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Abstract—This paper considers the problem of identifying all locations of subtrees in a large tree or in a large collection of trees that

are similar to a specified pattern tree, where all trees are assumed to be rooted and node-labeled. The tree edit distance is a

widely-used measure of tree (dis-)similarity, but is NP-hard to compute for unordered trees. To cope with this issue, we propose a new

similarity measure which extends the concept of unordered tree inclusion by taking the costs of insertion and substitution operations on

the pattern tree into account, and present an algorithm for computing it. Our algorithm has the same time complexity as the original one

for unordered tree inclusion, i.e., it runs in OðjT1jjT2jÞ time, where T1 and T2 denote the pattern tree and the text tree, respectively, when

the maximum outdegree of T1 is bounded by a constant. Our experimental evaluation using synthetic and real datasets confirms that

the proposed algorithm is fast and scalable and very useful for bibliographic matching, which is a typical entity resolution problem for

tree-structured data. Furthermore, we extend our algorithm to also allow a constant number of deletion operations on T1 while still

running in OðjT1jjT2jÞ time.

Index Terms—Tree edit distance, tree inclusion, unordered trees, dynamic programming

Ç

1 INTRODUCTION

THE comparison of tree-structured data has numerous
applications in various scientific areas and data process-

ing. For example, trees can be used to represent several
kinds of biological data such as RNA secondary structures
[1], vascular trees [2], glycans [3], evolutionary history [4],
and cell lineage data [5], and scientists sometimes need to
compare such structures. Similarly, XML data is often repre-
sented by a tree, and as a result, many studies have been
done on how to compare and search such data efficiently
[6], [7], [8]. In natural language processing, sentences are
usually represented by parse trees and thus comparison of
trees is useful for natural language information retrieval [9].
Tree-structured data matching is often applied to entity res-
olution [10], [11]. Certain kinds of image data are also repre-
sented by trees [12].

The similar subtree search problem studied in this paper
is: given a pattern tree and a large text tree, find roots of all
parts of the text tree that are similar to the pattern tree.
From here on, all trees are assumed to be rooted and node-
labeled. Although we focus on finding the root positions in

the text tree, a mapping can be retrieved for each matched
root positions only with extra cost proportional to the out-
put size by traceback. The similar subtree search problem
can be applied to various searching and matching problems.
For example, recently some researchers reported that the
structure of keywords is more effective for information
retrieval than just a bag-of-words [9]. The structure of key-
words is usually represented with a small tree structure
such as a parsing tree after natural language processing.
When processing a query represented with a tree (pattern
tree), we need to calculate a similarity between the pattern
tree and fragments of text data (text tree). Information inte-
gration is another applicable problem. Some researchers
applied tree matching algorithms to record matching [10],
[11], where records such as bibliographic data are repre-
sented in XML. When matching records in different schema,
we need to handle heterogeneity of the schema such as dif-
ferent document type definitions causing the difference of
element order and missing/extra elements. A record having
extra elements often results in a much larger tree than typi-
cal record. For example, DBLP record contains extra ele-
ments such as citations and URLs, which are not included
in standard bibliographic databases. As a result, some trees
included in DBLP are more than twice as large as trees rep-
resenting standard bibliographic components such as
authors and titles. In this case, the tree inclusion is more
suitable than just the tree matching.

Different meanings of “similar” can be employed, but
here we focus on one of the most commonly used measures
of similarity known as the tree edit distance. For ordered trees,
there exists a polynomial-time algorithm to compute it [13].
However, in many situations, it is more appropriate to con-
sider unordered trees. Although natural orderings of siblings
exist in RNA secondary structures or in parse trees, it is dif-
ficult to uniquely determine the ordering for many other
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types of data. For example, although XML data is repre-
sented by an ordered tree, the order of elements can be dif-
ferent when matching schema of XML data in different
databases [14]. Therefore, we need to handle them as unor-
dered trees. As discussed in [6], there can be a significant
gap between the ordered and unordered tree edit distances,
so similar trees may be missed if we simply fix some arbi-
trary ordering and apply the ordered variant (see Section 3).
Unfortunately, the unordered tree edit distance problem is
known to be NP-hard [15].

To cope with this hardness, several approaches have
been taken. The first one is the use of branch-and-bound
techniques [5], [16]. This approach computes the tree edit
distance exactly, but its applicability is limited to medium-
size trees (i.e., trees with several tens of nodes). The second
one is the use of approximate distances [6]; this approach is
quite scalable, but does not yield exact distances. The third
one is the use of modified or restricted types of tree edit dis-
tances that can be computed exactly in polynomial time [3],
[17], [18] (see also [19] for the ordered case). Such measures
are less flexible and provide less matching functionality,
and thus have not been used widely. The fourth one is the
use of degree constraints. Approach four alone does not
help much for unordered trees [20]. An example of a
method that combines approaches three and four is the
alignment of trees distance introduced by Jiang et al. [21],
which is a special case of tree edit distance that can be com-
puted in polynomial time when the maximum outdegree of
both input trees is upper-bounded by a constant. It has cer-
tain nice properties but is not a proper metric as it does not
satisfy the triangle inequality. In a related line of research,
Kilpel€ainen and Mannila [22] considered the tree inclusion
problem which takes as input a pattern tree and a text tree,
and asks whether the text tree can be obtained from the pat-
tern tree by applying insertion operations. They showed
that the problem is NP-hard in general for unordered trees
but can be solved in polynomial time when the maximum
outdegree of the pattern tree is upper-bounded by a con-
stant. On the negative side, the problem ignores the costs of
insertion operations, which in many applications prohibits
it from being practically useful for similar subtree search, as
discussed in Section 4. To make the concept of tree inclusion
more useful, we extend it so that the costs of insertion oper-
ations are incorporated and substitutions of node labels are
possible. We also further extend it to allow a small number
of deletion operations in the pattern tree.

In summary, the contributions of this paper are as fol-
lows. (i) We introduce the minimum-cost unordered tree inclu-
sion problem (MinCostIncl, for short), obtained by extending
unordered tree inclusion to take the costs of insertion and
substitution operations into account. (ii) We give an

Oð22DmnÞ-time algorithm for MinCostIncl, where D is the
maximum outdegree of a pattern tree, m is the size of a pat-
tern tree, and n is the size of the text tree. In addition,

we improve the space complexity from Oð2DmnÞ to

Oðnþ 2Dm log ðnÞÞ when traceback is not required. (iii) We
extend MinCostIncl so that a small number of deletion
operations are allowed and present a parameterized

OððeDÞKK1=222ðDKþD�KÞmnÞ-time algorithm, where K is
the number of allowed deletion operations and e is the base

of the natural logarithm. (iv) We implement all proposed
algorithms and perform computational experiments using
both synthetic and real data and show the efficiency and
effectiveness of the minimum-cost unordered tree inclusion
algorithm. It works efficiently in practice when D is not
large (i.e., D < 8). It is to be noted that trees of D < 8 cover
a large class of tree structured data because binary trees
appear in many fields (e.g., phylogenetic trees, parse trees)
and the maximum degree of glycans is 6. We experimentally
show that the minimum-cost unordered tree inclusion sig-
nificantly improves the bibliographic matching accuracy
compared with the ordered tree edit distance.

