
DIGITAL
RESEARCHTM

C
Language

Programming Guide
for CP/M-68KTM

COPYRIGHT
Copyright C) 1983 by Digital Research. All rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language
or computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written permission of Digital Research, Post
Office Box 579, Pacific Grove, California, 93950.

DISCLAIMER
Digital Research makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability or fitness for any particular
purpose. Further, Digital Research reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of Digital Research to notify
any person of such revision or changes.

TRADEMARKS
CP/M is a registered trademark of Digital Research. CP/M-68K and DDT-68K are trademarks of
Digital Research. PDP-11 and VAX are trademarks of Digital Equipment Corporation. ONYX
is a trademark of ONYX Systems, Inc. UNIQ is a trademark of UNIQ Computer Corporation.
UNIX is a registered trademark of Bell Laboratories. Xenix is a registered trademark of
MicroSoft Corporation. Zilog is a registered trademark of Zilog, Inc.
The C Language Programming Guide for CP/M-68K was prepared using the Digital Research
TEX Text Formatter and printed in the United States of America.

Second Edition: June 1983

Foreword

The C language under CP/M-68K" ',s easy to read, easy to maintain, and highly portable.
CP/M-68K can run most applications written in C for the UNIX operating system, except
programs that use the UNIX fork@lexec multitasking primitives or that read UNIX file
structures.

The C Language Programming Guide for CP/M-68K is not a tutorial. This manual
describes how to program in C under the CP/M-68K operating system, and is best used by
programmers familiar with the C language as described in The C Programming Language
(Kernighan and Ritchie, 1978).

The commonly accepted standard for C language programming is the Portable C Compiler
(PCC), written by Stephen C. Johnson. Many versions of the UNIX operating system use PCC,
including the Zilog, ONYX", XENIX, Berkeley UNIX, and UNIQ" systems.

The CP/M-68K C compiler differs from PCC on the following points:
o The CP/M-68K C int (default) data type is 16 bits long. Pointers are 32 bits long.
 All function definitions and function calls that use long (32-bit ints) and pointer
 parameters must use the proper declarations.
o long, int, and char register variables are assigned to D registers. Five such registers are
 available in each procedure.
o Any register variable used as a pointer is assigned to an A register. There are three
 such registers available in each procedure.

 o All local declarations in a function body must precede the first executable statement of
 the function.

 o The CP/M-68K C compiler handles structure initialization as if the structure were an
 array of short integers, as in UNIX version 6.

 o The first eight characters of variable and function names must be unique. The
 first seven characters of external names must be unique.
 o The CP/M-68K C compiler does not support floating point,
 o The CP/M-68K C compiler does not support structure assignment, structure
 arguments, and structures returned from procedures.
 o The CP/M-68K C compiler does not support initialization of automatic variables.
 o The CP/M-68K C compiler does not support enumeration types.

Section 1 of this manual describes the conventions of using C language under CP/M-68K.
Section 2 discusses C language compatibility with UNIX version 7 and provides a dictionary of C
library routines for CP/M-68K. Section 3 presents a style guide for coding C language programs.

Appendix A is a table of CP/M-68K error codes. Appendix B discusses compiler
components, tells you how to operate the compiler, and suggests ways to conserve the disk space
used for compiling. Appendix C presents sample C modules that are written and documented
according to the style conventions outlined in Section 3.

Table of Contents

1 Using C Language Under CP/M-68K
 1.1 Compiling a CP/M-68K C Program 1-1
 1.2 Memory Layout 1-1
 1.3 Calling Conventions 1-2
 1.4 Stack Frame 1-4
 1.5 Command Line Interface 1-5
 1.6 I/O Conventions 1-5
 1.7 Standard Files 1-6
 1.8 I/O Redirection 1-7

2 C Language Library Routines
 2.1 Compatibility with UNIX V7 2-1
 2.2 Library Functions under CP/M-68K 2-2
 abort 2-3
 abs 2-4
 access 2-5
 atol, atol 2-6
 brk,sbrk 2-7
 calloc, malloc, realloc, free 2-8
 chmod, chown 2-9
 close 2-10
 creat, creata, creatb 2-11
 ctype 2-12
 end, etext, edata Locations 2-14

exit, -exit 2-15
 fclose, fflush 2-16
 feof, ferror, clearerr, fileno 2-17
 fopen, freopen, fdopen 2-18
 fread, fwrite 2-20
 fseek, ftell, rewind 2-21
 getc, getchar, fgetc, getw, getl 2-22
 getpass 2-24

Table of Contents (continued)
 getpid 2-25
 gets, fgets 2-26
 index, rindex 2-27
 isatty 2-28
 Iseek, tell 2-29
 mktemp 2-30
 open,opena,openb 2-31
 perror 2-32
 printf, fprintf, sprintf 2-33
 putc, putchar, fputc, putw, putl 2-35
 puts, fputs 2-37
 qsort 2-38
 rand, srand 2-39
 read 2-40
 scanf, fscanf, sscanf 2-41
 setjmp, longjmp 2-43
 signal 2-44
 strcat, strncat 2-46
 strcmp, strncmp 2-47
 strcpy, strncpy 2-48
 strlen 2-49
 swab 2-50
 ttyname 2-51
 ungetc 2-52
 unlink 2-53
 write 2-54

3 C Style Guide
 3.1 Modularity 3-1
 3.1.1 Module Size 3-1
 3.1.2 Intermodule Communication 3-1
 3.1.3 Header Files 3-2

Table of Contents (continued)
3.2 Mandatory Coding Conventions 3-2

 3.2.1 Variable and Constant Names 3-3
 3.2.2 Variable Typing 3-3
 3.2.3 Expressions and Constants 3-4
 3.2.4 Pointer Arithmetic 3-5
 3.2.5 String Constants 3-6
 3.2.6 Data and BSS Sections 3-6
 3.2.7 Module Layout 3-7

3.3 Suggested Coding Conventions 3-8

Table of Contents (continued)
Appendixes

A CP/M-68K Error Codes A-1
B Customizing the C Compiler B-1

 B.1 Compiler Operation B-1
 B.2 Supplied submit Files B-3
 B.3 Saving Disk Space B-3
 B.4 Gaining Speed B-4

C Sample C Module C-1
D Error Messages D-1

 D.1 C068 Error Messages D-1
 D.1.1 Diagnostic Error Messages D-1
 D.1.2 Internal Logic Errors D-12
 D.2 C168 Error Messages D-13
 D.2.1 Fatal Diagnostic Errors D-13
 D.2.2 Internal Logic Errors D-14
 D.3 CP68 Error Messages D-15
 D.3.1 Diagnostic Error Messages D- 15
 D.3.2 Internal Logic Errors D-20
 D.4 C-Run-time Library Error Messages D-20

Table of Contents (continued)
Tables

1-1. Standard File Definitions 1-6
2-1. ctype Functions 2-12
2-2. Conversion Operators 2-34
2-3. Valid Conversion Characters 2-42
2-4. 68000 Exception Conditions 2-44
3-1. Type Definitions 3-4
3-2. Storage Class Definitions 3-4
A- 1. CP/M-68K Error Codes A-1
D- 1. C068 Diagnostic Error Messages D-2
D-2. C168 Fatal Diagnostic Errors D-13
D-3. CP68 Diagnostic Error Messages D-15

Figures
1-1. Memory Layout 1-2
1-2. C Stack Frame 1-4

Section 1
Using C Language Under CP/M-68K

1.1 Compiling a CP/M-68K C Program
To compile a C program under CP/M-68K, use the c.sub and clink.sub command files.

You can separately compile files with these commands. You must type the commands as shown
in the command line. To invoke the compiler, use the following command form:

[submit] c file
where file.c is the filename. The submit command is optional. The compiler produces file.o as the
object. To invoke the linker, use the following command form:

[submit] clink file
The command file automatically includes all libraries and header files. You can specify

multiple files. For example, the following commands compile and link files a.c, b.c, and c.c:
A>submit c a
A>submit c b
A>submit c c
A>submit clink a b c

The output goes to file A.68K.
1.2 Memory Layout

The memory layouts of C programs in CP/M-68K are similar to those of UNIX C
programs. The program comprises three segments: text instructions, initialized data, and BSS,
which is uninitialized data. Automatic variables are allocated on the stack. These segments are
arranged in memory as illustrated in Figure 1-1.

1-1

TPA HIGH
STACK (GROWS TO LOWER ADDRESSES)

.

.

.
GREAK

HEAP (GROWS TO HIGHER ADDRESSES) END
BLOCK STORAGE SEGMENT EDATA
DATA SEGMENT ETEXT
TEXT SEGMENT

TPA LOW
Figure 1-1 Memory Layout

There are two dynamic memory areas: the stack and the heap. Procedure calls and
automatic variables use the stack. The brk, sbrk, malloc, and free procedures manage the heap.
Dynamically growing data structures, such as symbol tables, use the heap.

The linkage editor defines the locations etext, edata, and end. The locations determine the
ending addresses of the text, data, and BSS segments. The break location is the first free location
following the heap area.

1.3 Calling Conventions
The jump to subroutine (JSR) instruction calls procedures in C. Register A6 acts as the

frame pointer for referencing local storage. Arguments are pushed in reverse order onto the A7
stack. Word and character arguments to functions occupy 16 bits on the stack. Long and pointer
arguments occupy 32 bits. The function value return register is always D0. Functions that
declare no return value return an undefined value.

1.2 Memory Layout C Language Programming Guide

1-2

For example, the following sequence
xyz() {

1ong a;
i n t b;
char x;
register y;
.
.
.
b = blivot(x,a) ;

}
generates the following code:
_xyz :

1ink a6 ,#-8 * Space For a,b,x
movem.1 d6-d7,-(a7) * d7 used For y
. * d6 reserves space
.
.
move.1 -4(a6) ,(a7) * Load Parameter a
move,b -8(a6),d0 * Load parameter x
ext,w d0 * Extend to word size
move.w d0,-(a7) * Push it
jsr _blivot * Call subroutine
add.1 #2,a7 * Pop argument list
move,w d0,-6(a6) * Store return Parameter
tst.1 (a7)+ * Purge longword
movem.1 (a7)+,d7 * Unsave registers
unlk a6 * Restore Frame Pointer
rts * Return to caller

1.3 Calling Conventions C Language Programming Guide

1-3

C code, in which all arguments are the same length, might not work without modification
because of the varying length of arguments on the stack.

The compiler adds an underline character, , to the beginning of each external variable or
function name. This means that all external names in C must be unique in seven characters.

The compiler-generated code maintains a long word at the top of the stack for use in
subroutine calls. This shortens the stack-popping code required on return from a procedure call.
The movem.1 instruction, which saves the registers, contains an extra register to allocate this
space.

The compiler uses registers D3 through D7, and A3 through A5, for register variables. A
procedure called from a C program must save and restore these registers, if they are used. The
compiler-generated code saves only those registers used. Registers DO through D2, and AO
through A2, are scratch registers and can be modified by the called procedure.

1.4 Stack Frame
Figure 1-2 illustrates the standard C stack frame.

A7 ---> LONGWORD FOR PROCEDURE CALLS
SAVED REGISTERS
LOCAL VARIABLE AREA

A6 ---> PREVIOUS VALUE OF A6
RETURN ADDRESS
ARGUMENT 1
ARGUMENT 2

.

.

.

.
Figure 1-2. C Stack Frame

1.3 Calling Conventions C Language Programming Guide

1-4

Arguments are either 2 or 4 bytes, depending on argument type. The compiler- generated
code uses A6 to reference all variables on the stack.

1.5 Command Line Interface
The standard C argc/argv interface for arguments typed on the command line also works

under CP/M-68K. For example, the command form
command argl arg2 arg3 ... argn
causes the following interface setup:
argc n + 1
argv[0] "C Runtime"
argv[l] "argl"
argv[2] " a rg2

.

.

.
 argv[n] argn

You cannot obtain the command name under CP/M-68K. Therefore, the argv[0] argu-
ment is always incorrect.

1.6 I/O Conventions
UNIX C programs use two types of file and device I/O: regular files and stream files. A

unique number, called a file descriptor, identifies regular files. In CP/M-68K, this number is 'in
the range 0 to 15. The address of a user control block in the run-time system identifies stream
files. Unlike regular files, stream files use some form of intermediate buffering, making
single-byte I/O more efficient.

Under UNIX, you can reference peripheral devices, such as terminals and printers, as files,
using the special names /dev/try for terminal and /dev/lp for printer. Under CP/M-68K, CON: is
for the console device, and LST: is for the listing device.

1.4 Stack Framc C Language Programming Guide

1-5

CP/M-68K stores ASCII files with a carriage return line-feed after each line. A CTRL-Z
(Ox I a) character indicates end-of-file. C programs usually end lines with only a line-feed. This
means that in CP/M-68K C, read and write operations to ASCII files must insert and delete
carriage-return characters. The CTRL-Z must be deleted on read and inserted on close for such
files. These operations are not desirable for binary files. CP/M-68K C includes an extra entry
point to all file open and creat calls to distinguish between ASCII and binary files.

1.7 Standard Files
C programs begin execution with three files already open: the standard input, standard

output, and standard error files. You can access these files as either stream or regular files in the
C program. The following definitions are available from the <stdio.h> file:

Table 1-1. Standard File Definitions
 File File Descriptor Stream Name
standard input STDIN stdin
standardoutput STDOUT stdout
standard error STDERR stderr

The usual library routines close and reopen these standard files. In addition, you can
redirect I/O from the command line.

1.6 I/O Conventions C Language Programming Guide

1-6

1.8 I/O Redirection
You can redirect the C program standard I/O with the < and > characters. No space is

allowed between the < or > and the filename. You cannot redirect the standard error file.
For example, the command
test <a>lst: c d e f

executes the file test.68K, with the standard input coming from disk file a and the standard output
going to the listing device. The argument list Is c d e f.

