequence P [1..2n] representing the given tree, and partition it into small
blocks E ′

i . Recall that E ′[x] = rank((P , x) − rank)(P , x) and it is equal to the depth of node x. Here small blocks have
variable length and defined such that E ′

i is a substring of E ′ which begins just after the position of vi−1 and ends at the
position of vi (E1 begins at position 1). The number of small blocks is equal to the number of lower level pioneers, which
is O(n/ log n). Then, we make large blocks for E by merging consecutive small blocks E ′

i . Each large block contains the

maximum number of small blocks such that the length of the large block does not exceed BU = log3 n. If a small block has
length more than BU , we partition it into blocks of length at most BU . For each small block, we store the minimum excess
value in it. The difference between any excess value in E ′

i and the first excess value in the large block containing E ′
i is in the

range [−BU , BU ]. Therefore the difference can be stored in O(log BU ) = O(log log n) bits. The first excess value in each large
block is stored explicitly in O(log n) bits. Thus the total space to store the minimum excess values is O(n log logn/ log n) bits.

As shown in [31], to find w = LA(v,d), we search the rightmost index x such that E ′[x] = d−1 and x < v . Then, w = x+1.
Fig. 4 shows an example. To find w = LA(v,6), we search for the excess value E ′[x] = 6 − 1. Then it holds w = x + 1.

There are two cases: (1) x is in the same large block as v , (2) x is not in the large block. To determine which case occurs,
we first search the same large block as v for a lower level pioneer which is an ancestor of v and whose depth is d or
less. This is equivalent to find the rightmost index x such that E ′[x] � d − 1 and x < v . To perform not a linear search but
a logarithmic search in a large block, we construct the range min–max tree for each large block. We construct a balanced
tree storing the minimum values of small blocks in the leaves. Because we compute only level-ancestors, we need not to
store maximum values. Each internal node stores the minimum value among those of its children. Each internal node has
Θ(log n/ log log n) children, and therefore the height of the tree is constant. We store not absolute values of E ′ but relative
values from the first value in the large block. Therefore each value is stored in O(log log n) bits, and the total space for the
entire tree is O(n log logn/ log n) bits. The search takes constant time because the height of the tree is constant and for each
internal node the objective child is found by a table lookup.
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Assume that we found a small block E ′
i containing E ′[x] � d − 1. Note that E ′[x + 1] = E ′[x] + 1 and x + 1 is an ancestor

of v whose depth is d or less. Then x + 1 is also an ancestor of vi and therefore the answer w = LA(v,d) exists on the path
between vi and x + 1. It is guaranteed that w belongs to the same small block of the BP sequence as x + 1. However the
nodes may belong to different small blocks of the DFUDS sequence. There are two cases: (1) x + 1 and vi belong the same
small block of the DFUDS sequence, (2) they belong different blocks. For case (1), w is found in constant time by a table
lookup. For case (2), w belongs to either the small block of vi or that of x + 1 because there is no pioneers between x + 1
and vi . Therefore w is also found in constant time.

If no small block containing E ′[x] � d − 1 exists in the large block, we search other large blocks. To do so, we use the
data structure for weighted level-ancestor queries [31]. Any query takes constant time and the space is O(n log2 n/BU ) bits
if large blocks are of length BU . Because we set BU = log3 n, the space is O(n/ log n). In total, the space for computing
level-ancestors is O(n log log n/ log n) bits.

3.4. Childrank

To compute childrank(v), i.e., the i such that v is the i-th child of its parent, proceed as follows. First determine if v is
the root, e.g., by checking if select)(v) = 0, and if so, return 0. If v is not the root, count the number of left siblings of v
by finding the opening parenthesis in the description of the parent of v which matches the closing parenthesis immediately
before the current node, and then counting how many opening parenthesis there are between this position and the end of
the description of the parent node. More precisely, when v is not the root of the tree, the childrank of v is given by the
expression:

select )
(
rank)

(
findopen(v − 1)

) + 1
) − findopen(v − 1).

Each of the involved operations takes O (1) time, so the running time for childrank(v) is O (1), and no additional space
is needed.