The paper is organized as follows. Section 2 describes
some related work. Section 3 reviews the tree edit dis-
tance and unordered tree inclusion. Section 4 defines
MinCostIncl, presents an Oð22DmnÞ-time algorithm for
solving it, and explains how to improve the algorithm’s
space complexity. Section 5 defines an extended variant

of MinCostIncl and gives a corresponding OððeDÞK
K1=222ðDKþD�KÞmnÞ-time algorithm. Section 6 presents the
results of our experiments using synthetic and real data.
We conclude and discuss future research directions in
Section 7.

2 RELATED WORK

The tree edit distance is defined formally in Section 3 below.
Intuitively, it asks for a minimum-cost sequence of inser-
tion, deletion, and substitution operations that transforms
one input tree (T1Þ into another input tree (T2). It has been
extensively studied; see, e.g., [17] for a survey.

For the case of ordered trees, Tai’s [23] classic Oðn6Þ-time
tree edit distance-algorithm (where n denotes the number
of nodes in the larger of the two input trees) was improved
upon gradually until Demaine et al. [13] presented an

Oðn3Þ-time algorithm in 2009 and proved it to be worst-case
optimal among a reasonable class of algorithms. Pawlik and
Augsten [8] developed a robust algorithm whose asymp-
totic complexity is smaller than or equal to the complexity
of the best competitors for any input instance. Since even

Oðn3Þ time may be too slow for similarity search and/or
join operations in XML databases, several approximate
methods have been proposed. Garofalakis and Kumar [7]
proposed an algorithm to embed the tree edit distance into
a high-dimensional L1-norm space with a guaranteed dis-
tortion by means of introduction of an additional ‘move’
operation. Yang et al. [11] proposed another method to
embed the tree edit distance metric into the L1-norm space,
which provides a lower bound of the tree edit distance.
Augsten et al. [10] developed a method to give an upper
bound for the maximum subtree size that is used to effi-
ciently prune irrelevant subtrees for top-k approximate sub-
tree matching.

On the other hand, the tree edit distance problem is NP-
hard for unordered trees [15]. In fact, Zhang and Jiang [20]
proved that the problem is MAX SNP-hard even for binary
trees, which implies that it is unlikely to admit a polyno-
mial-time approximation scheme. The parameterized com-
plexity has also been studied. Shasha et al. [12] developed
an Oð4‘1þ‘2minð‘1; ‘2ÞmnÞ-time algorithm, where ‘1 and ‘2
are the number of leaves in T1 and T2, respectively, and
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Akutsu et al. [24] developed an Oð2b1þb2DmnÞ-time algo-
rithm, where b1 and b2 are the number of branching nodes
in T1 and T2, respectively, and D is the maximum outdegree

of T1 and T2. An Oð2:62kpolyðm;nÞÞ-time algorithm was
developed under the unit-cost edit operation model in [25],
where k is the edit distance. Efficient exponential-time algo-
rithms have also been developed [26].

The above algorithms for unordered trees are mostly of
theoretical interest. More practical, branch-and-bound type
algorithms have been also developed: Horesh et al. [5]
developed an A�-type algorithm, and Mori et al. [16] a cli-
que-based algorithm. However, the applicability of these
algorithms is limited to trees consisting of up to several tens
of nodes. Augsten et al. [6] developed an approximate and
efficient method using windowed pq-grams, which are
small subtrees of a specific shape.

As mentioned in Section 1, several alternatives to the
unordered tree edit distance, including tree alignment [21]
and tree inclusion [22], have been proposed. See also [3],
[17], [18]. As for tree inclusion, some studies followed from
[22]. Bille and Gørtz developed an improved algorithm for
ordered trees [27]. Valiente developed an efficient algorithm
for a constrained version of unordered trees [28]. Piernik
and Morzy introduced a similar problem for ordered trees
and developed an efficient algorithm [29]. However, we are
interested in introducing the cost to the original definition
of tree inclusion for unordered trees. If we do not allow
insertions between parents and children, the tree inclusion
problem corresponds to the subtree isomorphism problem
(i.e., subgraph isomorphism problem for trees), which can
be solved in polynomial time for unordered trees [30].
Matou�sek and Thomas considered the subgraph isomor-
phism problem for partial k-trees, which are some exten-
sions of unordered trees, and showed that the problem is
NP-hard in general but can be solved in polynomial time if
both k and the maximum vertex degree of the pattern tree
are bounded by constants [30].

3 TREE EDIT DISTANCE AND TREE INCLUSION

This section reviews the definitions of the tree edit distance
for ordered and unordered trees as well as the definition
and the algorithm from [22] for unordered tree inclusion.
We use the following notation. For any rooted tree T , let
rðT Þ be the root of T , V ðT Þ the set of nodes in T , and LðT Þ
the set of leaves in T . For any v 2 V ðT Þ, ‘ðvÞ is the label of
node v, chdðvÞ is the set of children of v, and degðvÞ is the
outdegree of v (i.e., the number of children of v). Further-
more, T ðvÞ is the rooted subtree (connected subgraph) of T
induced by v and all of its descendants. Similarly, for a set
of nodes R ¼ fv1; . . . ; vdg, T ðRÞ denotes the subforest (the
set of rooted subtrees) of T induced by v1; . . . ; vd and all
their descendants.

3.1 Tree Edit Distance

The tree edit distance [23] is defined via edit operations.
To simplify the presentation, we will assume that the
root rðT Þ of any tree T has an imaginary parent node pðT Þ
labeled by a unique symbol � that does not occur any-
where else in T and that pðT Þ 62 V ðT Þ. Let T be a tree. An
edit operation on T is one of the following three operations:

(i) Deletion: remove a node v 2 V ðT Þ whose parent is u,
while letting the children of v become children of u (ii)
Insertion (the inverse of a deletion operation): create a new
node v having any label except � and attach it as a child of
any node u 2 V ðT Þ [ fpðT Þg, while making v the parent of
a (possibly empty) subset of the children of u, (iii) Substi-
tution: change the label of a node in V ðT Þ to any label
except �. See Fig. 1 for an illustration, where imaginary
nodes are not shown.

For ordered trees, all operations must preserve the left-
to-right node ordering. If a deletion is done on v, the chil-
dren of v are attached to v’s parent at the place of v and in
the same left-to-right order. An insertion of v as a child of u
makes v a parent of a consecutive subsequence of the chil-
dren of u.

We assign a cost to each edit operation by a cost function d

such that dða; bÞ equals the cost of substituting a node with
label a to a node with label b, dða;�Þ equals the cost of delet-
ing a node with label a, and dð�; aÞ equals the cost of insert-
ing a node with label a. As in many other studies on tree
edit distance [17], we assume that dðx; yÞ is a distance
metric: dðx; yÞ � 0, dðx; yÞ ¼ 0 if and only if x ¼ y,
dðx; yÞ ¼ dðy; xÞ, and dðx; yÞ þ dðy; zÞ � dðx; zÞ hold for all
x; y; z. The unit-cost edit operation model is a cost function d

satisfying dða; aÞ ¼ 0 for all labels a and dða; bÞ ¼ 1 for all
labels a; b with a 6¼ b. The edit distance between two trees T1,
T2 is defined as the cost of the minimum-cost sequence of
edit operations that transforms T1 to T2.