End of Section I

1.8 I/O Redirection C Language Programming Guide

1-7

Section 2
C Language Library Routines

The CP/M-68K C library is a collection of routines for I/O, dynamic memory allocation,
system traps, and data conversion.

2.1 Compatibility with UNIX V7
The C library is compatible with UNIX version 7, allowing programs to move easily from

UNIX to CP/M-68K. CP/M-68K C simulates many UNIX operating system calls and features.
However, CP/M-68K does not support the following C functions that UNIX implements:

o the fork/exec, kill, lock, nice, pause, ptrace, sync, and wait primitives
o the acct system call
o the alarm function, or the stime, time, ftime, and times system calls
o the dup and dup2 duplicate file descriptor functions
o the getuld, getgld, geteuld, getegid, setuld, and setgld functions
o the indir indirect system call
o the loctl, stty, and gtty system calls
o the link system call
o the chdir, chroot, mknod, mount, umount, mpx, pipe, pkon, pkoff, profil, sync,
 stat, fstat, umask, and utime system calls
o the phys system call

2-1

The following UNIX library functions are not available under CP/M-68K:
o Assert
o Crypt
o DBM
o Getenv
o Getgrent, getlogin, getpw, and getpwent functions
o 13tol, Itol3
o monitor
o ttom, madd, msub, mult, mdlv, min, mout, pow, gcd, and rpow
o nlist
o pkopen, pkclose, pkread, pkwrite, and pkfail
o plot
o popen, pclose
o sleep
o svstem
o ttystot
The CP/M-68K C language library does not contain the floating-point routines available

under UNIX.
Entry points have been added to file open and creat calls to distinguish between ASCII

and binary files. Byte level end-of-file is unavailable for binary files. ASCII files, however, are
compatible with UNIX, and with the CP/M-68K text editors and utilities that use ASCII files.

The C Programming Guide for CP/M-68K does not separate the UNIX system calls and
library functions; all calls are library functions under CP/M-68K.

2.2 Library Functions under CP/M-68K
The remainder of this section lists alphabetically the library routines that C supports under

CP/M-68K. The C compiler accepts entry in both upper- and lower-case- however, you must type
all library routines in lower-case, as shown in the calling sequences.

2.1 Compatibility with UNIX V7 C Language Programming Guide

2-2

The abort Function
The abort function terminates the current program with an error. The error is system

dependent. The 68000 uses an illegal instruction trap. This invokes DDT-68K if the debugger is
loaded with the object program.

Calling Sequence:
 WORD code;

abort(code);
Arguments:

 code loads into register D0 before abort
Returns:

 The abort function never returns.

The abort Function C Language Programming Guide

2-3

The abs Function
The abs function takes the absolute value of a single argument. This function is

implemented as a macro in <stdio.h>; arguments with side effects do not work as you expect. For
example, the call
 a = abs(*x + +);
increments x twice.

Calling Sequence:
 WORD val;
 WORD ret;
 ret = abs(val);

Arguments:
 val the input value

Returns:
 ret the absolute value of val

The abs Function C Language Programming Guide

2-4

The access Function
The access function checks whether the invoking program can legally access a file. Under

CP/M-68K, the file is accessible if it exists.
Calling Sequence:

 BYTE *name;
 WORD mode;
 WORD ret;
 ret = access(name,mode);

Arguments:
 name points to the null-terminated filename
 mode 4 to check read access
 2 to check write access
 1 to check exec access
 0 to check directory path access (CP/M-68K ignores this argument)

Returns:
 0 access allowed
 -1 access not allowed

Note:
 CP/M-68K checks only to see if the file exists.

The abs Function C Language Programming Guide

2-5

The atoi, atol Functions
The atol and atol functions convert an ASCII string to an integer or long binary number,

respectively. Strings converted by atoi and atol have the following format:
[...][-][+]dddddd
The functions ignore leading spaces and permit one leading sign.
Calling Sequence:

 BYTE *string;
 WORD ival;
 LONG lval,atol();
 ival = atoi(string);
 lval = atol(string);

Arguments:
atol is not a default value and must be declared. String is a null-terminated string
containing the number to be converted. Conversion proceeds until the digits are
exhausted. Zero returns if no digits remain.

Returns:
Converted value as ival (int), or Ival (long).

Note:
 The atol and atol functions do not detect or report overflow. You cannot limit the

number of contiguous digits processed or determine the number of digits actually
processed.

The atoi, atol Functions C Language Programming Guide

2-6

The brk, sbrk Functions
The brk and sbrk functions extend the heap portion of the user program. The brk function

sets the upper bound of the program, called the break in UNIX terminology, to an absolute
address. The sbrk function extends the program by an incremental amount.

Calling Sequence:
WORD brk();

 BYTE *addr,*sbrk();
 WORD ret;
 BYTE *start;
 ret = brk(addr);
 start = sbrk(incr)

Arguments:
 addr the desired new break address
 incr the incremental number of bytes desired

Returns:
 0 success (brk)
 -1 failure (brk)
 start begins the allocated area (sbrk)
 0 failure (sbrk)

The brk, sbrk Functions C Language Programming Guide

2-7

The calloc, malloc, realloc, free Functions
The calloc, malloc, realloc, and free functions manage the dynamic area between the

region and the stack.
The malloc function allocates an area of contiguous bytes aligned on a word boundary and

returns the address of this area. malloc uses the sbrk function to allocate additional heap space, if
necessary.

The calloc function allocates space for an array of elements, whose size is given in bytes.
The realloc function changes the size of a block. The address of the block returns.
The free function releases a block previously allocated by malloc.
Calling Sequence:

 WORD size,number;
 BYTE *addr,*malloc(),*calloc(),*realloc();
 addr = malloc(size);
 addr = calloc(number,size);
 addr = realloc(addr,size);
 free(addr);

Arguments:
 size the number of bytes desired
 number the number of elements desired
 addr points to the allocated region

Returns:
 Address of the allocated region if successful, 0 if unsuccessful.

Note:
 Freeing a bogus address can be disastrous.

The calloc, malloc, realloc, free Functions C Language Programming Guide

2-8

The chmod, chown Functions
Under UNIX, the chmod and chown system calls allow you to change the protection and

owner ID of an existing file. CP/M-68K treats these calls as NO-OPS if the file exists.
Calling Sequence:

BYTE *name;
WORD mode,owner,group,ret;

 ret = chmod(name,mode);
 ret = chown(name,owner,group);

Arguments:
 name the affected filename (null-terminated)
 mode the new mode for the file
 owner the new owner of the file
 group the new group number

Returns:
 ret 0 if the file exists
 -1 if the file does not exist

The chmod, chown Functions C Language Programming Guide

2-9

The close Function
The close function terminates access to a file or device. This routine acts on files opened

with the open or creat functions. Specify a file descriptor, not a stream, for the operation. The
fclose function closes stream files.

Calling Sequence:
 WORD fd,ret;
 ret = close(fd);

Arguments:
fd the file descriptor to be closed

Returns:
0 successful close
-1 unknown file descriptor

The close Function C Language Programming Guide

2-10

The creat, create, creatb Functions
The creat function adds a new file to a disk directory. The file can then be referenced by

the file descriptor, but not as a stream file. The creat and creata functions create an file. The
creatb function creates a binary file.

Calling Sequence:
 BYTE *name;
 WORD mode,fd;
 fd = creat(name,mode)-

fd = creata(name,mode);
 fd = creatb(name,mode);
 Arguments:
 name the filename string, null-terminated
 mode the UNIX file mode, ignored by CP/M-68K

Returns:
 fd The file descriptor for the opened file. A file descriptor is an int
 quantity that denotes an open file In a read, write or Iseek call.

-1 Returned if there are any errors.
Note:

 UNIX programs that use binary files compile successfully, but execute improperly.

The creat, creata, creatb Functions C Language Programming Guide

2-11

The ctype Functions
The file <ctype.h> defines a number of functions that classify ASCII characters. These

functions indicate whether a character belongs to a certain character class, returning nonzero for
true and zero for false. The following table defines ctype functions.

Table 2-1. ctype Functions
 Function Meaning
 isalpha(c) c is a letter.
 isupper(c) c is upper-case.
 islower(c) c is lower-case.
 isdigit(c) c is a digit.
 isalnum(c) c is alphanumeric.
 isspace(c) c is a white space character.
 ispunct(c) c is a punctuation character.
 isprint(c) c is a printable character.
 iscntrl(c) c is a control character.
 isascii(c) c is an ASCII character (< 0x80).

The white space characters are the space (0x20), tab (0x09), carriage return (0x0d),
line-feed (0x0a), and form-feed (0x0c) characters. Punctuation characters are not control or
alphanumeric characters. The printing characters are the space (0x20) through the tilde (0x7e).
A control character is less than a space (0x20).

The ctype Functions C Language Programming Guide

2-12

Calling Sequence:
#Include <ctype.h>
WORD ret;
BYTE c- /* or WORD c-
ret = isalpha(c);
ret = isupper(c);
ret = islower(c);
ret = isdigit(c);
ret = isalnum(c);
ret = isspace(c);
ret = ispunct(c);
ret = isprtnt(c);
ret = iscntrl(c);
ret = isasci(c);
Arguments:

c the character to be classified
Returns:

 ret = 0 for false
 ret <>O for true

Note:
These functions are implemented as macros; arguments with side effects, such as

 *p + +, work incorrectly in some cases. Bogus values return if arguments are not
 ASCII characters. For example, >0x7f.

The ctype Functions C Language Programming Guide

2-13

The end, etext, edata Locations
The linkage editor defines the labels end, etext, and edata as the first location past the

BSS, text, and data regions, respectively. The program-break location, which is the last used
location, is Initially set to end. However, many library functions alter this location. sbrk(0) can
retrieve the break.

The end, etext, edata Locations C Language Programming Guide

2-14

The exit, -exit Functions
The exit function passes control to CP/M-68K. An optional completion code, which

CP/M-68K ignores, might return. exit deallocates all memory and closes any open files. exit also
flushes the buffer for stream output files.

The -exit function immediately returns control to CP/M-68K, without flushing or closing
open files.

Calling Sequence:
 WORD code;

 exit(code);
 -exit(code);

Arguments:
 code optional return code

Returns:
 no returns.

The exit,-exit Functions C Language Programming Guide

2-15

The fclose, fflush Functions
The fclose and fflush functions close and flush stream files. The stream address identifies

the stream to be closed.
Calling Sequence:

 WORD ret;
 FILE *stream;
 ret = fclose(stream);
 ret = fflush(stream),

Arguments:
 stream the stream address

Returns:
 0 successful
 -1 bad stream address or write failure

The fclose, fflush Functions C Language Programming Guide

2-16

The feof, ferror, clearerr, fileno Functions
These functions manipulate file streams in a system-tndependent manner.
The feof function returns nonzero if a specified stream is at end-of-file, and zero if It is

not.
The ferror function returns nonzero when an error has occurred on a specified stream. The

clear err function clears this error. This is useful for functions such as putw, where no error
indication returns for output failures.

The fileno function returns the file descriptor associated with an open stream.
Calling Sequence:

 WORD ret;
 FILE *stream;
 WORD fd;
 ret = feof(stream);
 ret = ferror(stream);
 clearerr(stream);
 fd = fileno(stream);

Arguments:
 stream the stream address

Returns:
 ret a zero or nonzero indicator
 fd the returned file descriptor

The feof, ferror, clearerr, fileno Functions C Language Programming Guide

2-17

The fopen, freopen, fdopen Functions
The fopen, freopen, and fdopen functions associate an I/O stream with a file or device.
The fopen and fopena functions open an existing ASCII file for I/O as a stream. The

fopenb function opens an existing binary file for I/O as a stream.
The freopen and freopa functions substitute a new ASCII file for an open stream. The

freopb function substitutes a new binary file for an open stream.
The fdopen function associates a file that file descriptor opened, using open or creat, with

a stream.
Calling Sequence:

 FILE *fopeno,fopenao,fopenbo;
 FILE *freopeno,freopao,freopbo;
 FILE *fdopeno;
 FILE *stream;
 BYTE *name,*access;
 WORD fd;
 stream = fopen(name,access);
 stream = fopena(name,access);
 stream = fopenb(name,access);
 stream = freopen(name,access,stream);
 stream = freopa(name,access,stream);
 stream = freopb(name,access,stream);
 stream = fdopen(fd,access);

The fopen, frcopen, fdopen Functions C Language Programming Guide

2-18

Arguments:
name the null-terminated filename string
stream the stream address
access the access string:

 r read the file
 w write the file
 a append to a file

Returns:
 stream successful if stream address open
 0 unsuccessful

Note:
UNIX programs that use fopen on binary files compile and link correctly, but execute

improperly.

The fopen, freopen, fdopen Functions C Language Programming Guide

2-19

The fread, fwrite Functions
The fread and fwrite functions transfer a stream of bytes between a stream file and primary

memory.
Calling Sequence:

WORD nitems;
 BYTE *buff;
 WORD size;
 FILE stream;
 nitems = fread(buff,size,nitems,stream
 nitems = fwrite(buff,size,nitems,stream);

Arguments:
 buff the primary memory buffer address
 size the number of bytes in each item
 nitems the number of items to transfer
 stream an open stream file

Returns:
 nitems the number of items read or written
 0 error, including EOF

The fread, fwrite Functions C Language Programming Guide

2-20

The fseek, ftell, rewind Functions
The fseek, ftell, and rewind functions position a stream file.
The fseek function sets the read or write pointer to an arbitrary offset in the stream. The

rewind function sets the read or write pointer to the beginning of the stream. These calls have no
effect on the console device or the listing device.

The ftell function returns the present value of the read or write pointer in the stream. This
call returns a meaningless value for nonfile devices.