4. Compressing DFUDS into the tree degree entropy

We now consider how to compress the DFUDS U of a tree T with n nodes into the tree degree entropy. Let σ be the
maximum degree of nodes in T . The basic idea is to convert the unary degree encoding of DFUDS into a binary encoding.
Let S[1..n] be an integer array storing the degrees of nodes of T in preorder. Each element of S is encoded in logσ bits.
Note that S is equivalent to U if we replace every S[i] by a sequence of S[i] open parentheses ( followed by a close
parenthesis ). This is called a unary code. Hence, it is obvious how to convert between S and U in O(n) time (see Fig. 1).
We show how to compress S into nH∗(T ) + o(n) bits, and how to retrieve any consecutive w = Θ(log n) bits of U from the
compressed representation of S in constant time, thereby proving Theorem 1.

A similar approach is used in the original paper for DFUDS [1] to encode cardinal trees. They use prefix codes to encode
node degrees for the special case σ = 4. Below, we propose data structures for ordered trees which achieve the entropy
bound for a general alphabet.

Our compression technique can be applied to compressing not only the degree sequence of a tree, but also any sequence
of unary codes. We first prove the following general result, and then use it to prove Theorem 1.

Lemma 4. For a sequence S of n integers encoded by unary codes in a bit string U , let ni denote the number of occurrences of integer
i � 0. If the summation of all the integers is O(n), the sequence is compressed in

∑
i ni log n

ni
+ O(n log log n/ log n) bits so that any

logn bits of the string U can be retrieved in constant time on the word RAM with word length Θ(log n).

4.1. Sequences with small maximum values

We first consider the case where the maximum value in the sequence S is less than 1
4 log n.

Let w = 1
4 logn and let U be the unary representation of S . Because the summation of all the integers is O(n), the length

of U is also O(n). We divide the sequence U into blocks of variable lengths so that each block is of length between w and
2w and any unary code for S[i] fits in a block. We add dummy bits to the last block if it is shorter than w . It is always
possible that all blocks satisfy the condition because the maximum length of a unary code is w . The number of blocks is at
most n

w .
Define a mapping f from U to S such that if the unary code of S[i] is encoded in U [li ..ri], then f ( j) = i for li � j � ri .

For each U [ j] such that j is the starting position of a block (1 � j � n/w) we mark the position m j = f ( j) of S . We can
use fid to mark them using O(n log logn/ log n) bits.

Let s1, s2, . . . , sm be the node degrees in a block. Then each si appears in S with probability
nsi
n (recall that ni is the

number of nodes with i children). We consider them as a symbol appearing with probability
∏m

i=1
nsi
n , and construct a

sequence S ′ consisting of those symbols. The length of the sequence is equal to the number of blocks and the alphabet size
is at most 22w because each symbol is originally encoded in 2w bits.
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We use a Huffman code to encode S ′ . However the maximum length of a Huffman code may be equal to the alphabet
size and it is not possible to decode such a code in constant time. Therefore we add one-bit prefix to each code indicating
that the following code is a Huffman code or the symbol is stored without compression. Then maximum code length is
1 + 2w bits. Let mi be the number of occurrences of a symbol i in S ′ , and m be the length of S ′ . By using the above
code, S ′ can be represented by m(H(S ′) + 1 + 1) = m(2 + ∑

i
mi
m log m

mi
) bits. Then regarding the original symbols of S ,

each symbol si is considered to be encoded in log n
nsi

bits, and the total redundancy is 2m bits. Therefore the size of the

encoding for S is nH∗(T ) + 2m = nH∗(T ) + O( n
logn ). We have to use a decoding table for the Huffman code, but it uses only

O(21+2w · w) = O(
√

n logn) bits.

4.2. Sequences with unbounded values

First we divide the alphabet A of S into two sets; A1 for values larger than or equal to w = 1
4 log n, and A2 for the rest.

We then define strings S1 and S2 which are the restrictions of S to A1 and A2, respectively. The alphabet size of S2 is
σ = |A2| � log n and each value is encoded in log log n bits. We compress S1 and S2 in different ways. To obtain a substring
of U , we first extract substrings of U which are from S1 and S2, and then merge them. S2 is encoded by the Huffman code
as described in the previous subsection.