The tree edit distance can be expressed in terms of edit
distance mappings [17], [23] (or mappings, for short), which
are also called Tai mappings [23]. For two ordered trees T1

and T2, M � V ðT1Þ � V ðT2Þ is mapping if the following
conditions hold for every ðu1; v1Þ; ðu2; v2Þ 2M: (i) u1 ¼ u2

if and only if v1 ¼ v2, (ii) u1 is an ancestor of u2 if and
only if v1 is an ancestor of v2, (iii) u1 is left of u2 if and
only if v1 is left of v2. The first condition states that M
must be one-to-one, the second condition states that
ancestor-descendant relationships must be preserved, and
the third condition states that the left-to-right ordering
must be preserved. For unordered trees, M is called a
mapping if conditions (i) and (ii) above hold for every
ðu1; v1Þ; ðu2; v2Þ 2M. See also Fig. 1.

Now, we can relate any edit mapping M to some
sequence of edit operations by letting: (i) nodes in V ðT1Þ not

Fig. 1. An example. T2 is obtained by deletions of the nodes labeled “d”
and “e”, an insertion of a node labeled “i” (nodes labeled “b” and “c” cor-
respond to a subset of the children in the definition of insertion), and a
substitution of a node labeled “g” to “h”. Thus, under the unit-cost edit
operation model, the tree edit distance is 4. The corresponding unor-
dered edit distance mapping is shown by dotted curves.
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appearing in M correspond to nodes deleted from T1,
(ii) nodes in V ðT2Þ not appearing in M correspond to nodes
inserted into T1, (iii) node pairs in M having different labels
correspond to substitutions, and define the cost ofM using d

in the natural manner. Then the cost of any minimum-cost
edit mapping is precisely the tree edit distance [17], [23].

We end this section with a brief comparison between the
ordered and unordered tree edit distance. Consider T1 and
T2 in Fig. 2 (similar to Fig. 1 in [21]). The subtree indicated
by A (resp., B and C) represents a tree consisting of x nodes
all having the same label ‘a’ (resp., labels ‘b’ and ‘c’), so that
jV ðT1Þj ¼ jV ðT2Þj ¼ 3xþ 2. The ordered tree distance
between T1 and T2 is 2x whereas the unordered tree dis-
tance is 2, under the unit-cost edit operation model. In other
words, the gap may be of size VðnÞ, where n is the number
of nodes. We remark that in this example, the unordered
tree alignment distance [21] is not appropriate because its
distance is also 2x.

3.2 Unordered Tree Inclusion

Here we review the unordered tree inclusion problem
and the algorithm of [22]. Let T1 be the pattern tree and
T2 the text tree. In what follows, m and n denote the size
(the number of nodes) of T1 and T2, respectively, and D
denotes the maximum outdegree among all nodes in T1.
We assume that D bits can be stored in one word of the

CPU because all algorithms presented here use Vð2DmÞ
space and thus D bits are needed to specify each memory
position.

T1 is included in T2 if T2 can be obtained by applying a
sequence of insertion operations to T1. If T1 is included in
T2, we write T1 	 T2. Furthermore, this relation is extended
to the case where T2 can be obtained by applying a sequence
of insertion operations to a forest (i.e., a set of rooted trees).

The unordered tree inclusion problem. Given two rooted,
unordered trees T1 and T2, decide whether T1 	 T2.

Note that the problem is equivalent to finding a mapping
in which every node in the pattern tree is mapped to a node
with the same label in the text tree. Kilpel€ainen and Mannila
[22] proved that the unordered tree inclusion problem is
NP-hard and gave an Oð22DmnÞ-time algorithm for solving
it, which we refer to as UnordInclusion. See Algorithm 1 for
the pseudocode. The algorithm computes a set SðvÞ for each
v 2 V ðT2Þ, defined as:

SðvÞ ¼ fR j ð9u 2 V ðT1ÞÞðR � chdðuÞÞ; T1ðRÞ 	 T2ðvÞg
[ ffrðT1Þg jT1 	 T2ðvÞg:

The SðvÞ-sets are computed in a bottom-up fashion.
Clearly, T1 	 T2 if and only if there exists some v 2 V ðT2Þ

such that frðT1Þg 2 SðvÞ. As an example, let T1 and T2

be the trees in Fig. 3. Then, we have: Sðv11Þ ¼ f;; fu4gg,
Sðv10Þ ¼ f;g, Sðv7Þ ¼ f;; fu3g; fu4g; fu5gg, Sðv5Þ ¼ f;; fu3g;
fu5gg, Sðv4Þ ¼ f;; fu4g; fu5g; fu4; u5g; fu2g; fu3gg, and Sðv2Þ ¼
f;; fu4g; fu5g; fu4; u5g; fu2g; fu3g; fu2; u3g; fu1gg.

Algorithm 1. UnordInclusion(T1; T2Þ
for all v 2 V ðT2Þ from the leaves to the root do
Let v1; . . . ; vd be the children of v;

/* d ¼ 0 if v 2 LðT2Þ */
S  f;g; SD ;;
for all u 2 V ðT1Þ do
S  S [ fR jR ¼ R1 [ 
 
 
 [Rd; Ri 2 SðviÞ,

Ri � chdðuÞg;
if chdðuÞ 2 S and ‘ðuÞ ¼ ‘ðvÞ then
SD SD [ ffugg;

SðvÞ  S [ SD.

4 MINIMUM-COST UNORDERED TREE INCLUSION

At a first glance, tree inclusion may appear useful for simi-
lar subtree search. However, some drawbacks become
apparent when trying to apply it to real data. For example,
the costs of insertions are not accounted for. Consider the
trees in Fig. 4. Intuitively, T 2

1 looks much more similar to a

subtree of T2 than T 1
1 does, even though both T 1

1 	 T2 and

T 2
2 	 T2 hold. Another issue is that substitutions of node

labels are not allowed in tree inclusion. To overcome these
drawbacks, we introduce costs into the tree inclusion
problem.

Define D0ðT; T 0Þ as the minimum cost of transforming T
into T 0 by insertion and substitution operations, where
D0ðT; T 0Þ ¼ þ1 if there is no such transformation. Also
define:

The minimum-cost unordered tree inclusion problem (Min-
CostIncl). Given two rooted, unordered trees T1 and T2,

Fig. 2. Comparing the ordered and unordered tree edit distance.
The ordered tree edit distance is 2x while the unordered tree edit
distance is 2.

Fig. 3. An example of unordered tree inclusion.

Fig. 4. Both T 1
1 and T 2

1 are included in T2. However, T
2
1 looks like a more

similar subtree since it is isomorphic to a rooted subtree of T2.
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determine the value of D	ðT1; T2Þ ¼ minT 0
2
D0ðT1; T

0
2Þ; where

T 02 is taken over all connected subgraphs of T2.
Note that T 02 corresponds to the subtree (of a large tree

T2) similar to T1. Note also that the definition of D	 ignores
the costs of inserting irrelevant nodes into T1. In the exam-
ple in Fig. 3, the connected subgraph of T 02 giving the mini-
mum cost consists of nodes v2; v4; v5; v6; v7; v9; v11 and the
costs of inserting v1; v3; v8; v10 are ignored. This is reason-
able because the purpose is to find a relevant part of T2

that is similar to T1. If D	ðT1; T2Þ < þ1, we say that T1

is included in T2 or that T1 is embedded into T2 (with
cost D	ðT1; T2Þ). It should be noted that the problem
MinCostIncl is NP-hard in general because tree inclusion
corresponds to the problem of deciding whether
D	ðT1; T2Þ 6¼ þ1.

4.1 Main Algorithm

We assume that all insertion and substitution operations
have non-negative costs because otherwise, there would be
cases in which the cost between two isomorphic trees could
be greater than the cost between two non-isomorphic trees.