Calling Sequence:
 WORD ret;
 FILE * stream;
 LONG offset,ftell();
 WORD ptrname;
 ret = fseek(stream,offset,ptrname);
 ret = rewind(stream);
 offset = ftell(stream);

Arguments:
 stream the stream address
 offset a signed offset measured in bytes
 ptrname the interpretation of offset:
 0 = > from beginning of file
 1 = > from current position
 2 = > from end of file

Returns:
 ret 0 for success, -1 for failure
 offset present offset in stream

Note:
ASCII file seek and tell operations do not account for carriage returns that are eventually

deleted. CTRL-Z characters at the end of the file are correctly handled.

The fseek, ftell, rewind Functions C Language Programming Guide

2-21

The getc, getchar, fgetc, getw, getl Functions
The getc, getchar, fgetc, getw, and getl functions perform input from a streat-n.
The getc function reads a single character from an input stream. This function is

implemented as i macro in <stdio.h>, and arguments should not have side effects.
The getchar function reads a single character from the standard input. It is identical to

getc(stdiii) in all respects.
The fgctc function is a function implementation of getc, used to reduce object code size.
The getw function reads a 16-bit word from the stream, high byte first. This is compatible

with the read function call. No special alignment is required.
The geti function reads a 32-bit long from the stream, in 68000 byte order. No special

alignment is required.
Calling Sequence:

 WORD ichar;
 FILE *stream;
 WORD lword;
 LONG ilong,getl();
 ichar = getc(stream);
 ichar = getcharo;
 ichar = fgetc(stream);
 iword = getw(stream);
 ilong = getl(stream);

The getc, getchar, fgetc, getw, geti Functions C Language Programming Guide

2-22

Arguments:
 stream the stream address

Returns:
 ichar character read from stream
 iword word read from stream
 ilong longword read from stream
 -1 on read failures

Note:
 Error return from getchar is incompatible with UNIX prior to version 7. Error
 return from geti or getw Is a valid value that might occur in the file nori-nally. Use
 feof or ferror to detect ejid-of-file or read errors.

The getc, getchar, fgetc, getw, geti Functions C Language Programming Guide

2-23

The getpass Function
The getpass function reads a password from the console device. A prompt is output, and

the input read without echoing to the console. A pointer returns to a 0- to 8 -character
null-terminated string.

Calling Sequence:
 BYTE *prompt;
 BYTE *getpass;
 BYTE *pass;
 pass = getpass(prompt);

Arguments:
prompt a null-terminated prompt string

Returns:
pass points to the password read

Note:
 The return value points to static data whose content is overwritten by each call.

The getpass Function C Language Programming Guide

2-24

The getpid Function
The getpid function is a bogus routine that returns a false process ID. This routine is

strictly for UNIX compatibility; serves no purpose under CP/M-68K. The return value is
unpredictable in some implementations.

Calling Sequence:
 WORD pid;
 pid = getpid();

Arguments:
 no arguments.

Returns:
 pid false process ID

The getpid Function C Language Programming Guide

2-25

The gets, fgets Functions
The gets and fgets functions read strings from stream files. fgets reads a string including a

newline (line-feed) character. gets deletes the newline, and reads only from the standard input.
Both functions terminate the strings with a null character.

You must specify a maximum count with fgets, but not with gets. This count includes the
terminating null character.

Calling Sequence:
 BYTE * addr;
 BYTE * s;
 BYTE *gets(), * fgets();
 WORD n ;
 FILE " stream;
 addr = gets(s);
 addr = fgets(s,n,stream);

Arguments:
 s the string buffer area address
 n the maximum character count
 stream the input stream

Returns:
 addr the string buffer address

The gets, fgcts Functions C Language Programming Guide

2-26

The index., rindex Functions
The index and rindex functions locate a given character in a string. index returns a pointer

to the first occurrence of the character. rindex returns a pointer to the last occurrence.
Calling Sequence:

 BYTE c;
 BYTE *s;
 BYTE *ptr;
 BYTE *indexo,'rindexo;
 ptr = index(s,c);
 ptr = rindex(s,c);

Arguments:
 s a null-terminated string pointer
 c the character for which to look

Returns:
 ptr the desired character address
 0 character not in the string

The index, rindex Functions C Language Programming Guide

2-27

The isatty Function
A CP/M-68K program can use the isatty function to determine whether a file descriptor is

attached to the CP/M-68K console device (CON:).
Calling Sequence:

WORD fd;
 WORD ret;
 ret = isatty(fd);

Arguments:
 fd an open file descriptor

Returns:
 1 fd attached to CON:
 0 fd not attached to CON:

The isatty Function C Languagc Programm'ng Guidc

2-28

The lseek, tell Functions
The Iscck function positions a file referenced by the file descriptor to an arbitrary offset.

Do not use this function with stream files, because the data in the stream buffer might be invalid.
Use the fseek function instead.

The tell function determines the file offset of an open file descriptor.
Calling Sequence:

 WORD fd;
 WORD ptrname,
 LONG offset,lseeko,tell(),ret;
 ret = Iseek(fd, offset, ptrname);
 ret = tell (fd);

Arguments:
 fd the open file descriptor
 offset a signed byte offset in the file
 ptrname the interpretation of offset:
 0 > from the beginning of the file
 1 = > from the current file position
 2 = > from the end of the file

Returns:
 ret resulting absolute file offset
 -1 error

Note:
Incompatible with versions 1 through 6 of UNIX.

The lseek, tell Functions C Language Programming Guide

2-29

The mktemp Function
The mktemp function creates a temporary filename. The calling argument is a character

string ending in 6 X characters. The temporary filename overwrites these characters.
Calling Sequence:

 BYTE *string,
 BYTE *mktempo;
 string mktemp(string)

Arguments:
 string the address of the template string

Returns:
 string the original address argument

The mktemp Function C Language Programming Guide

2-30

The open, opens, openb Functions
The open and opena functions open an existing ASCII file by file descriptor. The openb

function opens an existing binary file. The file can be opened for reading, writing, or updating.
Calling Sequence:

 BYTE *name;
 WORD mode;
 WORD fd;
 fd = Open(name,mode);
 fd = opena(name,mode);
 fd = openb(name,mode);

Arguments:
 name the null-terminated filename string
 mode the access desired:
 0 = > Read-Only
 1 = > Write-Only
 2 = > Read-Write (update)

Returns:
 fd the file descriptor for accessing the file
 -1 open failure

Note:
 UNIX programs that use binary files compile correctly, but execute improperly.

The open, opena, openb Functions C Language Programming Guide

2-31

The perror Function
The perror function writes a short message on the standard error file that describes the last

system error encountered. First an argument string prints, then a colon, then the message.
CP/M-68K C simulates the UNIX notion of an external variable, errno, that contains the

last error returned from the operating system. Appendix A contains a list of the possible values of
errno and of the messages that perror prints.

Calling Sequence:
 BYTE *s;
 WORD err;
 err = perror(s);

Arguments:
 s the prefix string to be printed

Returns:
 err value of "errno" before call

Note:
 Many messages are undefined on CP/M-68K.

The perror Function C Language Programming Guide

2-32

The printf, fprintf, sprintf Functions
The printf functions format data for output. The printf function outputs to the standard

output stream. The fprintf function outputs to an arbitrary stream file. The sprintf function
outputs to a string (memory).

Calling Sequence:
 WORD ret;
 BYTE *fmt;
 FILE *stream;
 BYTE *string;
 BYTE *sprintf (),rs;
 /* Args can be any type
 ret = printf (fmt,argl,arg2 ...);
 ret = fprintf(stream,fmt,argl,arg2 ...);
 rs = sprintf(string,fmt,argl,arg2 ...);

Arguments:
 fmt format string with conversion specifiers
 argn data arguments to be converted
 stream output stream file
 string buffer address

Returns:
 ret number of characters output
 -1 if error
 rs buffer string address
 null if error

Conversion Operators
A percent sign, %, in the format string indicates the start of a conversion operator. Values

to be converted come in order from the argument list. Table 2-2 defines the valid conversion
operators.

The printf, fprintf, sprintf Functions C Language Programming Guide

2-33

Table 2-2. Conversion Operators
Operator Meaning

 d Converts a binarv number to decimal ASCII and inserts in output stream.
 o Converts a binary number to octal ASCII and inserts in output stream.
 x Converts a binary number to hexadecimal ASCII and inserts in output

stream.
 c Uses the argument as a single ASCII character.
 s Uses the argument as a pointer to a null-terminated ASCII string, and
 inserts the string into the output stream.
 u Converts an unsigned binary number to decimal ASCII and inserts in
 output stream.
 % Prints a % character.

You can insert the following optional directions between the % character and the
You can insert the following optional directions between the % character and the conversion
operator:

o A minus sign justifies the converted output to the left, instead of the default right
 justification.
o A digit string specifies a field width. This value gives the minimum width of the
 field. If the digit string begins with a 0 character, zero padding results instead of
 blank padding. An asterisk takes the value of the width field as the next argument
 in the argument list.
o A period separates the field width from the precision string.
o A digit string specifies the precision for floating-point conversion, which is the
 number of digits following the decimal point. An asterisk takes the value of the
 precision field from the next argument in the argument list.
o The character I or L specifies that a 32-bit long value be converted. A capitalized
 conversion code does the same thing.

The printf, fprintf, sprintf Functions C Language Programming Guide

2-34

The putc, putchar, fputc, putw, putl Functions
The putc, putchar, fplitc, puta,, and putl functions output characters and words to stream

files.
The putc function outputs a single 8-bit character to a stream file. This function is

implemented as a macro in <stdio.h>, so do not use arguments with side effects. The fputc
function provides the equivalent function as a real function.

The putchar function Outputs a character to the standard output stream file. This function
is also implemented as a macro in <stdio.h>. Avoid using side effects with putchar.

The putw, function outputs a 16-bit word to the specified stream file. The word is output
high byte first, compatible with the write function call.

The putl function outputs a 32-bit longword to the stream file. The bytes are output In
68000 order, as with the write function call.

Calling Sequence:
 BYTE c;
 FILE *stream;
 WORD w,rct;
 LONG lret,putl(),l;
 ret = putcc,stream);
 ret = fputc(c,stream);
 ret = putchar(c);
 ret = putw(w,stream);
 lret = putl(l,stream);

The putc, putchar, fputc, putw, puti Functions C Language Programming Guide

2-35

Arguments:
c the character to be output
stream the output stream address
w the word to be output
l the long to be output

Returns:
 ret the word or character output
 lret the long output with putl
 -1 an output error

Note:
A -1 return from putw or putl is a valid integer or long value. Use ferror to detect write

errors.

The putc, putchar, fputc, putw, puti Functions C Language Programming Guide

2-36

The puts, fputs Functions
The puts and fputs functions output a null-term'tnated string to an output stream.
The puts function outputs the string to the standard output, and appends a newline

character.
The fputs function outputs the string to a named output stream. The fputs function does

not append a newline character.
Neither routine copies the trailing null to the output stream.
Calling Sequence:

 WORD ret;
 BYTE *s;
 FILE * stream;
 ret = puts(s);
 ret = fputs(s,stream)-,

Arguments:
 s the string to be output
 stream the output stream

Returns:
 ret the last character output
 -1 error

Note:
The newline incompatibility is required for compatibility with UNIX.

The puts, fputs Functions C Language Programming Guide

2-37

The qsort Function
The qsort function is a quick sort routine. You supply a vector of elements and a function

to compare two elements, and the vector returns sorted.
Calling Sequence:

 WORD ret;
 BYTE *base;
 WORD number;
 WORD size;
 WORD compares;
 ret = qsort (base, number, size, compare);

Arguments:
 base the base address of the element vector
 number the number of elements to sort
 size size of each element in bytes
 compare the address of the comparison function

This function is called by the following:
 ret = compare(a,b);

The return is:
 < 0 if a < b
 = 0 if a = b
 > 0 if a > b

Returns:
0 always

The qsort Function C Language Programming Guide

2-38

The rand, srand Functions
The rand and stand functions constitute the C language random number generator. Call

stand with the seed to initialize the generator. Call rand to retrieve random numbers. The random
numbers are C int quantities.

Calling Sequence:
 WORD seed;
 WORD rnum;
 rnum = srand(seed);
 rnum = rand

Arguments:
 seed an int random number seed

Returns:
 rnum desired random number

The rand, srand Functions C Language Programming Guide

2-39

The read Function
The read function reads data from a file opened by the file descriptor using open or creat.

You can read any number of bytes, starting at the current file pointer.
CP/M-68K, the most efficient reads begin and end on 128-byte boundaries.
Calling Sequence:

WORD ret;
 WORD fd;
 BYTE *buffer;
 WORD bytes ,

ret = read (fd, buffer, bytes)
Arguments:

 fd a file descriptor open for read
 buffer the buffer address
 bytes the number of bytes to be read

Returns:
ret number of bytes actually read

 error

The read Function C Language Programming Guide

2-40

The scanf, fscanf,, sscanf Functions
The scanf functions convert input format. The scanf function reads from the standard

input, fscanf reads from an open stream file, and sscanf reads from a null-terminated string.
Calling Sequence-.

 BYTE *format,*string;
 WORD nitems;
 FILE *stream;
 /* Args can be any type
 nitems = scanf(format,argl,arg2 ...);
 nitems = fscanf(strcam,format,argl,arg2 ..);
 nitems = sscanf(str'tng,format,argl,arg2 ...);

Arguments:
 format the control string
 argn pointers to converted data locations
 stream an open input stream file
 string null-terminated input string

Returns:
 nitems the number of items converted
 -1 I/O error

Control String Format
 The control string consists of the following items:
 o Blanks, tabs, or newlines (line-feeds) that match optional white space in the
 input.
 o An ASCII character (not %) that matches the next character of the input stream.
 o Conversion sp ecifications, consisting of a leading %, an optional * (which
 suppresses assignment), and a conversion character. The next input field is
 converted and assigned to the next argument, up to the next inappropriate
 character in the input or until the field width is exhausted.