We describe how to compress S1. We use a bit-vector D1 of the same length as U , which is O(n), to indicate if S[i] ∈ A1
by setting D1[i] = 1. Because there are at most O(n)/w = O(n/ log n) values in A1, we can encode D1 in O(n log log n/ log n)

bits by using fid. We also use two bit-vectors D2 and D3 which represent the starting and ending positions of unary codes
for the values in S1. Namely, if an integer k is encoded in U [i..i + k], then we set D2[i] = 1 and D3[i + k] = 1. These vectors
are also stored in O(n log log n/ log n) bits. From these vectors, we can obtain a substring of U with length w which is from
S1 in constant time.

We merge the sequences of unary codes from S1 and S2 as follows. To decode U [ jw..( j + 1)w − 1], first obtain positions
of characters in S which is the first and the last ones in the substring. Then we check if there is a character in A1 between
them. If so, compute its position by using D2 and D3 and decode the unary code. Because each integer in S1 is encoded
in at least log n bits in U , any log n-bit substring of U overlaps with at most two integers in S1. Therefore it is easy to
concatenate the unary codes from S1 and S2 in constant time.

The space for storing the compressed U is as follows. For the string S1, we can store it using D1, D2 and D3 in
O(n log log n/ log n) bits. The string S2 is encoded in n′H0(S2) + O(n log logn/ logσ n) bits where n′ is the length of S2. Let ni
be the number of occurrences of integer i in S . Then

n′H0(S2) =
∑
i∈A2

ni log
n′

ni
�

∑
i∈A

ni log
n

ni
.

Therefore the total space is
∑

i∈A ni log n
ni

+ O(
n log logn

logn ) bits. This proves Lemma 4. This also proves Theorem 1 because∑
i∈A ni log n

ni
= nH∗(T ).

5. Applications

We now describe some applications of our compressed DFUDS representation of ordered trees and Lemma 4.

5.1. Labeled tree encoding

Ferragina et al. [5] proposed xbw, a transformation between a rooted, ordered, edge-labeled tree T and two strings Sα

and S last. Each label is in the alphabet A with alphabet size σ . Let n be the number of nodes in T . The string Sα is a
permutation of edge labels of T and the string S last is a 0,1-string of length 2n representing the topology of T . They showed
that tree navigational operations can be done on the strings. The size of the strings is n logσ + 2n bits, which matches the
information-theoretic lower bound. They defined the k-th order entropy of the labels Hk(T ) and showed the string Sα is
compressed into that entropy:

Theorem 4. (See Ferragina et al. [5].) Let C be a compressor that compresses any string w into |w|H0(w) + μ|w| bits. The string
xbw(T ) can be compressed in nHk(T ) + n(μ + 2) + o(n) + gk bits, where gk is a parameter that depends on k and on the alphabet
size (but not on |w|).

In the above theorem, only the string Sα is compressed. In this paper we consider compressing the other string: S last. It
encodes the degrees of the nodes of T by unary codes after the stable sort. Therefore by using Lemma 4, we can compress
it into the tree degree entropy H∗(T ). We obtain the following theorem:

Theorem 5. The string xbw(T ) of a labeled tree T can be compressed in nHk(T )+nH∗(T )+o(n logσ)+ gk bits, and any consecutive
O(log n) bits of xbw can be decoded in constant time on word RAM.
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Proof. For the compressor C of Theorem 4 we use the one in Theorem 3 for k = 0. Then μ = logσ log log n/ log n and Sα is
compressed into nHk(T ) + o(n logσ) + gk bits. The string S last is compressed into nH∗(T ) + o(n) bits by Lemma 4. In both
compression algorithms, any consecutive O(log n) bits can be decoded in constant time. �
5.2. Ultra-succinct compressed suffix trees

The size of the compressed suffix tree of a string S of length s is |CSA(S)| + 6s + o(s) bits in the worst case [29]. For
the size |CSA(S)| of the compressed suffix array, one implementation achieves the asymptotically optimal size sHk(S) + o(s)
bits [10]. Below, we show how to further reduce the size of the tree topology.