Our algorithm is called MinCostIncl. It extends the
algorithm UnordInclusion of [22] described above by
also taking the costs of insertions and deletions into
account. For certain subsets of nodes R � V ðT1Þ, MinCos-
tIncl computes a score denoted by wvðRÞ, which gives
the minimum cost of embedding the forest T1ðRÞ into
T2ðvÞ. Here, embedding a forest S into a tree T means
that T is obtained by insertion and substitution opera-
tions on S, where insertion of a parent of some roots of
the current forest is allowed. Then, the required cost is
given by: D	ðT1; T2Þ ¼ minv2V ðT2Þ wvðfrðT1ÞgÞ:

The pseudocode of MinCostIncl is listed in Algorithm 2.
In the algorithm, all wvðSÞ (resp., WvðSÞ) are implicitly
initialized as wvðSÞ  þ1 (resp., WvðSÞ  þ1), and
WvðRÞ < þ1 finally gives the minimum cost of embedding
T1ðRÞ into T2ðvÞ � fvg.

Fig. 5 illustrates the core part of the algorithm. It corre-
sponds to the case of R1 ¼ fu1; u3g, R2 ¼ fu2g, and R3 ¼ fg,
which means that T1ðu1Þ and T1ðu3Þ are embedded into
T2ðv1Þ, T1ðu2Þ is embedded into T2ðv2Þ, and no subtree is
embedded into T2ðv3Þ. In this case, the cost of embedding
T1ðuÞ into T2ðvÞ is given by wv1ðR1Þ þ wv2ðR2Þ þ wv3ðR3Þþ
dð‘ðuÞ; ‘ðvÞÞ, where u corresponds to v. It is to be noted that
dð‘ðuÞ; ‘ðvÞÞ is computed in “then” part of (#3). We examine
all partitions (i.e., all ðR1; . . . ; RdÞs) of the children of u and
take the minimum cost one (this minimum is computed
at (#1)). (#2) takes care of the case in which children of u
correspond to descendants of v but u does not correspond

to v. (#4) takes care of the case in which u corresponds to a
descendant of v.

Algorithm 2.MinCostIncl(T1; T2Þ
for all v 2 V ðT2Þ from the leaves to the root do
Let v1; . . . ; vd be the children of v;
wvð;Þ  0;
Wvð;Þ  0;
for all u 2 V ðT1Þ from the leaves to the root do
for all R1; . . . ; Rd such that Ri \Rj ¼ ; (for all i 6¼ j),
wviðRiÞ < þ1, and Ri � chdðuÞ do
R R1 [ 
 
 
 [Rd;
w wv1ðR1Þ þ 
 
 
 þ wvdðRdÞ;
WvðRÞ  minðw;WvðRÞÞ; (#1)
wvðRÞ  minðwvðRÞ; wþ dð�; ‘ðvÞÞÞ; (#2)

ifWvðchdðuÞÞ < þ1 then (#3)
wvðfugÞ  WvðchdðuÞÞ þ dð‘ðuÞ; ‘ðvÞÞ;

for all vi such that wviðfugÞ < þ1 do (#4)
wvðfugÞ  minðwvðfugÞ; wviðfugÞ þ dð�; ‘ðvÞÞÞ.

We note that the “for all R1; . . . ; Rd”-loop can be imple-
mented efficiently by applying dynamic programming (DP)
from the leftmost child to the rightmost child. Indeed, it
is enough to replace the loop by the procedure below
(MinCostInclSub).

In this procedure, R1 and R2 are examined from smaller

sets to larger sets. Both UvðRÞ and ŴvðRÞmaintain the mini-
mum cost to embed the forest with roots R into T2ðvÞ, where

ŴvðRÞ and UvðRÞ maintain a temporal cost and the final
cost, respectively.

Algorithm 3.MinCostInclSub

for all R � chdðuÞ do UvðRÞ  þ1;
Uvð;Þ  0;
for i ¼ 1 to jchdðvÞj do
for all R � chdðuÞ do ŴvðRÞ  þ1;
for all R1 � chdðuÞ do
for all R2 � chdðuÞ n R1 do
ŴvðR1 [R2Þ  minðŴvðR1 [R2Þ;

UvðR1Þ þ wvi ðR2ÞÞ;
for all R � chdðuÞ do UvðRÞ  ŴvðRÞ;

for all R � chdðuÞ do
WvðRÞ  UvðRÞ;
wvðRÞ  minðwvðRÞ;WvðRÞ þ dð�; ‘ðvÞÞÞ;

Theorem 1. D	ðT1; T2Þ can be computed in Oð22DmnÞ time

using Oð2DmnÞ space.
Proof. The correctness of the algorithm can be seen by

observing that the following four cases are properly han-
dled in a bottom-up manner (see also Figs. 5 and 6). (a) u
corresponds to v, and u is a leaf: Since chdðuÞ ¼ ; and
Wvð;Þ ¼ 0 hold, this case is covered by (#3). (b) u
corresponds to v, and T1ðuÞ is included in T2ðvÞ:
Since T1ðchdðuÞÞ can be embedded into T2ðvÞ � fvg,
WvðchdðuÞÞ < þ1 holds. Therefore, this case is covered
also by (#3). (c) u corresponds to a descendant of v, and
T1ðuÞ is included in T2ðvÞ: Since wviðchdðuÞÞ < þ1 holds

for some vi 2 chdðvÞ, this case is covered by (#4).
(d) T1ðR0Þ can be embedded into T2ðvÞ � fvg where
R0 � chdðuÞ: This case is covered by (#1) and (#2).

Fig. 5. Illustrating the computation of minimum-cost tree inclusion. Here,
u is mapped to v.
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Next we analyze the time complexity. For the inner
DP procedure MinCostInclSub, it is clear from the pseu-
docode that the innermost assignment line is executed
for less than jchdðvÞj � 2D � 2D times. Since we assume
that D bits can be represented in a word, operations such

as R1 \R2 and R1 [R2 can be done in constant time,
which means that the innermost assignment line can be
done in constant time. Since the main loop is the most
time-consuming part of MinCostInclSub. we can see that

MinCostInclSub can be done in OðjchdðvÞj22DÞ time. It is
clear from the pseudocode of the main procedure
that the total time required for MinCostInclSub is

Oð22DmP
v jchdðvÞjÞ ¼ Oð22DmnÞ: Since repeated execu-

tion of MinCostInclSub is the most time-consuming part,

the main procedure works in Oð22DmnÞ time. It is
straightforward to see that the space complexity is

Oð2DmnÞ. tu

It is to be noted that all matched positions of T2 can be
enumerated by outputting all vs such that minv2V ðT2Þ
wvðfrðT1ÞgÞ ¼ D	ðT1; T2Þ. Although one mapping (i.e., one
embedding) can be retrieved for each matched position by
using the standard traceback technique [31] (in OðnÞ time
per matched position), there may exist an exponential num-
ber of embeddings even for one matched position and thus
exponential time may be required if all possible mappings
should be output.

4.2 Improvement of the Space Complexity

It is possible to reduce the space to Oðnþ 2Dm log ðnÞÞ in
the following way. We can execute the above DP procedure
in a depth-first manner for T2. Let r ¼ x0; x1; . . . ; xh be the
path from the root to the current node xh. We only need to
keep wxiðRÞs only for xis each of which is not the leftmost

child of its parent. Therefore, we need Oðnþ 2DmHÞ space,
where H ¼ maxðx0;...;xhÞjfxi jxi is not the leftmost childgj:
For example, H is OðnÞ for Fig. 7 A, whereas H is Oð1Þ for
Fig. 7 B.