The scanf, fscanf, sscanf Functions C Language Programming Guide

2-41

Conversion characters indicate the interpretation of the next input field. The following
table defines valid conversion characters.

Table 2-3. Valid Conversion Characters
 Character Meaning

% A single % matches in the input at this point; no conversion is
 performed.

d Converts a decimal ASCII integer and stores it where the next
argument points.

 0 Converts an octal ASCII integer.
 x Converts a hexadecimal ASCII integer.
 s A character string, ending with a space, is input. The argument

pointer is assumed to point to a character array big enough to
contain the string and a trailing null character, which are added.

 c Stores a single ASCII character, including spaces. To find the next
 nonblank character, use %1s.
 [Stores a string that does not end with spaces. The character string

is enclosed in brackets. If the first character after the left bracket is
not the input is read until the scan comes to the first character not
within the brackets. If the first character after the left bracket is -,
the input is read until the first character within the brackets.

Note:
 You cannot determine the success of literal matches and suppressed assignments.

The scanf, fscanf, sscanf Functions C Language Programming Guide

2-42

The setjmp, longjmp Functions
The setjmp and longjmp functions execute a nonlocal GOTO. The setjmp function initially

specifies a return location. You can then call longjmp from the procedure that invoked setjmp, or
any subsequent procedure. longjmp simulates a return from setjmp in the procedure that originally
invoked setjmp. A setjmp return value passes from the long'mp call. Theprocedure
iiivokingsetjmp mtistnotreturn beforelong'mp is called.

Calling Sequence:
 #Include <setjmp.h>
 WORD xret,ret;
 jmp-buf env;

 xret = setjmp(env);

 longjmp(env,ret);
Arguments:

 env contains the saved environment
 ret the desired return value from setjmp

Returns:
 xret 0 when setjmp invoked initially
 copied from ret when longjmp called

Note:
 awkward

The setimp, longjmp Functions C Language Programming Guide

2-43

The signal Function
The signal function connects a C function with a 68000 exception condition. Each

possible exception condition is indicated by a number. The following table defines exception
conditions.

Table 2-4. 68000 Exception Conditions
Number Condition

4 Illegal instruction trap. Includes illegal instructions, privilege viola-
 tion, and line A and line F traps.
 5 Trace trap.
 6 Trap instruction other than 2 or 3; used by BDOS and BIOS.
 8 Arithmetic traps: zero divide, CHK instruction, and TRAPV

instruction.
 10 BUSERR (nonexistent memory) or addressing (boundary) error

trap.
All other values are ignored for compatibility with UNIX.
Returning from the procedure activated by the signal resumes normal processing. The

library routines preserve registers and condition codes.

The signal Function C Language Programming Guide

2-44

Calling Sequence:
 WORD ret,sig;
 WORD func ();
 ret = signal (Sig, func);

Arguments:
 Sig the signal number given above
 func the address of a C function

Returns:
 ret 0 if no error, -1 if sig out of range

The signal Function C Language Programming Guide

2-45

The strcat, strncat Functions
The strcat and strncat functions concatenate strings. The strcat function concatenates two

null-terminated strings. The strncat function copies a specified number of characters.
Calling Sequence:

 BYTE *sl,*s2,*ret;
 BYTE -'strcato,'strncato;
 WORD n;
 ret = strcat(sl,s2)-,
 ret = strncat(sl,s2,n);

Arguments:
 s1 the first string
 s2 the second string, appended to s1
 n the maximum number of characters in s1

Returns:
 ret a pointer to s1

Note:
The strcat (s1,s1) function never terminates and usually destroys the operating

 system because the end-of-string marker is lost, so strcat continues until it runs out
 of memory, including the memory occupied by the operating system.

The strcat, strncat Functions C Language Programming Guide

2-46

The strcmp, strncmp Functions
The strcmp and strncmp functions compare strings. The strcmp function uses null

termination, and strncmp limits the comparison to a specified number of characters.
Calling Sequence:

 BYTE *s I,*s2;
 WORD val,ri;
 val = strcmp(sl,s2);
 val = strncmo(sl,s2,n);

Arguments:
 s1 a null-terminated string address
 s2 a null-terminated string address
 n the maximum number of characters to compare

Returns:
 val the comparison result:
 < 0 = > s1 < s2
 = 0 = > s1 = s2
 > 0 = > sl > s2

Note:
 Different machines and compilers interpret the characters as signed or unsigned.

The strcmp, strncmp Functions C Language Programming Guide

2-47

The strcpy, strncpy Functions
The strcpy and strncpy functions copy one null-terminated string to another. The strcpy

function uses null-termination, while strncpy imposes a maximum count on the copied string.
Calling Sequence:

 BYTE *sl, *s2, * ret;
 BYTE *strcpy strncpy
 WORD n;
 ret = strcpy(sl,s2);
 ret = strncpy(sl,s2,n);

Arguments:
 sl the destination string
 s2 the source string
 n the maximum character count

Returns:
 ret the address of sl

Note:
 If the count is exceeded in strncpy, the destination string is not null-terminated.

The strcpy, stmcpy Functions C Language Programming Guide

2-48

The strlen Function
The strlen function returns the length of a null-terminated string.
Calling Sequence:

 BYTE *s;
 WORD len;
 len = strlen(s);

Arguments:
 s the string address

Returns:
 len the string length

The strlen Function C Language Programming Guide

2-49

The swab Function
The swab function copies one area of memory to another. The high and low bytes in the

destination copy are reversed. You can use this function to copy binary data from a PDP-11 tm or
VAX tm to the 68000. The number of bytes to swap must be even.

Calling Sequence:
 WORD ret;
 BYTE *from,*to;
 WORD nbytes;
 ret = swab(from,to,nbytes);

Arguments:
 from the address of the source buffer
 to the address of the destination
 nbytes the number of bytes to copy

Returns:
 ret always 0

The swab Function C Language Programming Guide

2-50

The ttyname Function
The ttyname function returns a pointer to the null-terminated filename of the terminal

device associated with an open file descriptor.
Calling Sequence:

 BYTE *name,*ttynameo;
 WORD fd;
 name = ttyname(fd);

Arguments.
 fd an open file descriptor

Returns:
 A pointer to the null-terminated string CON: if the file descriptor is open and
 attached to the CP/M-68K console device. Otherwise, zero (NULL) returns.

The ttyname Function C Language Programming Guide

2-51

The ungetc Function
The ungetc function pushes a character back to an input stream. The next getc, getw, or

getchar operation incorporates the character. One character of buffering is guaranteed if
something has been read from the stream. The fseek function erases any pushed-back characters.
You cannot ungetc EOF (-I).

Calling Sequence:
BYTE c;
FILE *stream;
WORD ret;

 ret = ungetc(c,stream);
Arguments:

c the character to push back
stream the stream address

Returns:
ret c if the character is successfully pushed back
-1 error

The ungetc Function C Language Programming Guide

2-52

The unlink Function
The unlink function deletes a named fle from the file system. The removal operation falls

if the file is open or nonexistent.
Calling Sequence:

 WORD ret;
 BYTE * name;
 ret = unlink(name);

Arguments:
 name the null-terminated filename

Returns:
 0 success
 -1 failure

The unlink Function C Language Programming Guide

2-53

The write Function
The write function transfers data to a file opened by file descriptor. Transfer begins at the

present file pointer, as set by previous transfers or by the Iseek function. You can write any
arbitrary number of bytes to the file. The number of bytes actually written returns. If the number
of bytes written does not match the number requested, an error occurred.

Under CP/M-68K, the most efficient writes begin and end on 128-byte boundaries.
Calling Sequence:

 WORD fd;
 BYTE 'buffer;
 WORD bytes;
 WORD ret;
 ret = write(fd,buffer,bytes);

Arguments:
 fd the open file descriptor
 buffer buffer the starting buffer address
 bytes bytes the number of bytes to write

Returns:
 ret the number of bytes actually written
 -1 errors

Note:
 Due to the buffering scheme used, all data is not written to the file until the file is
closed.

End of Section 2

The write Function C Language Programming Guide

2-54

Section 3
C Style Guide

To make your C language programs portable, readable, and easy to maintain, follow the
stylistic rules presented in this section. However, no rule can predict every situation; use your
own judgment in applying these principles to unique cases,

3.1 Modularity
Modular programs reduce porting and maintenance costs. Modularize your programs, so

that all routines that perform a specified function are grouped in a single module. This practice
has two benefits: first, the maintenance programmer can treat most modules as black boxes for
modification purposes; and second, the nature of data structures is hidden from the rest of the
program. In a modular program, you can change any major data structure by changing only one
module.

3.1.1 Module Size
A good maximum size for modules is 500 lines. Do not make modules bigger than the

size required for a given function.

3.1.2 Intermodulc Communication
Whenever possible, modules should communicate through procedure calls. Avoid global

data areas. Where one or more compilations require the same data structure, use a header file.

3-1

3.1.3 Header Files
In separately combined files, use header files to define types, symbolic constants, and data

structures the same way for all modules. The following list gives rules for using header files.
o Use the '#include "file.h"' format for header files that are project-specific. Use
 '#Include <file.h>' for system-wide files. Never use device or directory names
 in an include statement.
o Do not nest include files.
o Do not define variables other than global data references in a header file. Never
 initialize a global variable in a header file.
o When writing macro definitions, put parentheses around each use of the parame-
 ters to avoid precedence mix-ups.

3.2 Mandatory Coding Conventions
To make your programs portable, you must adhere strictly to the conventions presented in

this section. Otherwise, the following problems can occur:
o The length of a C int variable varies from machine to machine. This can cause
 problems with representation and with binary I/O that involves int quantities.
o The byte order of multibyte binary variables differs from machine to machine.
 This can cause problems if a piece of code views a binary variable as a byte stream.
o Naming conventions and the maximum length of identifiers differ from machine
 to machine. Some compilers do not distinguish between upper- and lower-case
 characters.
o Some compilers sign-extend character and short variables to int during arithmetic
 operations; some compilers do not.
o Some compilers view a hex or octal constant as an unsigned int; some do not.
 For example, the following sequence does not always work as expected:
LONG data;

.

.

.
printf("%ld\n",(data & 0xffff));

3.1 Modularity C Language Programming Guide

3-2

The printf statement prints the lower 1 6 bits of the long data item data. However, some
compilers sign-extend the hex constant Oxffff.

o You must be careful of evaluation-order dependencies, particularly in compound
 BOOLEAN conditions. Failure to parenthesize correctly can lead to incorrect
 operation.

3.2.1 Variable and Constant Names
Local variable names should be unique to eight characters. Global variable names and

procedure names should be unique to six characters. All variable and procedure names should be
completely lower-case.

Usually, names defined with a #define statement should be entirely upper-case. The only
exceptions are functions defined as macros, such as getc and isascii. These names should also be
unique to eight characters.

You should not redefine global names as local variables within a procedure.

3.2.2 Variable Typing
Using standard types is unsafe in programs designed to be portable due to the differences

in C compiler standard type definitions. Instead, use a set of types and storage classes defined
with rypedef or #define. The following tables define C language types and storage classes.

3.2 Mandatory Coding Conventions C Language Programming Guide

3-3

Table 3-1. Type Definitions
Type C Base Type

 LONG signed long (32 bits)
 WORD signed short (16 bits)
 UWORD unsigned short (16 bits)
 BOOLEAN short (16 bits)
 BYTE signed char (8 bits)
 UBYTE unsigned char (8 bits)
 VOID void (function return)
 DEFAULT int (16/32 bits)

Table 3-2. Storage Class Definitions
 Class C Base Class
 REG register variable
 LOCAL auto variable
 MLOCAL module static variable
 GLOBAL global variable definition
 EXTERN global variable reference

Additionally, you must declare global variables at the beginning of the module. Define
local variables at the beginning of the function in which they are used. You must always specify
the storage class and type, even though the C language does not require this.

3.2.3 Expressions and Constants
Write all expressions and constants to be implementation-independent. Always use

parentheses to avoid ambiguities. For example, the construct
if(c = getchar() = = '\n')

does not assign the value returned by getchar to c. Instead, the value returned by getchar is
compared to '\n', and c receives the value 0 or 1 (the true/false output of the comparison). The
value that getchar returns is lost. Putting parentheses around the assignment solves the problem:

if((c = getchar() == '\n')

3.2 Mandatory Coding Conventions C Language Programming Guide

3-4

Write constants for masking, so that the underlying int size is irrelevant. In the following
example,

LONG data;
.
.
.

printf("%ld/n".(data & 0xffffL);
the long masking constant solves the previous problem for all compilers. Specifying the one's
complement often yields the desired effect, for example, -0xff instead of 0xff00.

For portability, character constants must consist of a single character. Place multi-
character constants in string variables.

Commas that separate arguments in functions are not operators. Evaluation order is not
guaranteed. For example, the following function call

printf("%d &d\n", i++, i++);
can perform differently on different machines.

3.2.4 Pointer Arithmetic
Do not manipulate pointers as ints or other arithmetic variables. C allows the addition or

subtraction of an integer to or from a pointer variable. Do not attempt logical operations, such as
AND or OR, on pointers. A pointer to one type of object can convert to a pointer to a smaller
data type with complete generality. Converting a pointer to a larger data type can yield alignment
problems.

You can test pointers for equality with other pointer variables and constants, notably
NULL. Arithmetic comparisons, such as > =, do not work on all compilers and can generate
machine-dependent code.

When you evaluate the size of a data structure, remember that the compiler might leave
holes in a data structure to allow for alignment. Always use the sizeof operator.