In the original compressed suffix tree for a string of length s [29], the tree topology is encoded by the BP in 2(s + t) bits
where t is the number of internal nodes of the tree. The main reason why the BP was used is that we needed to be able
to compute the lca efficiently. We change it to use the DFUDS to compress the data structure into the tree degree entropy.
(Recall that according to Section 3.1, we can now compute the lca efficiently for DFUDS.) Next, we have to show that all
required functions for suffix trees can be also implemented on the DFUDS efficiently. The following additional operations
need to be supported for a suffix tree T :

• string_depth(v): the length of the path-label of a node v (the characters on the path from the root to v),
• sl(v): the node with path-label α if an internal node v has path-label cα for some character c (the suffix link of v).

We give the definition of an inorder of an internal node.

Definition 2. (See Sadakane [29].) The inorder rank of an internal node v is defined as the number of visited internal nodes,
including v , in the depth-first traversal, when v is visited from a child of it and another child of it will be visited next.

Note that every node in a suffix tree has at least two children. Therefore each internal node has at least one inorder
rank. A node with d children has d − 1 different inorder ranks. Note that the preordering includes the leaves whereas the
inordering does not. To compute inorders we use this lemma:

Lemma 5. (See Sadakane [29].) There is a one-to-one correspondance between the leaves and the inorder ranks for the internal nodes,
and an inorder rank of v is equal to the number of leaves that have smaller preorder ranks than v.

Proof. Inorder ranks are assigned during a depth-first traversal, which is divided into upgoing and downgoing paths. An
inorder rank is assigned to an internal node v if the node is between consecutive upgoing and downgoing paths, and each
upgoing path starts from a leaf. �

To support the above functions, we need the following in addition to lca [29], which can be also computed on the
DFUDS:

• leaf _rank(v): Return the number of leaves before or equal to the node v in the preordering of the tree.
• leaf _select(i): Return the ith leaf in the preordering of the tree.
• preorder_rank(v): Return the preorder rank of the node v .
• preorder_select(i): Return the node whose preorder rank is i.
• inorder_rank(v): Return the smallest inorder rank of the internal node v .
• inorder_select(i): Return the node whose inorder rank is i.
• leftmost_leaf (v), rightmost_leaf (v): Return the leftmost (rightmost) leaf in the subtree rooted at v .

We can implement each one of these operations to run in constant time and using no extra space as follows:

• leaf _rank(v) = rank))(v)

[Each leaf is represented by an occurrence of the pattern )), and the leaves appear in the sequence from left to right
according to their preorder, so we count the number of occurrences of leaves to the left or equal to v .]

• leaf _select(i) = select))(i)
[Find the i-th leaf according to the above.]

• preorder_rank(v) = (rank)(v − 1)) + 1
[The description of each node consists of a consecutive sequence of ( symbols followed by a single ), and the nodes
appear in the sequence according to their preorder. Therefore rank)(v − 1) gives the preorder of the receding node of
v . By adding 1 we obtain the answer. ]

• preorder_select(i) = (select)(i − 1)) + 1
[Find the end of the description of the (i − 1)th node according to preorder, and go to the position immediately after.
This is the inverse of preorder_rank.]
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• inorder_rank(v) = leaf _rank(child(v,2) − 1)

[According to Lemma 5, count the number of leaves to the left of the second child of v . ]
• inorder_select(i) = parent((leaf _select(i)) + 2)

[Let v denote the desired node. First find the i-th occurrence of a leaf in the sequence. By adding 2 to the position we
obtain the start position of the description of the first node reached by a downgoing edge from the node with inorder i.
By taking its parent, we obtain the answer. ]

• leftmost_leaf (v) = leaf _select(leaf _rank(v − 1) + 1)

[We obtain the number of leaves appearing before v in preorder by leaf _rank(v −1). By finding the next leaf in preorder,
we obtain the answer. ]

• rightmost_leaf (v) = findclose(enclose(v))