In order to minimize H, it is enough to sort the children
v1; . . . ; vk of each node v so that

jV ðT2ðvi1ÞÞj � jV ðT2ðvi2ÞÞj � 
 
 
 � jV ðT2ðvikÞÞj

holds (see Fig. 7(C)). Then, we can see that jV ðT2ðvijÞÞj <
1
2jV ðT2ðvÞÞj holds for j ¼ 2; 3; . . . ; k, which immediately

shows thatH is OðlognÞ.
Theorem 2. D	ðT1; T2Þ can be computed in Oð22DmnÞ time

using Oðnþ 2Dm log ðnÞÞ space.
The space-efficient version of the algorithm is denoted

by MinCostIncl-SpS, where “SpS” means Space Saving.
However, it has one practical disadvantage: traceback can-
not be done. Therefore, it may be used for screening in a
first step and then actual mappings between T1 and T 02
should be obtained by running MinCostInclðT1; T2ðvÞÞ for
all v such that wvðfugÞ is less than or equal to some speci-
fied threshold value.

5 ALLOWING A SMALL NUMBER OF DELETIONS IN

THE PATTERN TREE

In the problem MinCostIncl introduced in the previous
section, deletions of nodes in the pattern tree are not
allowed. This may be problematic in some applications
because D	ðT1; T2Þ can be þ1 while the tree edit distance
is not infinity; e.g., if the height of T1 is larger than the
height of T2, or if T1 is a rooted balanced binary tree with
four leaves and T2 is a rooted caterpillar (a tree in which
every node has at most one child that is an internal node)
with at least four leaves. It is known that if one allows
arbitrary deletions of nodes in the pattern tree, the prob-
lem becomes NP-hard even when the maximum outde-
gree is bounded by two [15]. However, if we limit the
number K of nodes that may be deleted from the pattern

Fig. 7. Improving the space complexity. (A) needs Oðnþ 2DmnÞ space,
whereas (B) needs Oðnþ 2DmÞ space. To minimize the space, it is
enough to sort the children as in (C).

Fig. 6. The four cases in the proof of Theorem 1.
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tree, we can still get a fixed-parameter tractable algorithm
with respect to the parameters D and K, where D is the
maximum outdegree of all nodes in T1. In other words,
the exponent in the time complexity depends only on D
and K, and not on m or n. This is extremely useful when
just a few deletions are needed. Below, we explain the
details of this method.

The key observation is that the number of trees of size
K þ 1, each of which is a connected subgraph of a given
tree T of bounded outdegree D and includes the root of
T , does not depend on the size of T , where it gives the
maximum number of deletion patterns. The reason why
we focus on the size of a connected subgraph is that it
plays a key role in the analysis of the algorithm when
allowing deletions of at most (not necessarily connected)
K nodes.

Proposition 1. The number of connected subgraphs of sizeK þ 1
which contain the root of a tree of maximum outdegree D is at

most 2ðeDÞK
K3=2 , where e is the base of the natural logarithm

(e ¼ 2:718 . . .).

Proof. According to Lemma 2.1 (a) in [32], the number is at

most 1
Kþ1 
 ððKþ1ÞDK

Þ. By the comments immediately before

Lemma 2.1 in [32], this is strictly less than eKþ1DK

ðKþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðKþ1Þ
p .

Now observe that eKþ1DK

ðKþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðKþ1Þ
p ¼ ðeDÞK

ðKþ1Þ3=2 

effiffiffiffi
2p
p < 2ðeDÞK

K3=2 .tu

Note that the number in Proposition 1 is lower-bounded
by DK because such a tree may contain DK different down-
wards paths of length K beginning at the root. Therefore,
we cannot expect any significant improvements of the
above bound.

Next, we modify our algorithm MinCostIncl to allow
deletions of at most K nodes from T1. To this end, for
every node u of T1, we consider all connected subtrees of
size at most K þ 1 rooted at u. For each such connected
subtree, we consider the result of applying deletion oper-
ations on all nodes except u, giving the contraction of the
connected subtree into the root node (see Fig. 8).

In the following, chdðu; CÞ denotes the set of children

of u after deleting C � fug, and wk
vðSÞ denotes the cost to

embed T1ðSÞ to T2ðvÞ under the condition that k nodes are

deleted from T1ðSÞ. As in MinCostIncl, all wk
vðSÞ (resp.,

Wk
v ðSÞ) are implicitly initialized as wk

vðSÞ  þ1 (resp.,

Wk
v ðSÞ  þ1), and minv2V ðT2Þ;k2f0;...;Kgw

k
vðfrðT1ÞgÞ finally

gives the minimum cost of including T1 in T2. The pseu-
docode is listed in Algorithm 4.

Algorithm 4.MinCostInclWithDel(T1; T2; K)

for all v 2 V ðT2Þ do w0
vð;Þ  0;

for all u 2 V ðT1Þ from the leaves to the root do
for all v 2 V ðT2Þ do
for k ¼ 0 toK do ŵk

v  þ1;
for all connected subgraphs C rooted at u such that
jCj � K þ 1 do
for all v 2 V ðT2Þ from the leaves to the root do
for k ¼ 0 toK do
for all R � chdðu;CÞ doWk

v ðRÞ  þ1;
Let v1; . . . ; vd be the children of v;
for all wk1

v1
ðR1Þ; . . . ; wkd

vd ðRdÞ such that Ri \Rj ¼ ;,
wki

vi
ðRiÞ < þ1, and Ri � chdðu;CÞ do
R R1 [ 
 
 
 [Rd;

w wk1
v1
ðR1Þ þ 
 
 
 þ w

kd
vd ðRdÞ;

k k1 þ 
 
 
 þ kd;
Wk

v ðRÞ  minðw;Wk
v ðRÞÞ;

wk
vðRÞ  minðwk

vðRÞ; wþ dð�; ‘ðvÞÞÞ;
for k ¼ jCj � 1 toK do
ŵk

v  minðŵk
v;W

k�jCjþ1
v ðchdðu;CÞÞ

þdð‘ðuÞ; ‘ðvÞÞ þP
x2C�fug dð‘ðxÞ;�ÞÞ;

for all v 2 V ðT2Þ do
for k ¼ 0 toK do
wk

vðfugÞ  minðwk
vðfugÞ; ŵk

vÞ;
for all vi such that wk

vi
ðfugÞ < þ1 do

wk
vðfugÞ  minðwk

vðfugÞ;
wk

vi
ðfugÞ þ dð�; ‘ðvÞÞÞ.

As in the case of MinCostIncl, we can efficiently exe-
cute the innermost ‘for all’-loop by applying DP from
the leftmost child to the rightmost child. Indeed, this
loop can be replaced by procedure MinCostIwdSub in
Algorithm 5. Although the meaning of Wk

v ðRÞ is slightly
different from that in the above procedure, we obtain
the same score.