3.2 Mandatory Coding Conventions C Language Programming Guide

3-5

3.2.5 String Constants
Allocate strings so that you can easily convert programs to foreign languages. The

preferred method is to use an array of pointers to constant strings, which is initialized in a
separate file. This way, each string reference then references the proper element of the pointer
array.

Never modify a specific location in a constant string, as in the following example:
BYTE string[] = "BDOS Error On x:";

.

.
string[14] = 'A';
Foreign-language equivalents are not likely to be the same length as the English version of

a message.
Never use the high-order bit of an ASCII string for bit flags. Extended character sets

make extensive use of the characters above Ox7F.

3.2.6 Data and BSS Sections
Usually, C programs have three sections: text (program instructions), data (initialized

data), and BSS (uninitialized data). Avoid modifying initialized data if at all possible. Programs
that do not modify the data segment can aid the swapping performance and disk utilization of a
multiuser system.

Also, if a program does not modify the data segment, you can place the program in ROM
with no conversion. This means that the program does not modify initialized static variables.
This restriction does not apply to the modification of initialized automatic variables.

3.2 Mandatory Coding Conventions C Language Programming Guide

3-6

3.2.7 Module Layout
The following list tells you what to include in a module.
o At the beginning of the file, place a comment describing the following items:

 - the purpose of the module
 - the major outside entry points to the module
 - any global data areas that the module requires
 - any machine or compiler dependencies
 o Include file statements.

o Module-specific #define statements.
o Global variable references and definitions. Every variable should include a comment
 describing its purpose.
o Procedure definitions. Each procedure definition should contain the following items:

 - A comment paragraph, describing the procedure's function, input parameters,
 and return parameters. Describe any unusual coding techniques here.
 - The procedure header. The procedure return type must be explicitly specified.
 Use VOID when a function returns no value.
 - Argument definitions. You must explicitly declare storage class and variable

 type.
 - Local variable definitions. Define all local variables before any executable
 code. You must explicitly declare storage class and variable type.
 - Procedure code.

Refer to Appendix C for a sample program.

3.2 Mandatory Coding Conventions C Language Programming Guide

3-7

3.3 Suggested Coding Conventions
The following suggestions increase program portability and make programs easier to

maintain.
o Keep source code within an 80-character margin for easier screen editing.
o Use a standard indention technique, such as the following:

 - Begin statements in a procedure one tab stop (column eight) from the left
 margin.
 - Indent statements controlled by an if, else, while, do, or for, one tab stop. If
 you require multiple nested indentions, use two spaces for each nesting level.
 Avoid going more than five levels deep.
 - Place the brackets surrounding each compound statement on a separate line,
 aligned with the indention of the controlling statement. For example,

for(i-0;i<MAXNUM;i++)
{

j = compute(i);
if (j > UPPER)

j = UPPER;
output(j);

}
- Place a null statement controlled by an if, else, while, for, or do, on a separate
 line, indented for readability.

o To document your code, insert plenty of comments. If your code is particularly
 abstruse, inserting comments helps clarify it.

o Put all maintenance documentation in the source code itself. If you do not, the
 documentation will not be updated when the code changes.

o Use blank lines, form-feeds, and white space to improve readability.

End of Section 3

3.3 Suggested Coding Conventions C Language Programming Guide

3-8

Appendix A
CP/M-68K Error Codes

The perror function and the errno external variable determine the cause of an error during
a CP/M-68K system call. The include file <errno.h> contains symbolic definitions for the errors
that CP/M-68K returns. The following table lists error numbers, symbolic names, and messages
available from perror.

Table A-1. CP/M-68K Error Codes
 Number Name Error Message

 0 - Error Undefined on CP/M-68 K
 1 - Error Undefined on CP/M-68 K
 2 ENOENT No Such File
 3 - Error Undefined on CP/M-68K
 4 - Error Undefined on CP/M-68K
 5 EIO I/O Error
 6 - Error Undefined on CP/M-68K
 7 E2BIG Arg List too Long
 8 - Error Undefined on CP/M-68K
 9 EBADF Bad file Number
 10 - Error Undefined on CP/M-68K
 11 - Error Undefined on CP/M-68K
 12 ENOMEM Not enough core
 13 EACCES Permission denied
 14 - Error Undefined on CP/M-68K
 15 - Error Undefined on CP/M-68K
 16 - Error Undefined on CP/M-68K
 17 - Error Undefined on CP/M-68K
 18 - Error Undefined on CP/M-68K
 19 - Error Undefined on CP/M-68K
 20 - Error Undefined on CP/M-68K

A-1

Table A-1. (continued)
Number Name Error Message

 21 - Error Undefined on CP/M-68 K
 22 EINVAL Invalid argument
 23 ENFILE File table overflow
 24 EMFILE Too many open files
 25 ENOTTY Not a typewriter
 26 - Error Undefined on CP/M-68K
 27 EFBIG, File too big
 28 ENOSPC No space left on device
 29 - Error Undefined on CP/M-68K
 30 EROFS Read-Only file system
 31 - Error Undefined on CP/M-68K
 32 - Error Undefined on CP/M-68K
 33 - Error Undefined on CP/M-68K
 34 - Error Undefined on CP/M-68K
 35 ENODSPC No directory space

The file <errno.h> also includes the names for all errors defined with UNIX V7.
Therefore, programs that reference these definitions need not be changed.

End of Appendix A

Appendix - A CP/M-68K Error Codes C Language Programming Guide

A-2

Appendix B
Customizing the C Compiler

Compiling a C program requires three compiler passes. The output of the compiler is
assembly language, which must be assembled and linked to produce a program that runs. The
compiler, assembler, linker load modules, C library, and the system include files need a substantial
amount of disk storage space, minimizing storage space. This appendix discusses compiler
operation and suggests ways to minimize the disk storage requirements for compiling.

B.1 Compiler Operation
The C compiler has three components: the preprocessor (CP68), the parser (CO68), and

the code generator (Cl68). The assembler (AS68) and the linker (LO68) also help generate an
executable program. The following list tells you how these components operate.

1 .The preprocessor, CP68, takes the original source file and produces a file with
 all #define and #Include statements resolved. The preprocessor command line takes
 the form:
 CP68 [-I d:] file.C file.1
 The -1 flag indicates that the next argument is a CP/M-68K drive specification.

 This drive is used for all library include statements of the form #Include <file>.
 Drive specifications can also appear in the filename portion of an #Include
 statement, but this procedure is not recommended. File.C is the source file, and
 filc.1 is the output file.

2. The parser, C068, takes the file produced by the preprocessor and creates an
 intermediate code file. The command line takes the form:

 C068 file.1 file.IC file.ST
 File.1 is the output from the preprocessor. File.IC is the intermediate code file that
 C168 uses. File.ST is a temporary file that collects constant data for inclusion at the
 end of the intermediate code file.

B-1

3. The code generator, C168, takes the intermediate code file from C068 and
 produces an assembly-language source file. The command line takes the form:
 C168 file.IC file.S [-LD]
 File.IC is the intermediate code output from C068. File.S is the assembly-
 language output file. The -L flag indicates that the compilation assumes all
 address variables are 32 bits. The default is 16-bit addresses. The -D flag causes
 the compiler to include the line numbers from the source file (file.C) as corn-
 merits in the generated assembly language. This is useful for debugging.
 4. The assembler, AS68, translates the compiler output to a form that the linkage
 editor can use. The command line takes the form:
 AS68 -L -U [-F d:] [-S d:l file.S
 The -L option indicates to the linkage editor that addresses are considered 32-bit
 quantities. The -U option means that undefined symbols are considered external
 references. The -F option specifies a drive that the assembler uses for temporary
 files. The -S option specifies a drive that the assembler uses for the initialization
 file (AS68SYMB.DAT). File.S is the output of C168, and file.0 is produced by
 the assembler.
 5. The linker, L068, produces an executable file from the output of one or more
 assembler runs. You must also include a start-up file and the C library when
 linking C programs. The linker command line takes the form:
 L068 -R [-F d:] -0 file.68K S.0 file.0 clib
 The -R option specifies that the file be relocatable. Relocatable files run on any
 CP/M-68K system. The -F option allows you to place linker temporary files on
 a disk drive other than the default. The -0 file.68K construct makes the linker
 place the executable output in file.68K. S.0 is the run-time start-up routine.
 You must include this file as the first file in every C program link. File.0 is the
 output of the assembler. Specify multiple files between S.0 and clib if you want

 separate compilation. clib is the C library file.

Appendix - B.1 Compiler Operation C Language Programming Guide

B-2

B.2 Supplied submit Files
CP/M-68K includes two submit files, c.sub and clink.sub, that compile and link C

programs (see Section 1. 1). Usually, these files are located on the default drive. However, you
can edit these files to specify different disk drives for any of the following drives:

o The disk drive on which the compiler passes, assembler, and linker reside.
o The disk drive that the #Include <file> statements in the C preprocessor

 reference.
o The disk drive with the assembler initialization file.
o The disk drive on which the assembler and linker create temporary files.
o The disk drive containing the C library file.

B.3 Saving Disk Space
You can do the following things to conserve disk space:
o Use the reloc utility on all the load modules, the compiler, assembler, linker, and

 editor. This significantly reduces file size and load time.
o Place all the load modules on one disk and use another disk for sources and

 temporary files. This requires two drives.
o On single-density disk systems, you must place the C library file and linker on

 a separate disk and swap disks before linking.

Appendix - B-2 Supplied submit Files C Language Programming Guide

B-3

B.4 Gaining Speed
Along with the items in Section B.3, you can speed compilation by implementing the

following:
o Put the assembler temp files on a different drive from the source and object files.
o Put the linker temp files on a different drive from the object input, C library, and

 load module output.
o Use the linker -S (suppress symbol table) and -T (absolute load module) switches

 in place of the -R flag. If you do this, the resulting program cannot run on an
 arbitrary CP/M-68K system.

End of Appendix B

Appendix - B.4 Gaining Speed C Language Programming Guide

B-4

Appendix C
Sample C Module

The modules in this appendix are written and documented in C code that follows the style
conventions discussed in Section 3.

/**/
/* */
/* - P r i n t f M o d u 1 e */
/* */
/* This module is called through the single entry point "_print" to */
/* perform the conversions and output for the library functions: */
/* */
/* printf = Formatted print to standard output */
/* fprintf - Formatted print to stream file */
/* sprintf = Formatted print to string */
/* */
/* The calling routines are logically a part of this module, but are */
/* compiled separately to save space in the user's program when only */
/* one of the library routines is used. */
/* */
/* The following routines are present: */
/* */
/* _printf Internal printf conversion / output */
/* _prnt8 Octal conversion routine */
/* _prntx Hex conversion routine */
/* __conv Decimal ASCII to binary routine */
/* _putstr Output character to string routine */
/* _prntl Decimal conversion routine */
/* */
/* The following routines are called: */
/* */
/* st rien Compute length of a string */
/* putc Stream output routine */
/* ftoa Floating point output conversion routine */
/* */
/* This routine depends on the fact that the argument list is always */
/* composed of LONG data items. */
/* */
/* Configured for Whitesmith's C on VAX. ||putc|| arguments are */
/* reversed from UNIX. */
/* */
/**/

C-1

/*
* Include files:
*/
#include <stdio.h> /* Just the standard stuff */
/*
 * Local DEFINEs
*/
#define HIBIT 31 /* High bit number of LONG */

/*
* Local static data:
*/ /******************************/

MLOCAL BYTE *_ptrbf= 0; /* Buffer Pointer */
MLOCAL BYTE *=ptrst= o; /* => File/string (if anY) */
MLOCAL BYTE *__fmt = 0; /* Format Pointer */

/******************************/

Appendix - C Sample C Module C Language Programming Guide

C-2

/ ***
*
* PRINTF INTERNAL ROUTINE
*
*
* Routine "_printf" is used to handle all "printf" functions, including
* " sprint f " , and " f print f " .
*
* Calling Sequence:
*
* _printf)fd,func,fmt,argl);
*
* Where:
*
* fd Is the file or string pointer.
* func Is the function to handle output.
* fet Is the address of the format string.
* argl Is the address of the first arg.
*
*
* Returns:
*
* Number of characters output
*
* Bugs:
*
* It is assumed that args are contiguous starting at "argl" , and that
* all are the same size (LONG), except for floating point.
*
*
**
_printf(fd ,f ,fmt ,al) /******************************/

LONG fd; /* Not really, but ... */
LONG (*f) () ; /* Function pointer */
BYTE *fmt ; /* -> Format string */
LONG *al ; /* -> ArS list */

{ /******************************/
LOCAL BYTE c; /* Format character temp */
LOCAL BYTE *s; /* Output string pointer */
LOCAL BYTE adj; /* Right/left adJust flag */
LOCAL BYTE buf[30]; /* Temporary buffer */

/******************************/

Appendix - C Sample C Module C Language Programming Guide

C-3

/******************************/
LOCAL LONG *adx; /* Are Address temporary */
LOCAL LONG x; /* Arg Value temporary */
LOCAL LONG n; /* String Length Temp */
LOCAL LONG m; /* Field Length Temporary */
LOCAL LONG width; /* Field width */
LOCAL LONG prec; /* Precision for "%x.yf" */
LOCAL LONG padchar; /* '0' or ' ' (padding) */
LOCAL DOUBLE zz; /* Floating temporary */
LOCAL DOUBLE *dblptr; /* Floating temp. address */
LOCAL LONG ccount; /* Character count */

 EXTERN _putstr() ; /* Reference function */
/******************************/
/******************************/

ccount = 0; /* Initially no characters */
_ptrbf = buf; /* Set buffer pointer */
adx = a1; /* Copy address variable */

 _ptrst = fd; /* Copy file descriptor */
 __fmt = fet; /* Copy format address */

/******************************/
if(*__fmt == 'L' | | *__fmt == 'l') /* Skip long output */