[The rightmost leaf is encoded in the last position of the encoding for the subtree rooted at v . If it were encoded by
the BP, we can find it by findclose(v). However, in the DFUDS the leftmost open parenthesis is omitted. The omitted
parenthesis is moved to another position to enclose v . ]

The DFUDS sequence for the suffix tree can be compressed into the tree degree entropy. Furthermore, if the alphabet is
binary, the tree topology is encoded in 2s + o(s) bits:

Theorem 6. The tree topology of the suffix tree T with s leaves and t internal nodes can be encoded in s log s+t
s + t log s+t

t + 2t + o(s)
bits. Any operation on the compressed suffix tree is done in the same complexity as the one using the BP representation. In particular, if
σ = 2, the tree topology can be encoded in 2s + o(s) bits.

Note that s log s+t
s + t log s+t

t + 2t < 2(s + t) for any 0 < t < s. Therefore our representation is always smaller than the BP.

Proof. We already showed that each necessary operation on the BP is also supported on the compressed DFUDS in the
same time complexity.

The condition on the shape of the tree is only the number of leaves. Therefore the information-theoretic lower bound
conditioned on the degree multiplicities is applied. Because the tree shape is encoded into the entropy bound by Theorem 1,
the encoding size matches the lower bound. Therefore to give an upper bound on the encoding size, it is enough to give
some code which encodes the tree in s log s+t

s + t log s+t
t + 2t + o(s) bits.

We consider a code which first encodes whether a node is a leaf or not in preorder, then encodes the shape of the tree
whose leaves are removed. The first part uses s log s+t

s + t log s+t
t + o(s) bits, and the second part uses 2t bits by using the

BP. This proves the claim.
If σ = 2, the suffix tree has s leaves and s − 1 internal nodes, each of which has exactly two children. Therefore the size

of the compressed DFUDS is (2s − 1)H∗(T ) + o(s) = s log 2s−1
s + (s − 1) log 2s−1

s−1 + o(s) = 2s + o(s) bits. �
In the original compressed suffix tree [29], string depths of internal nodes are sorted by inorder ranks and conceptually

stored in an array Hgt[1..s], which is actually represented by a sequence of s increasing numbers 0 � x1 � x2 � · · · � xs � s,
and they are encoded in a sequence of unary codes for xi − xi−1 + 1 (i > 1). The length of the sequence is at most 2s. We
consider how to compress the sequence by converting it into a sequence of s integers. Let ni be the number of occurrences
of value i. Then

∑
i ni = s and

∑
i(i +1)ni � 2s. Therefore we can compress the sequence by using Lemma 4. The compressed

size is expressed by the entropy based on the frequency of numbers. Roughly speaking, the numbers represent edge lengths
of the suffix tree. Therefore the frequency of 1 is high in practice. Though we cannot give any upper bound better than 2s,
we expect good compression in practice.

We state how to implement string_depth(v) and sl(v) for completeness. For details and the correctness, please refer
to [29].

• string_depth(v) = Hgt[inorder_rank(v)]
• sl(v) = lca(leaf _rank(Ψ [x]), leaf _rank(Ψ [y])) where Ψ is a function of the compressed suffix array [11,28] that can be

computed in constant time, and x = leaf _rank(leftmost_leaf (v)) and y = leaf _rank(rightmost_leaf (v)) .

6. Concluding remarks

In this paper, we have given a natural definition of the entropy of tree topology called the tree degree entropy and
proposed a succinct data structure for storing a tree whose size matches this entropy. We have also given the first auxil-
iary data structure for lca, and auxiliary data structures for depths and level-ancestors which use less space than existing
ones [9].

We also showed applications to reduce the size of the compressed suffix trees [29] and labeled trees [5] further.
After the preliminary version of this paper [15], Farzan and Munro [3] gave another representation achieving the tree

degree entropy based on the tree cover, but their auxiliary data structures are larger than ours. Very recently, Farzan et
al. [4] gave a universal representation of trees which implicitly stores both BP and DFUDS, but this representation is not
compressed into the tree degree entropy.
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