Algorithm 5. Procedure MinCostIwdSub

for k ¼ 0 toK do
for all R � chdðu;CÞ do Uk

v ðRÞ  þ1;
U0
v ð;Þ  0;

for i ¼ 1 to jchdðvÞj do
for all R � chdðu;CÞ do
for k ¼ 0 toK do Ŵk

v ðRÞ  þ1;
for all R1 � chdðu; CÞ do
for all R2 � chdðu; CÞ nR1 do
for k1 ¼ 0 toK do
for k2 ¼ 0 toK � k1 do
k k1 þ k2;
Ŵk

v ðR1 [R2Þ  minðŴk
v ðR1 [R2Þ;

Uk1

v ðR1Þ þ wk2

vi
ðR2ÞÞ;

for k ¼ 0 toK do
for all R � chdðu;CÞ do Uk

v ðRÞ  Ŵk
v ðRÞ;

for k ¼ 0 toK do
for all R � chdðu;CÞ do
Wk

v ðRÞ  Uk
v ðRÞ;

wk
vðRÞ  minðwk

vðRÞ;Wk
v ðRÞ þ dð�; ‘ðvÞÞÞ;

Fig. 8. A contraction of a connected subtree. In this case, chdðu;CÞ ¼
fu1; u2; u3; u4g.

3366 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 12, DECEMBER 2015



Theorem 3. Suppose that T1 can be embedded into T2 with the
minimum cost wmin under the condition that at most K nodes
are deleted from T1. Then, such an embedding can be obtained

in OððeDÞKK1=222ðDKþD�KÞmnÞ time.

Proof. The proof of the correctness of the algorithm is analo-
gous to that for MinCostIncl although MinCostInclWith-
Del is more involved due to introduction of deletions of
nodes from T1. Recall that in MinCostIncl, wvðRÞ is calcu-
lated from wviðRiÞs for children v1; . . . ; vd of v. On the

other hand, in MinCostInclWithDel, we must maintain
the number of deleted nodes in pattern subtrees. There-

fore, instead of wvðRÞ (resp., WvðRÞ), we maintain wk
vðRÞ

(resp., Wk
v ðRÞ) for each k where k denotes the number of

deleted nodes in T1ðRÞ. Note also that, instead of
R � chdðuÞ, we need to consider R � chdðu;CÞ because a
set of children of a node u is given by chdðu;CÞ in a con-

tracted subtree (see also Fig. 8). Furthermore, since wk
vðRÞ

is computed from wki
vi
ðRiÞs, we also need to take care so

that k is obtained from kis (i.e., the number of deleted
nodes in T1ðRÞ is the sum of the number of deleted nodes
in T1ðRiÞs). Except these points, the structure of MinCos-
tInclWithDel is the same as that of MinCostIncl. Since the
modified points are adequately handled in MinCostIncl-
WithDel, the correctness follows.

Here, we analyze the time complexity. First note that
the size of chdðu;CÞ is bounded by DK þD�K. Then
we can see from the pseudocode that MinCostIwdSub

can be executed in OðK222ðDKþD�KÞjchdðvÞjÞ time. By
Proposition 1 and the pseudocode of the main procedure,
it is seen that the total time required for MinCostIwdSub

is OððeDÞKK1=222ðDKþD�KÞm
P

v jchdðvÞjÞ ¼ OððeDÞKK1=2

22ðDKþD�KÞmnÞ: This is the most time-consuming part,
and the theorem follows. tu
As an example, it holds thatD	ðT1; T2Þ ¼ þ1 for the trees

T1 and T2 in Fig. 8. However, if we let K ¼ 2 in Theorem 3,
the cost will be 2 under the unit-cost edit operationmodel.

We assumed above that at most K nodes are deleted in
total. However, the algorithm can easily be modified so that
at most K nodes are deleted from each connected subgraph

C by replacing K with m except “jCj � K þ 1”. Then Oðm2Þ
values of k1 and k2 are considered in the innermost loop

(instead ofOðK2Þ values), and the time complexity increases
accordingly.

Corollary 1. Suppose that T1 can be embedded into T2 with the
minimum cost wmin under the condition that the size of each of
the contracted connected components is at most K þ 1. Then,

such an embedding can be obtained in OððeDÞK22ðDKþD�KÞ

K�3=2m3nÞ time.

6 EXPERIMENTAL RESULTS

We performed a number of experiments to evaluate our
proposed methods. To verify the theoretically derived com-
plexities and to compare the practical performance of Min-
CostIncl to that of the original unordered tree inclusion
algorithm in [22], we used both synthetic data and real data.
To obtain synthetic data, we modified the tree generation
algorithm in [11] so that the resulting tree size and the

maximum outdegree can be specified. As for real data, we
used glycan data taken from the KEGG database [33] and
weblogs data [34]. Furthermore, to demonstrate the useful-
ness of MinCostIncl for searching bibliographical data, we
applied it to data from ACM, DBLP, and Google Scholar.
Synthetic data and glycan data were also used to assess the
processing efficiency of MinCostInclWithDel.

All experiments were performed on a PC cluster with
Intel(R) Xeon(R) CPU E5-2690 2.90 GHz and 35.87 GB mem-
ory, running on a Linux operating system. Our algorithms
were implemented using the C++ language and each execu-
tion was performed as a single process (i.e., no parallel pro-
cesses), where very minor simplifications were done in the
implemented versions.

In this section, m;n; d;D and ‘ denote the size of the pat-
tern tree (jV ðT1Þj), the size of the text tree (jV ðT2Þj), the aver-
age outdegree, the maximum outdegree, and the alphabet
size (jSj), respectively.

6.1 Processing Efficiency

6.1.1 Results on Synthetic Data

To evaluate how the running time of MinCostIncl depends
on the sizes of the input trees, we randomly generated 100
pairs of pattern and text trees and measured the average
CPU time for each pair. The parameters m and n were var-
ied and the other parameters were fixed as ðd;D; ‘Þ ¼
ð3; 5; 10Þ for both the pattern and text trees. The results are
shown in Fig. 9. We can observe from this figure that the

Fig. 9. Execution times of MinCostIncl for varying sizes of pattern trees
(top) and text trees (bottom). Note that m � n must hold from the defini-
tion of MinCostIncl.
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computation time increases linearly with both m and n,

which matches the theoretical bound of Oð22DmnÞ on the
running time. Note that MinCostIncl is fast for large text
trees (e.g., n ¼ 100; 000). Although it is not fast enough for
real-time applications, the performance is allowable for
batch processing. Furthermore, when there are many small
or medium size text trees, we may use a simple parallel
processing method (i.e., searching against different text
trees independently). We also examined the case of m ¼ 30,
n ¼ 10; 000 and ðd;D; ‘Þ ¼ ð5; 7; 10Þ. In this case, the average
CPU time was around 300 seconds, which is still quite fast
considering the hardness of the problem. These results sug-
gest that similar subtree search against large tree data can
be done efficiently.

Next, we compared MinCostIncl to DpCliqueEdit [16]
under the same settings. (DpCliqueEdit is the fastest cur-
rently available algorithm for computing the unordered
tree edit distance, and is based on a combination of
dynamic programming and maximum-weighted cliques.)
The results are shown in Fig. 10. Here, we can see that
MinCostIncl is much faster than DpCliqueEdit. Indeed,
the CPU time of DpCliequeEdit rapidly increases when
text tree size is about 30 as shown in Fig. 10, whereas
MinCostIncl works even for text tree whose size is
100,000 with linear increase of CPU time as shown in
Fig. 9. We can observe similar characteristics for pattern
tree. The tree size limitation of the state-of-the-art unor-
dered tree matching algorithm is a serious problem in

practical use. Actually, the maximum tree sizes of glycan,
weblog, and bibliographic data sets used in this paper is
38, 144, 12 (for pattern trees) and 54, 255, 521 (for text
trees), respectively. The proposed MinCostIncl can calcu-
late most of them in practical time. It can significantly
broaden applicable data.