__fmt++; /* conversions */
/* */

/***/
/* This is the main format conversion loop. Load a character from the */
/* format string, If the character is "%' , perform the appropriate */
/* conversion. Otherwise, Just output the character. */
/***/

/* */
while(c = *__fmt++) /* Pick up next format char */
{ /* */

if(c != "%") /******************************/
{ /* */
 (*f))fd ,c) ; /* 1f not '%" , Just output */
 ccount++; /* Bump character count */
} /******************************/
 else /* It is a '%', */
{ /* convert */

 x = *adx++; /* x = address of next arg */
/******************************/

 if(*__fmt == "- ") /* Check for left adjust */
 { /******************************/

 adj = 'l'; /* Is left, set flag */
 __fmt++; /* Bump format pointer */

 } /* */

Appendix - C Sample C Module C Language Programming Guide

C-4

 else /* Right adJust */
 adj = 'r' ; /******************************/

/* */
 padchar=(*__fmt=='0') ? '0' : ' '; /* Select Pad character */

/******************************/
 width = __conv() ; /* Convert width (if any) */

/******************************/
 if(*__fmt == ' . ') /* ' . ' means precision spec */
 { /* */

 ++__fmt ; /* Bump past " . ' */
 prec = __conv() ; /* Convert precision spec */

 } /* */
 else /* None specified */

 prec = 0; /******************************/
/* */

 s = 0; /* Assume no output string */
 switch(c = *__fmt++) /* Next char is conversion */
 { /* */

 case 'D': /* Decimal */
 case 'd': /* */
 _prtl(x) ; /* Call decimal print rtn */
 break; /* Go do output */

/******************************/
case 'o': /* Octal */
case 'O': /* Print */

 _prnt8(x) ; /* Call octal printer */
 break ; /* Go do output */

/******************************/
case "x": /* Hex */
case "X": /* Print */

 _prntx(x) ; /* Call conversion routine */
 break; /* Go do output */

/******************************/
case 'S': /* String */
case 's': /* Output? */

 s=x; /* Yes, (easy) */
 break; /* Go finish up */

/******************************/
case 'C': /* Character */
case ' c ' : /* Output? */

 _ptrbf++ = x&0377; / Just load buffer */
 break; /* Go output */

/******************************/
case 'E': /* Floating point? */
case 'e " : /* */

Appendix - C Sample C Module C Language Programming Guide

C-5

case 'F': /* */
case "f " : /* */

 dblptr = adx-l ; /* Assumes 64 bit float! */
 zz = *dblptr; /* Load value */
 adx =+ 1; /* Bump past second word */
 ftoa (zz,buf,prec,c); /* Call floating conversion */
 prec = 0; /* Fake out padding routine */
 a = buf; /* just like string print */
 break; /* Go Output */

/******************************/
default: /* None of the above? */

 (*f) (fd,c) ; /* Just Output */
 ccount++; /* Count it, */
 adx--1 ; /* Fix arg address */

 } /* End switch */
/******************************/

 if (s == 0) /* 1f a = 0, string is in */
 { /* "buf" , */

_ptrbf = '0'; / Insure termination */
s = buf; /* Load address */

 } /******************************/
/* */

 n = strlen(s) ; /* Compute converted length */
 n = (prec<n && prec != 0) ? prec : n; /* Take min(Prec ,n) */

 m = width-n; /* m is # of pad haracters */
/******************************/

 if (adj == 'r') /* For right adjust , */
while (m-- > 0) /* Pad in front */
{ /* */

 (*f) (fd ,padchar) ; /* Thusly */
 ccount++; /* Count it */

} /* */
/******************************/

 while (n--) /* Output Converted */
 { /* */

(*f) (fd ,*s++) ; /* Data */
ccount++; / * Count it */

 } /* */
/******************************/

 while (m-- > 0) /* 1f left adjust, */
 { /* */

 (*f) (fd ,padchar) ; /* Pad */
ccount++; /* Count padded characters */

 } /******************************/
 _ptrbf = buf; /* Reset buffer pointer */

Appendix - C Sample C Module C Language Programming Guide

C-6

 } /* End else */
} /* End while */
if) (*f) == _putstr) /* 1f string output , */

 (*f) (fd ,'0") ; /* Drop in terminator char */
/******************************/

return(ccount) ; /* Return appropriate value */
} /* End _printf */

/******************************/

Appendix - C Sample C Module C Language Programming Guide

C-7

/***/
/* - P R N T 8 P R 0 C E D U R E */
/* --- */
/* */
/* Routine "*_prnt8" converts a binary LONG value to octal ascii. */
/* The area at "_ptrbf" is used, */
/* */
/* Calling Sequence: */
/* */
/* _prnt8(n) ; */
/* */
/* n is the number to be converted, */
/* */
/* Returns: */
/* */
/* (none) */
/* */
/***/
VOID _prnt8 (n) /* */

LONG n; /* Number to convert */
{ /* */

REG WORD p; /* Counts bits */
REG WORD k; /* Temporary 3-bit value */
REG WORD sw; /* Switch 1 > output */

/******************************/
if (n==0) /* Handle 0 as special case */
{ /* */

_ptrbf++ = '0'; / Put in one zero */
return; /* And quit */

} /* */
/******************************/

sw = 0; /* Indicate no output Yet */
/* */

for (p=HIBIT; p >== 0; p == 3) /* Use 3 bits at a time */
/* */

if ((k = (n>>p)&07) : | sw) /* Need to output yet? */
{ /* */

if (p-=HIBIT) /* 1st digit has only 2 bits */
 k = k & 02; /* Mask appropriately */

_ptrbf++ = '0' + k; / ASCIIfy digit */
sw = 1 ; /* Set output flag */

} /* End if */
} /* End _prnt8 */

/******************************/

Appendix - C Sample C Module C Language Programming Guide

C-8

/**/
/* */
/* _ P r n t x F u n c t i o n */
/* */
/* */
/* The "_prntx'" function converts a binary LONG quantity to hex ASCII */
/ * and sto r es the r es u 1 t in "*_ptrbf"'. Leading zeros are suppressed. */
/* */
/* Calling sequence: */
/* */
/* _prntx)n) ; */
/* */
/* where "n" is the value to be converted. */
/* */
/* Returns: */
/* */
/* (none) */
/* */
/**/
VOID _prntx (n) /* */

LONG n; /* 32 bits */
{ /*******************************/

REG LONG d; /* A digit */
REG LONG a; /* Temporary value */

/******************************/
if (a = n>>4) /* Peel off low 4 bits */

_prntx(a & 0xfffffff) ; /* 1f <> 0, print first */
d = n&017; /* Take low four bits */
_ptrbf++ = d > 9 ? 'A'+d-10 : '0' + d;/ ASCIIfy into buffer */

} /******************************/

Appendix - C Sample C Module C Language Programming Guide

C-9

/***/
/* */
/* -- C o n v F u n c t i o n */
/* ------------------------------------ */
/* */
/* Function "__conv" is used to convert a decimal ASCII string in */
/* the format to binary. */
/* */
/* Calling Sequence: */
/* */
/* val = __conv() ; */
/* */
/* Returns: */
/* */
/* "val" is the converted value */
/* Zero is returned if no value */
/* */
/***/
LONG __conv() /* */
{ /******************************/

REG BYTE c; /* Character temporary */
REG LONG n; /* Accumulator */

/******************************/
n = 0; /* Zero found so far */
while(((c= *__fmt++) >= '0') /* While c is a digit */

 && (c <= '9')) /* */
 n = n*l0+c- '0' ; /* Add c to accumulator */

__fmt-- ; /* Back up format pointer to */
/* character skipped above */

return(n) ; /* See , wasn't that simple? */
} /******************************/

Appendix - C Sample C Module C Language Programming Guide

C-10

/***/
/* */
/* - P u t s t r F u n c t i o n */
/* ------------------------------------ */
/* */
/* */
/* Function '_putst r" is used by 'sprintf " as the outPut function */
/* argument to "_printf". A single character is copied to the buffer */
/* at "=ptrst". */
/* */
/* Calling Sequence: */
/* */
/* =putstr(str,chr); */
/* */
/* where "str" is a dummy argument necessary because the other output */
/* functions have two arguments. */
/* */
/* Returns: */
/* */
/* (none) */
/* */
/***/
VOID _putstr(str,chr) /* */

REG BYTE chr; /* The output character */
BYTE *str; /* Dummy argument */

{ /******************************/
_ptrst++ = chr; / Output the character */
return(0) ; /* Go back */

} /******************************/

Appendix - C Sample C Module C Language Programming Guide

C-11

/***/
/* */
/* - P r t 1 F u n c t i o n */
/* ------------------------------------- */
/* */
/* Function "_prtl" converts a LONG binary quantity to decimal ASCII */
/* at the buffer pointed to by "_ptrbf" */
/* */
/* Calling Sequence: */
/* */
/* =prtl(n) ; */
/* */
/* where "n" is the value to be converted. */
/* */
/* Returns: */
/* */
/* (none) */
/* */
/***/
VOID _prtl(n) /* */

REG LONG n; /* Conversion input */
{ /******************************/

REG LONG digs[15]; /* store digits here */
REG LONG *dpt; /* Points to last digit */

/******************************/
dpt = digs; /* Initialize digit pointer */

/******************************/
if (n >= 0) /* Fix */

 n = -n; /* up */
else /* sign */

 _ptrbf++ = '- ' ; / stuff */
/******************************/

for (; n != 0; n = n/10) /* Divide by 10 till zero */
dpt++ = n%l0; / Store digit (reverse ord) */

/******************************/
if (dpt == digs) /* Zero value? */

dpt++ = 0; / Yes , store 1 zero digit */
/******************************/

while (dpt != digs) /* Now convert to ASCII */
{ /* */

--dpt; /* Decrement pointer */
*_ptrbf++ = '0' - *dpt; /* Note digits are negative) */

} /* */
} /******************************/

End of Appendix C

Appendix - C Sample C Module C Language Programming Guide

C-12

Appendix D
Error Messages

This appendix lists the error messages returned by the components of the CP/M-68K C
compiler, the C Parser, C068, the C Co-generator, C168, the C Preprocessor, CP68, and by the
CP/M-68K C Run-time Library. The sections are arranged alphabetically. Error messages are
listed within each section in alphabetical order with explanations and suggested user responses.

D. I C068 Error Messages
The CP/M-68K C Parser, C068, returns two types of error messages: diagnostic error

messages and messages indicating errors in the internal logic of C068. Both types of error
messages take the general form:

*line no. error message text
The asterisk (") indicates that the error message comes from C068. The "error message

text" describes the error. You must correct any errors you receive from C068 before invoking
C168. Uncorrected errors from C068 cause erroneous error messages to occur when you run
C168.

D.1.1 Diagnostic Error Messages
These error messages occur mostly in response to syntax errors in the source code. Refer

to your C language manual for a complete discussion of the C language syntax.
The error messages are listed in Table D-1 in alphabetical order with short explanations

and suggested user responses.

D-1

Table D-1. C068 Diagnostic Error Messages
Message Meaning
*line no. address of register

 You have attempted to take the address of a register. Correct the source code
before you recompile it.

*line no. assignable operand required
 On the line indicated, the operand to the left of the equals sign in the assignment

statement is not a valid operand. Supply a valid operand. This error might occur
because the operand is a constant instead of a variable.

*line no. bad character constant
 A character constant on the line indicated is invalid. The character

must be a single character between quotes. A control character, more than one
character, or a symbol that is not a character will cause this error to occur.
*line no. bad direction

 You attempted to reference by address instead of by value, but the expression you

used is not an address. Supply a value or a valid address before you recompile the
source code.

*line no. can't open filename
 Either the filename or the drive code is incorrect. Specify the correct drive code

and filename before you recompile the source code.
*line no. case not inside a switch block

 The case on the line indicated is not inside a switch block. Correct the source
code before you recompile it.

*line no. character constant too long
 The character constant on the line indicated is too long. A character constant must

be a single character between quotes. Correct the source code before you
recompile it.

Appendix - D.1 C068 Error Messages C Language Programming Guide

D-2

Table D-1. (continued)
Message Meaning
*line no. constant required

 The operation on the line indicated requires a constant. Correct the error before
you recompile the source code.

*line no. declaration syntax
 The syntax of the declaration on the line indicated is Incorrect. Refer to your C

language manual. Correct the syntax before you recompile the source code.
*line no. default not inside a switch block

 The default on the line indicated is not inside a switch block. Correct the Source
code before you recompile it.

*line no. dimension table overflow
 There are too many dimensions, at or prior to the line indicated, for the dimension

table. The dimension table does not have space for more than 8 or 9 dimensions.
Structures count as dimensions. Rewrite the source code to use fewer dimensions
and structures before you recompile it.

*line no. duplicate case value
Two cases for the same switch are identical. Eliminate one of the cases before you
recompile the source code.

*line no. expected label
A go to statement on the line indicated does not have a label. Supply the missing
label before you recompile the source code.

*line no. expression too complex
Due to internal limitations in C068, the expression on the line indicated is too
complex to be evaluated. Simplify the expression before recompiling the source
code.

Appendix - D.1 C068 Error Messages C Language Programming Guide

D-3

Table D-1. (continued)
Message Meaning
*line no. external definition syntax

The syntax of the external definition on the line indicated is incorrect. Correct the
syntax before you recompile the source code. Refer to your C language manual for

the correct syntax.
*line no. field overflows byte

The bit field asks for more bits than fit in an 8-bit byte. Reduce the number of bits
in the bit field before you recompile the source code.

*line no. field overflows word
The word field asks for more bytes than fit in a word. Reduce the number of bytes
in the byte field before you recompile the source code.

*line no. floating point not supported
CP/M-68K does not support floating point. Rewrite the source code before you
recompile it.