We also compared the average amount of memory used
by MinCostIncl to its space-efficient version MinCostIncl-
SpS. Here, we selected first 10 pairs of pattern and text trees
from 100 generated pairs with ðm;nÞ ¼ ð100; 10; 000Þ and
ð100; 20; 000Þ, respectively, while the other parameters were
fixed to ðd;D; ‘Þ ¼ ð3; 5; 10Þ. The memory usage was tracked
using the “ps”-command in Linux (to be precise: while true;
do ps auxww j grep <process ID> ; sleep 1; done). Fig. 11
shows the result. We observe that MinCostIncl-SpS uses
less memory than MinCostIncl although the difference is
not as significant as we had expected.

To verify the usefulness of introducing costs into the
unordered tree inclusion problem, we compared our algo-
rithm MinCostIncl and the algorithm of [22] for the origi-
nal unordered tree inclusion problem. We generated a
random pattern tree and searched for a similar subtree in
100 randomly generated text trees for varying m and n,
while setting ðd;D; ‘Þ to ð3; 5; 3Þ. The number of hits in
each case is displayed in Table 1. Note that for each pair
of pattern and text trees, tree inclusion returns either yes
(hit) or no (no hit), whereas MinCostIncl returns the cost
and thus a pair with a finite cost is regarded as a hit. The
table shows that there was no hit according to tree inclu-
sion when m was greater than or equal to 20, whereas
there were many hits by MinCostIncl even when m ¼ 100,
suggesting that tree inclusion is only useful when the

Fig. 10. Comparison between MinCostIncl and DpCliqueEdit for varying
sizes of pattern trees (top) and text trees (bottom).

Fig. 11. The reduction in memory usage for large text data.

TABLE 1
Comparison of Unordered Tree Inclusion and
Minimum-Cost Unordered Tree Inclusion

ðm;nÞ #hits by tree inclusion #hits by MinCostIncl

ð10; 50Þ 8 / 100 100 / 100
ð20; 100Þ 0 / 100 78 / 100
ð30; 150Þ 0 / 100 97 / 100
ð50; 250Þ 0 / 100 75 / 100
ð100; 500Þ 0 / 100 27 / 100
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pattern trees are small. The number of hits by MinCos-
tIncl may seem too large, but by only examining hits with
low computed costs (or just adjusting the threshold
directly), one can expect to identify the required subtrees.
The usefulness of MinCostIncl is discussed in more detail
for bibliographic data in Section 6.2.

Processing efficiency of MinCostInclWithDel was also
examined by using synthetic data. The results are shown in
Fig. 12, where the top and bottom panels mainly show the
dependencies on n and K, respectively. From these results,
it is seen that MinCostInclWithDel is still fast if K is small
andm is not large.

6.1.2 Results for Real Data

We evaluated the efficiency of MinCostIncl and MinCos-
tInclWithDel for real data, glycan data in the KEGG data-
base [33], including comparison with DpCliqueEdit [16].
As in [16], we randomly selected 100 pairs for each inter-
val of total number of nodes of pattern and text trees and
computed the average CPU time per pair. The result is
shown in Fig. 13 (top). It is seen that the CPU time of
DpCliqueEdit increases rapidly when the total size
exceeds 70 whereas the CPU time of MinCostIncl and
MinCostInclWithDel remains small. This is reasonable
because the unordered tree edit distance problem is hard
even for trees of outdegree two [15] while MinCostIncl
works in polynomial time if the maximum outdegree is
bounded by a constant, and here the maximum outdegree

of glycan data is 6. MinCostInclWithDel also works in
polynomial time if the maximum outdegree and K are
bounded by constants. Although some nonmonotonicity
is observed for MinCostInclWithDel, it may be due to fluc-
tuation of the maximum outdegree or tradeoff between
sizes of pattern and text trees.

We also evaluated the efficiency of MinCostIncl for
another type of real data: weblogs data [34]. In this case,
we selected trees with 50� 500 nodes and maximum out-
degree 50, which resulted in a data set of 2; 481 trees. In
this experiment, for each D ¼ 3; . . . ; 9, we randomly
selected 100 pairs of pattern trees with maximum outde-
gree D and text trees from the data set, and computed the
average CPU time, where the total number of nodes of
each pair was limited to less than or equal to 500. The
result is shown in Fig. 13 (bottom). Here, the CPU time
increases rapidly at around D ¼ 7. Recall that the time

complexity of MinCostIncl is Oð22DmnÞ. This indicates
that MinCostIncl is useful when the outdegree of the pat-
tern tree is at most 7. Notice that this limitation is only
for the pattern tree and MinCostIncl works efficiently for
wide text trees.

6.2 Tree-Based Bibliographic Matching

To evaluate the usefulness of MinCostIncl in a practical
setting, we applied it to bibliographic matching [35], [36],
which is a typical entity resolution problem. Biblio-
graphic matching is usually solved by measuring similar-
ities at field-level such as the author or the article title,

Fig. 12. Execution times for MinCostInclWithDel with varying n (top) and
varyingK withm ¼ 10 (bottom).

Fig. 13. Execution times for glycan data (top) and weblogs data (bottom).
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which are then combining into the record-level similarity
[35]. In these studies, bibliographic data is assumed to be
separated into well-defined fields that are known in
advance. Tree matching techniques have been applied to
bibliographic matching [10], [11], where corresponding
fields between bibliographic records are mapped to each
other and their similarity is calculated simultaneously.

6.2.1 Data Set

We used bibliographic data included in the benchmark
datasets1 provided by the authors of [36]. It contains biblio-
graphic data selected from DBLP, Google Scholar (Scholar,
for short), and the ACM digital libraries (ACM, for short).
The benchmark dataset designed for bibliographic match-
ing between the DBLP and Scholar datasets is referred to as
Scholar-DBLP, whereas the dataset between the DBLP and
ACM datasets is referred to as ACM-DBLP. The ACM-
DBLP dataset contains articles that are included in both its
selected ACM and DBLP data. One task of bibliographic
matching is to detect these common articles, when given the
datasets of DBLP and ACM. See Table 2 for the numbers of
articles, where pattern articles stand for the ACM articles in
the ACM-DBLP dataset.

The Scholar-DBLP dataset similarly provides the
articles that are included in both its selected Scholar and
DBLP data (see Table 2). Note that the number of com-
mon articles is larger than pattern articles because a
DBLP article is matched with multiple Scholar articles in
the dataset. The bibliographic data consists of four fields,
namely, “title”, “authors”, “venue”, and “year”. Authors
are concatenated with punctuation into a single string as
in Table 3.

We converted the bibliographic records of ACM and
Scholar to trees by: (i) setting the field as a node of the
tree, (ii) attaching the value as a leaf of corresponding
node, and (iii) splitting the authors into separate authors,
choosing at most three authors, and inserting a node
”authors”. (In this experiment, we omit the field “venue”.)
We used at most three authors for the pattern trees
because MinCostIncl is less efficient when the maximum
outdegree is large. Fig. 14a shows an example of the con-
verted tree.

We downloaded the entire dataset of DBLP and used the
tree-structured XML data with the insertion of a node
“authors” above the list of “author”s. Fig. 14b shows an
example of a text tree obtained from DBLP data.

Before applying the tree inclusion/matching, we selected
candidate pairs of matched articles for ACM-DBLP and

Scholar-DBLP datasets by first calculating the Jaccard coeffi-
cient of each pair of articles in each dataset, regarding an
article as bag-of-words of values in the four fields, and then
choosing the top-k pairs of articles. The “blocking result” in
Table 2 shows the selected numbers of article pairs for
each dataset.

6.2.2 Tag Mapping

We first evaluated the performance of field/tag mapping of
MinCostIncl. In this experiment, the tags of the pattern tree
were renamed as follows:

“article”! “0”, “authors”! “1”, “author”! “2”,
“title”! “3”, “year”! “4”,

so that different sets of tags were used between pattern
and text trees. After applying MinCostIncl to pattern and
text tree pairs obtained by blocking as described in the
previous section, we counted the mappings of tags
between pattern and text trees. Table 4 displays a major
portion of the confusion matrix for ACM-DBLP and
Scholar-DBLP datasets.

Each column and row respectively stands for the tags of
DBLP and ACM/Scholar data sets, and each cell shows the
number of times the proposed MinCostIncl mapped the cor-
responding tags. The last line “others” shows the number
that the ACM/Scholar tag is mapped to a tag or a leaf in the
text tree that are not listed in the table. In spite of significant
amount of false pairs of pattern and text trees, many tags
were correctly mapped, as shown in the table. The correct
tag mapping can be obtained by the maximum matching in
a bipartite graph of the confusion matrix. This result indi-
cates that MinCostIncl can find correct tag mapping based
on the value similarity even when the tag names are totally
different.

6.2.3 Bibliographic Matching

We compared the performance of MinCostIncl to the
ordered tree edit distance when applied to bibliographic
matching. In this experiment, we used the RTED tool [8]
to compute the ordered tree edit distance. We also
assumed that author names are compared by their last
names (cost is 0 if the last names are exactly the same,
otherwise it is 1), and the substitution cost for a pair of
title nodes is 0 if the Jaccard coefficient is greater than or
equal to 0:8, otherwise it is 1, because it was difficult to
customize substitution costs of the RTED tool. All candi-
date pairs of pattern and text trees obtained by blocking,
as described in Section 6.2.1, were ordered according to
the minimum-cost of tree inclusion computed by MinCos-
tIncl and the tree edit distance computed by RTED. The

TABLE 2
Summary of the Benchmark Datasets

ACM-DBLP Scholar-DBLP

pattern articles 2,616 2,616
DBLP articles 2,294 64,263
common articles 2,224 5,347
blocking result 4,000 20,000

TABLE 3
Bibliographic Data in Leipzig Benchmark Dataset

title authors venue year

Contextualizing
the information ...

M. P. Papazoglou,
J. Hoppenbrouwers

SIGMOD
Record

1999

..

. ..
. ..

. ..
.

1. http://dbs.uni-leipzig.de/de/research/projects/object_match-
ing/fever/benchmark_datasets_for_entity_resolution
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average CPU time of MinCostIncl and RTED for each can-
didate pair is shown in Table 5. Notice that although
RTED is much faster than MinCostIncl, MinCostIncl is
still reasonably fast.

Figs. 15 and 16 show the receiver operating character-
istic (ROC) curves for ACM-DBLP and Scholar-DBLP,
respectively, where an ROC curve is a measure of the
binary classification performance obtained by plotting
the true positive rate (i.e., sensitivity) against the false
positive rate (i.e., 1-specificity) with varying threshold.
“MinCostIncl” and “RTED” respectively show the curves
obtained by directly applying MinCostIncl and RTED.
AUC following the label in the legend stands for the area
under the curve (a higher AUC implies a better result). As
we can see in the figures, MinCostIncl performed much
better than RTED for both ACM-DBLP and Scholar-
DBLP. The reason is partly because RTED calculates the
deletion costs for nodes that appear only in the text
trees, such as “cites” and “url” in Fig. 14b. As a result, a
large text tree tends to be dissimilar to a pattern tree
when the distance is measured by the tree edit distance.

To avoid this affect, we removed these nodes in the text
trees and recalculated the cost and tree edit distance.
“MinCostIncl[Filtered]” and “RTED[Filtered]” in Figs. 15
and 16 show the ROC curves for these deleted text trees.
As shown in the graphs, MinCostIncl is better than
RTED even if we remove the nodes that appear only in
the text trees.

In these experiments, the corresponding nodes in pat-
tern and text trees were arranged in the same order. For
example, authors are located to the left of the title. Since
MinCostIncl was designed for unordered trees, it is not
affected by the left-to-right ordering of nodes, whereas
the order affects the result of RTED considerably. To eval-
uate the impact of the node order, we randomly per-
muted the authors in the text trees and recalculated the
tree edit distance. “RTED[Random]” shows the resultant
ROC curve. As shown in the figures, AUC is degraded to
almost the same level for RTED.

In summary, MinCostIncl is robust against permutations
in the node orderings as well as extra nodes in text trees.

Fig. 14. Pattern and text trees for bibliographic search.

TABLE 4
Confusion Matrices of Tag Mapping by MinConstInc

(a) ACM-DBLP

0
(article)

1
(authors)

2
(author)

3
(title)

4
(year)

article 3893 0 0 0 0
authors 0 3672 0 0 0
author 0 0 7962 0 0
title 0 0 0 3378 0
year 0 0 0 0 2987
url 0 10 0 283 529
cites 0 95 0 44 338
ee 0 71 0 148 102
cite 0 0 199 0 0

others 0 45 126 40 37

(b) Scholar-DBLP

0 1 2 3 4

article 18475 0 0 0 0
authors 0 13519 0 0 0
author 0 0 27217 0 0
title 0 0 0 15680 0
year 0 0 0 0 5082
url 0 0 0 1167 2772
cite 0 0 5768 0 0
editors 0 1798 0 0 0
editor 0 0 3365 0 0
others 0 3158 0 1261 2334

TABLE 5
Execution Times of MinCostIncl and RTED

MinCostIncl
(msec.)

RTED
(msec.)

ACM-DBLP 14.1 1.9
Scholar-DBLP 10.2 1.6

Fig. 15. Comparison of accuracy for ACM-DBLP data.
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Therefore, it is suitable for the bibliographic matching with-
out various preprocessing steps involving adjusting the left-
to-right node orderings or extra node removal.

7 CONCLUSION

In this paper, we have extended the concept of unordered
tree inclusion to take the costs of insertions and substitu-
tions into account. The resulting algorithm, MinCostIncl,
has the same time complexity as the original algorithm of
[22] for unordered tree inclusion (Oð22DmnÞ). Moreover,
we showed that the space complexity can be significantly

reduced (from Oð2DmnÞ to Oðnþ 2Dm log ðnÞÞ) when one
only needs to report the existence of similar subtrees. It
should be noted that D is the maximum outdegree of a
pattern tree and there is no limitation on the degree of a
text tree. We also extended MinCostIncl to allow a small
number of deletions in the pattern tree, yielding an algo-

rithm with time complexity OððeDÞKK1=222ðDKþD�KÞmnÞ,
where K is the number of allowed deletion operations.
Although the idea of introduction of costs into tree
inclusion is simple, the modifications of the algorithm
(including its space-economical version) are not trivial.
Furthermore, MinCostInclWithDel and its analysis are far
from straightforward. Computational experiments on
large synthetic and real datasets showed that our pro-
posed algorithm is fast, scalable, and very useful for bib-
liographic matching. Source codes of the implemented
algorithms are available upon request.

To develop a space-efficient version of MinCostIncl that
also allows traceback is left as an open problem. Another
open problem is to further improve the time complexity of
MinCostInclWithDel.
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