*line no. function body syntax
There is no bracket at the beginning of the function on the line indicated. Supply
the missing bracket before you recompile the source code.

*line no, illegal call
You attempted to call something that is not a function. Correct the source code
before you recompile it.

*line no. illegal function declaration .
The storage class of the function declared in the line indicated is illegal. The only
two storage classes allowed for functions are static and external. Correct the
declaration before you recompile the source code.

*line no. illegal register specification
The register specification in the line indicated is illegal. Structures and arrays
cannot be put into a register. Correct the source code before you recompile it.

Appendix - D.1 C068 Error Messages C Language Programming Guide

D-4

Table D-1. (continued)
Message Meaning
*line no. illegal type conversion

You made an incompatible assignment. This error commonly occurs when
attempting to convert a pointer, 32 bits, to an int, 16 bits. Correct the source code
before you recompile it.

*line no. indirection on function invalid
You attempted to use the indirection operator (*) on a function. Correct the

source code before you recompile it.
*line no, initializer alignment

This message usually indicates a missing initializer value, or values out of order.
Check the initializer list and correct it before you re compile the source code.

*line no. initia1izer list too long
The initializer list is too long for C068. Shorten the list before you recompile the
source code.

*line no. invalid break statement
The break statement on the line indicated is not inside a loop or a switch. Correct
the source code before you recompile it.

*line no. invalid character
There is an invalid character in the collating sequence in the line indicated. Control
characters or members of the extended character set are not valid characters.
Correct the source code before you recompile it.

*line no. invalid continue statement
The continue statement on the line indicated is not inside a loop. This error might
occur when you have used a continue statement in a switch. A continue statement
is only valid in a loop. Correct the source code before reinvoking C068.

Appendix - D.1 C068 Error Messages C Language Programming Guide

D-5

Table D-1. (continued)
Message Meaning
*line no. invalid conversion

You attempted an incompatible assignment, for example, a pointer,32 bits, and an
int, 16 bits. Correct the source code before you recompile it.

*1ine no. invalid data type
The line indicated contains an expression that attempts to equate two incompatible
quantities, for example, an int, 16 bits, and a pointer,

*line no. invalid declarator
The declarator in the line indicated is not a recognizable language element. Supply
a valid declarator before you recompile the source code.

*line no. invalid expression
The expression in the line indicated contains a syntax error. Correct the syntax of
the expression before you recompile the source code.

*line no. invalid field size
The field in the line indicated is less than or equal to zero. Correct the field size
before you recompile the source code.

*line no. invalid field type description
You attempted to put a pointer or a long into a bit field. Correct the source code
before you recompile it.

*line no. invalid for statement
The for statement in the line indicated contains a syntax error. Refer to your C
language manual for the correct syntax of a for statement. Correct the statement
before you recompile the source code.

*line no. invalid initializer
The initializer you specified in the line indicated is not a constant. You can only
initialize to a constant. Correct the source code before you recompile it.

Appendix - D.1 C068 Error Messages C Language Programming Guide

D-6

Table D-1. (continued)
Message Meaning
*line no. invalid label

You used a variable name as a label in the line indicated. Correct the source code
before you recompile it.

*line no. invalid long declaration
You attempted to declare something long that cannot be long, for example, a
character. Correct the source code before you recompile it.

*line no. invalid operand type
The expression in the line indicated contains an invalid operand. Correct the source

code before you recompile it.
*line no. invalid register specification

You attempted to put something larger than allowed into a register, for example, a
structure or a function. Correct the source code before you recompile it.

*line no. invalid short declaration
You attempted to declare something short that cannot be short. Correct the source
code before you recompile it.

*line no. invalid storage class
You specified an invalid storage class in a declaration. Refer to your C language
manual for the allowed storage classes. Correct the source code before you

recompile it.
*line no. invalid structure declaration: name

The size of the structure indicated by the variable name has a size less than or
equal to zero. Correct the source code before you recompile it.

*line no. invalid structure member name
The structure reference in the line indicated is not a member of any structure.
Correct the source code before you recompile it.

Appendix - D.1 C068 Error Messages C Language Programming Guide

D-7

Table D-1. (continued)
Message Meaning
*line no. invalid structure prototype: name

In the line indicated you reference a structure name that is not a prototype. Correct
the source code before you recompile it.

*line no. invalid type declaration
The type declared in the line indicated is invalid. Refer to your C language manual
for a discussion of valid types. Correct the source code before you recompile it.

*line no. invalid typedef statement
The line indicated contains a statement with more than one typedef keyword. Only
one typedef is allowed per statement. Correct the source code before you

recompile it.
*line no. invalid unsigned declaration

The quantity you declared unsigned in the line indicated might not be unsigned.
Only an int can be unsigned. Correct the declaration before you recompile the
source code.

*line no. invalid?: operator syntax
This message indicates an error in the use of the ?: conditional operator in the line
indicated. Refer to your C language manual for the correct syntax. Correct the
source code before you recompile it.

*line no. label redeclaration: label
You used the same label for two separate items. Correct the source code before

you recompile it.
*line no. missing colon

You left out a colon. Supply a colon in the correct location before you recompile
the source code.

*line no. missing{in initialization
You neglected to put in the left curly brace in the initialization of an array or
structure. Supply the missing brace before you recompile the source code.

Appendix - D.1 C068 Error Messages C Language Programming Guide

D-8

Table D-1. (continued)
Message Meaning
*line no. missing }

You left the right curly brace out of the initialization of an array or structure.
Supply the missing brace before you recompile the source code.

*line no. missing while
The do statement at the line indicated is missing a while at the end. Supply the
missing while before you recompile the source code.

*line no. missing semicolon
A semicolon is missing from the line indicated. Supply the missing semicolon
before you recompile the source code.

*line no. no structure name
You referred to a structure in the line indicated without giving the structure name.
Correct the source code before you recompile it.

*line no. no */ before EOF
The last comment in the source code is missing its final delimiter. Supply the
missing delimiter before you recompile the source code.

*line no. not a structure: name
The structure referenced in the line indicated is not a structure. Correct the source
code before you recompile it.

*line no, not in parameter list: x
In the line indicated, you declared the something indicated by the variable x to be
an argument to a function, but x is not in the function parameter list. Correct the
source code before you recompile it.

*line no. parenthesized expression syntax
The line indicated contains a syntax error in the parenthesized expression. Correct
the source code before you recompile it.

Appendix - D.1 C068 Error Messages C Language Programming Guide

D-9

Table D-1. (continued)
Message Meaning
*line no. redeclaration: symbol

A symbol has been declared twice. Remove one of the declarations before
recompiling the source code.

*line no. string cannot cross line
The character string at the line indicated continues beyond one line. The closing
quote to a character string must be on the same line as the opening quote, unless
you use a backslash (\) at the end of the first line to indicate that the line continues.
Correct the source code before you recompile it.

*line no. string too long
The string at the line indicated is longer than 255 characters. A string cannot be
longer than 255 characters on a single line. Break the string and use a
continuation, indicated by a backslash (\) at the end of the line to be continued.

*line no. structure declaration syntax
The syntax of the structure declaration on the line indicated is incorrect. Correct
the Syntax before reinvoking C068.

*line no. structure operation not yet implemented
On the line indicated, you assigned a structure to another structure. Assigning a
structure to another structure is not yet supported by the CP/M-68K C compiler.
Correct the source code before reinvoking C068.

*line no. structure table overflow
There are too many structures in your program for the structure tables. Eliminate
some structures before reinvoking the C compiler.

*line no. symbol table overflow
Your program uses too many symbols for the space available on the symbol table.
Eliminate some symbols before reinvoking the C compiler.

Appendix - D.1 C068 Error Messages C Language Programming Guide

D-10

Table D-1. (continued)
Message Meaning
*line no. temp creation error

The drive code or filename of the temporary file referenced in the line indicated is
incorrect. Specify the correct drive code and filename before you recompile the
source code.

*line no. too many cases in switch
The switch at the line indicated has too many cases. Eliminate some cases before
you recompile the source code.

*line no. too many initializers
The initializer list in the line indicated contains more initializers than there are
members of the array being initialized. Correct the list before you recompile the
source code.

*line no. too many params
The function declaration at the line indicated contains too many parameters.
Rewrite the source code before you recompile the source code.

*line no. undefined label: label
The label indicated by the variable 1 a b e 1 has not been defined. Correct the
source code before you recompile it.

*line no. undefined symbol: symbol
The symbol indicated by the variable "symbol" is undefined. Correct the source
code before you recompile it.

*line no. unexpected EOF
This error usually occurs when there is no right curly brace (}) after a function, or
when there are mismatched comment delimiters. Locate and correct the error
before you recompile the source code.

Appendix - D.1 C068 Error Messages C Language Programming Guide

D-11

Table D-1. (continued)
Message Meaning
*line no, usage:c068 source asm str

The syntax of the C compiler command line is incorrect. The correct syntax is
given in the error message. Reenter the command line using a valid syntax.

*line no. { not matched by }
A left curly brace ({) is not matched by a right curly brace. This error frequently
occurs in an initialization sequence. Supply the missing brace before you recompile
the source code.

*line no. ="char" assumed
You have used a = + type operation with an invalid character. When an invalid
character occurs after the = sign, C068 puts in = = instead of = . Correct the
source code before you recompile the source code.

*line no. &operand illegal
You attempted to take the address of something that is not a variable, for example,
a register. Correct the source code and recompile it.

D.1.2 Internal Logic Errors
These messages indicate fatal errors in the internal logic of C068:
*line no. can't copy filename
*line no. invalid keyword
*line no. too many chars pushed back
*line no. too many tokens pushed back
Contact the place you purchased your system for assistance. Provide the following

information:
o Indicate the version of the operating system you are using.
o Describe your system's hardware configuration.
o Provide sufficient information to reproduce the error. Indicate which program was
 running at the time the error occurred. If possible, also provide a disk with a copy of the
 program.

Appendix - D.1 C068 Error Messages C Language Programming Guide

D-12

D.2 C168 Error Messages
The CP/M-68K C Co-generator, C168, returns two types of fatal error messages:

diagnostic error messages and messages indicating errors in the internal logic of C168. Both types
of error messages take the general form:

**line no. error message text
The asterisks (**) indicate that the error message comes from C168. The error message

text describes the error. If you run C168 before correcting any errors you received from C068,
you receive erroneous errors from C168.

D.2. 1 Fatal Diagnostic Errors
The C168 fatal, diagnostic error messages are listed in Table D-2 in alphabetical order,

with explanations and suggested user responses.

Table D-2. C168 Fatal Diagnostic Errors
Message Meaning
**line no. can't create filename

Either the drive code or the filename for the file indicated by the variable
"filename" is incorrect. Ensure that you are requesting the correct drive code and
filename before you recompile the source code.

**line no. can't open filename
Either the drive code or the filename for the file indicated by the variable

"filename" is incorrect. Ensure that you are requesting the correct drive code and
filename before you recompile the source code:

**line no, divide by zero
You attempted to divide by zero in the line indicated. Correct the source code
before you recompile it.

**line no, expression too complex
An expression on the line indicated is too complex for C168. Simplify the
expression before you recompile the source code.

Appendix - D.2 C168 Error Messages C Language Programming Guide

D-13

Table D-2. C168 Fatal Diagnostic Errors
Message Meaning
**line no. modulus by zero

The second operand of the percent operator in the line indicated is zero. Correct
the source code before you recompile it.

**l ine no. structure operation not implemented
The operation you attempted with a structure in the line indicated is illegal.
Correct the source code before you recompile it.

**line no. usage: c188 icode asm [-DLmec]
The command line syntax is incorrect. The correct command line syntax is given in
the error message. Correct the syntax before you reenter the command line.

D.2.2 Internal Logic Errors
The following messages indicate fatal errors in the internal logic of C168:
**line no. cdsize: invalid type
**line no. code skeleton error: op
**line no. hard long to register
**line no. intermediate code error
**line no, invalid initialization
**line no. invalid operator op
**line no, invalid register expression
**line no. invalid storage class sc
**line no. no code table for op
**line no, skelmatch type: stype
If you receive one of these messages, contact the place where you purchased your system

for assistance. Provide the following information:

o Indicate the version of the operating system you are using.
o Describe your system's hardware configuration.
o Provide sufficient information to reproduce the error. Indicate which program was
 running at the time the error occurred. If possible, also provide a disk with a copy of the
 program.

Appendix - D.2 C168 Error Messages C Language Programming Guide

D-14

D.3 CP68 Error Messages
The CP/M-68K C Preprocessor, CP68, returns two types of fatal error messages:

diagnostic error messages and messages indicating errors in the internal logic of CP68.Both types
of error messages take the general form:

line no. error message text
The pound sign (#) indicates that the error message comes from CP68. The "error
message text" describes the error.

D.3.1 Diagnostic Error Messages
A fatal diagnostic error message prevents CP68 from processing your file. The CP68

diagnostic error messages are listed in Table D-3 with explanations and suggested user responses.

Table D-3 . CP68 Diagnostic Error Messages
Message Meaning
#line no. argument buffer overflow

An argument list in the line indicated contains too many characters for the space
allocated to the argument buffer. Reduce the number of characters in the argument
list before rerunning CP68.

#line no. bad argument: arg
In the line indicated, the argument represented by the variable "arg" contains an
invalid character. Replace or eliminate the invalid character before rerunning
CP68.

Appendix - D.3 CP68 Error Messages C Language Programming Guide

D-15

Table D-3 (continued)
Message Meaning
#line no. bad character octal no.

The line indicated contains an illegal character. The ASCII code of the invalid
character is represented by the variable "octal no", Examine the line indicated to
locate the error. Replace the character before rerunning CP68.

#line no. bad define name: name
The name indicated by the variable n a me contains one or more invalid characters.
Examine the name to locate the error. Replace the invalid characters before
rerunning CP68.

#line no. bad include file
The syntax of the "#include" statement is incorrect. The "#include"
statement must follow one of the following two formats:
#include <filename>
#include "filename"
Rewrite the statement before rerunning CP68. .

#line no. bad include file name
In the line indicated, the filename in the "#include" statement contains either an
invalid character or more than 8 characters, the maximum allowed. Supply a valid
filename before rerunning CP68.

#line no. can't open frame
The "#include" statement in the line indicated contains an invalid or nonexistent
filename. Check the filename before rerunning CP68.

#line no. can't open infile
CP68 cannot open the input file indicated by the variable "infile". Either the drive
code or the filename is incorrect. Check the drive code and the filename before
rerunning CP68.

Appendix - D.3 CP68 Error Messages C Language Programming Guide

D-16

Table D-3 (continued)
Message Meaning
#line no. can't open outfile

CP68 cannot open the output file indicated by the variable "outfile".Either the
drive code is incorrect, or the disk to which CP68 is writing is full. Check the drive
code. If it is correct, the file is full. Erase unnecessary files, if any, or insert a new

#line no. condition stacK overflow
The source code contains too many nested #if's for the space allocated to the
condition stack. The stack overflowed before the line indicated. Rewrite the source
code before rerunning CP68.

#line no. define recursion
A name or variable on the line indicated has been defined in terms of itself.
Redefine the name before rerunning CP68.

#line no. define table overflow
The source code contains one or a combination of the following: too many names,
too many long names, too many expressions, or too many large expressions. The
space allocated to the define table was filled before the line indicated. Simplify and
rewrite the source code before rerunning CP68.

#line no. expression operator stack overflow
An expression in the line indicated contains too many terms for the space allocated
to the expression operator stack. Eliminate or consolidate some operations before
rerunning CP68.

*line no. expression stack overflow
An expression in the line indicated contains too many terms for the space allocated
to the expression stack. Eliminate or consolidate some terms before rerunning
CP68.

*line no. expression syntax
The syntax of an expression in the line indicated is incorrect. Examine the line to
locate the error. Correct the syntax before rerunning CP68.

Appendix - D.3 CP68 Error Messages C Language Programming Guide

D-17

Table D-3 (continued)
Message Meaning
*line no. includes nested too deeply

The "#include" statement in the line indicated contains more than 7 nested include
files, the maximum allowed. Rewrite the source code so that no one "#include"
statement contains more than 7 nested include files.

#line no. invalid #else
A "#else" statement occurs in the source code without a preceding "#if" statement.
Supply the missing "#if" statement or eliminate the "#else" statement before
rerunning CP68.

#line no. invalid #endif
A "#endif" statement occurs in the source code without a preceding "#if"
statement. Supply the missing # i f statement or eliminate the "#endif" statement
before rerunning CP68.

#line no. invalid preprocessor command
The command in the line indicated is either not valid for CP68 or is incorrectly
formatted. Correct the command before rerunning CP68.

#line no. line overflow
The line indicated contains more than 255 characters, the maximum allowed.
Reduce the line to no more than 255 characters before rerunning CP68.

#line no. macro argument too long
An argument name in the line indicated contains more than 8 characters, the
maximum allowed. Use no more than 8 characters for the argument name, and
rerun CP68.

#line no. no */ before EOF
A comment in the source code is missing the closing */. Supply the missing */
before rerunning CP68.

Appendix - D.3 CP68 Error Messages C Language Programming Guide

D-18

Table D-3 (continued)
Message Meaning
#line no. string cannot cross line

A string in the line indicated is missing a closing quotation mark. Supply the
missing quotation mark before rerunning CP68.

#line no. string too long
The line indicated contains a string greater than 255 characters, the maximum
allowed. Shorten the string to no more than 255 characters before rerunning CP68.

#line no. symbol table overflow
The source code uses too many symbols for the space allocated to the symbol
table. The symbol table was filled prior to the line indicated. Eliminate some
symbols before rerunning CP68.

#line no. too many arguments
One of the names in the line indicated contains more than 9 arguments, the
maximum allowed. Reduce the number of arguments to no more than 9 per name
before rerunning CP68.

#line no. unexpected EOF
This message indicates an incomplete program. Examine the source code to locate
the error. Correct before rerunning CP68.

#line no. unmatched conditional
A "#if" statement occurs in the source code without a matching "#endif"
statement. Supply the missing "#endif" statement before rerunning CP68.

#line no. usage: c68 [-ix:] inputfile outputfile
This message indicates incorrect syntax in the command line. The correct syntax is
given. Correct the command line before rerunning CP68. Refer to your C manual
for an explanation of the command line syntax.

Appendix - D.3 CP68 Error Messages C Language Programming Guide

D-19

D.3.2 Internal Logic Errors
CP68 returns only one message indicating an error in the internal logic of CP68:
#line no. too many characters pushed back
If you receive this message, contact the place where you purchased your system for

assistance. Provide the following information:
o Indicate the version of the operating system you are using.
o Describe your system's hardware configuration.
o Provide sufficient information to reproduce the error. Indicate which program was
 running at the time the error occurred. If possible, also provide a disk with a copy of the
 program.

D.4 C-Run-time Library Error Messages
The C-Run-time Library returns only one fatal error message, stack overflow. The stack

overflow message means the program you are trying to include in the C-Run-time Library is too
big. Reduce the size of the program.

End of Appendix D

Appendix - D.3 CP68 Error Messages C Language Programming Guide

D-20

Index
assembler,

^, 2-42 initialization file, B-3
%, 2-34, 2-42 temp files, B-3
*, 2-34, 2-41 assembly-language source file, B-2
-, 2-34 atoi function, 2-6

atol function, 2-6
automatic variables, 1-1

A
A.68K, 1-1 B
abort function, 2-3
abs function, 2-4 binary and ASCII files,
absolute load module, B-4 distinguishing, 1-6
access function, 2-5 binary,
addition, 3-5 files, 1-6, 2-18
address variables, B-2 I/O, 3-2
addressing error trap, 2-44 binary numbers, converting to decimal
alignment, 2-22 ASCII, 2-34
AND, 3-5 bit flags, 3-6
alphanumeric characters, 2-22 black boxes, 3-1
argc /argv interface, 1-5 blank padding, 2-34, 2-41
argument, block size, changing, 2-8
 absolute value of, 2-4 blocks, releasing, 2-8
 pointer, 2-42 bogus address, freeing, 2-8
 same length, 1-4 BOOLEAN condition, 3-3
 with side effects, 2-4,2-13,2-22,5-35 boundaries, 128-byte, 2-40, 2-54
arithmetic comparison, 3-5 brackets, 2-42, 3-8
arithmetic trap, 2-44 break location, 2-14
AS68, B-i, B-2 brk function, 1-2, 2-7
ASCII character, 2-34, 2-41 BSS, 1-1, 2-14, 3-6
ASCII files, 1-6, 2-18 buffer flushing, 2-15
 in CP/M-68K, 1-6 BUSERR, 2-44
ASCII string, BYTE, 3-4
 converting to integer or binary, 2-6 byte order, 2-22, 2-35
 null-terminated, 2-34 byte stream, transferring, 2-20

Index - 1

C code generator, B-i, B-2
command line interface, 1-5

c character, 2-42 commas, 3-5
C Co-generator, D-1 comments in a module, 3-7
C language, comparing two elements, 2-38
 functions implemented in, 2-2 compilation, speeding, B-4
 portability, 3-1 compiler, B-i, B-2, B-3, B-4
 program memory layout, 1-1 compiler-generated code, 1-5
 program compiling, 1-1 compiling a C program, 1-1
c operator, 2-34, 2-42 completion code, 2-15
C Parser, D-1 compound statement, 3-8
C Preprocessor, D-1 CON:, 1-5, 2-28, 2-51
c.sub, 1-1, B-3 concatenating strings, 2-46
C1 68, B-i, D-1 console device, 2-21, 2-28
calling conventions, 1-2 contiguous digits, 2-6
calloc function, 2-8 control characters, 2-12
carriage return, 2-12 control string format, 2-41
carriage return line-feed, 1-6 controlling statement, 3-8
character, 8-bit, 2-35 conversion character, 2-41
character class, 2-12 conversion code, capitalized, 2-34
character string, 2-42 conversion operators, 2-33
characters, locating in strings, 2-27 optional instructions in, 2-34
CHK instruction, 2-44 conversion specifications, 2-41
chmod function, 2-9 copying strings, 2-48
chown function, 2-9 CP68, B-i
clib, B-2 CP/M-68K C compiler, D-1
clink.sub, 1-1, B-3 CP/M-68K C Run-time Library, D-1
close function, 2-10 creat function, 2-10, 2-1 1, 2-18, 2-40
closing streamfiles, 2-16 creata function, 2-11
C068, B-i, D-1 creatb function, 2-11
coding conventions, CTRL-Z, 1-6
 mandatory, 3-2 ctype function, 2-12
 suggested, 3-8 <ctype.h> file, 2-12

Index - 2

D edata location, 1-2, 2-14
editor, B-3

-D flag, B-2 EFBIG, A-2
d character, 2-42 EINVAL, A-2
d operator, 2-34 EIO, A-1
data, else, 3-8
 conversion, 2-2 end, 1-2
 region, 2-14 end location, 2-14
 structures, 3-1 end-of-file, 2-17
DDT-68K, 2-3 errors, 2-23
decimal ASCII, 2-34 ENFILE, A-2
 integer conversion, 2-42 ENODSPC, A-2
DEFAULT, 3-4 ENOENT, A-1
default drive, B-3 ENOMEN, A-1
define statement, 3-3, B-I ENOSPC, A-2
 module-specific, 3-7 NOTTY, A-2
deleting a file, 2-53 entry points, 2-2
destination string, 2-48 EROFS, A-2
/dev/lp, 1-5 errno external variable, 2-32, A-i
device access, terminating, 2-10 error,
device I/O, 1-5 in specified stream, 2-17
digit string, 2-34 system-dependent, 2-3
disk space, conserving, B-i, B-3 error file, 2-32
disks, swapping, B-3 error messages, numbers, 2-32, A-i
do, 3-8 error return, from getchar, 2-22
documenting code, 3-8 etext location, 1-2, 2-14
drive changing, B-3 exception condition, 68000, 2-44
dynamic memory allocation, 2-1 executable file, B-2
dynamic memory areas, exit function, 2-15

 heap, 1-2 extended character sets, 3-6
 stack, 1-2 EXTERN, 3-4

 external,
 names, 1-4

 E reference, B-2
 variable, 2-32
EACCES, A-1
EBADF, A-1

Index - 3

F fputs function, 2-37
frame pointer, 1-2

-F option, B-2 fread function, 2-20
fcetc function, 2-22 free function, 1-2, 2-8
fclose function, 2-10, 2-16 freopa function, 2-18
feof function, 2-17 freopb function, 2-18
ferror function, 2-17, 2-36 freopen function, 2-18
fflush function, 2-16 fscanf function, 2-41
fgets function, 2-20 fseek function, 2-21, 2-52
field width, 2-34 ftell function, 2-21
file access, fwrite functions, 2-20
 terminating, 2-10
 legal, 2-5
file data, reading, 2-40 G
file descriptor, 2-51
file I/O, 1-5 getc function, 2-22, 2-52
file pointer, 2-40 getchar function, 2-22
file size, reducing, B-3 getl function, 2-22
file statements, 3-7 getpass function, 2-24
file streams, manipulating, 2-17 getpid function, 2-25
file.0, B-2 gets function, 2-26
file.C, B-i getw function, 2-22
file.I, B-I GLOBAL, 3-4
file.IC, B-i global data areas, 3-1
file.S, B-2 global variable, 3-3
file.ST, B-1.
filename, temporary, 2-30
files, changing protection and H
 ID, 2-9
floating-point, header file, 3-2
 conversion, 2-34 heap management, 1-2
 routines, 2-2 heap space, allocating, 2-8
flushing stream files, 2-16 heap extending, 2-7
fopen function, 2-18 hex constant, 3-2
fopena function, 2-18 hexadecimal ASCII, 2-34
fopenb function, 2-18 integer conversion, 2-42
for, 3-8 high bytes, reversing with low bytes,
form feed, 2-12 2-50
formatting data, 2-33
fprintf function, 2-33
fputc function, 2-35

Index - 4

I J
-I flag, B-i JSR instruction, 1-2
#include, B-1
#include "file.h", 3-2 L
I/O,
 redirection, 1-7 L character, 2-34
 stream, 2-18 -L flag, B-2
 device, 1-5 -L option, B-2
 file, 1-5 language library, compatibility with
 single-byte, 1-5 UNIX V7, 2-1
if, 3-8 leading sign, 2-6
illegal instruction trap, 2-44 leading spaces, 2-6
include files, nesting, 3-2 line A trap, 2-44
indention technique, 3-8 line F trap, 2-44
index function, 2-27 line-feed, 1-6, 2-12, 2-41
initialization file, B-2 linkage editor, 1-2, B-2
initialized data, 1-1, 3-6 linker, B-i, B-2, B-3, B-4
input, 1-6 linker, invoking, 1-1
 format, 2-41 listing device, 2-21
 stream, 2-52 literal matches, 2-42
instruction trap, 2-3 L068, B-1, B-2
int, load modules, B-3
 random number seed, 2-39 load time, reducing, B-3
 variable length, 3-2 LOCAL, 3-4, 3-7
intermediate code file, B-1 local variable names, 3-3
intermodule communication, logical, 3-5
 using procedure calls, 3-1 LONG, 3-4
isalnum(c), 2-12 long, 32-bit, 2-22, 2-34
isalpha(c), 2-12 long masking constant, 3-5
isascii(c), 2-12 longimp function, 2-43
isatty function, 2-28 low bytes, reversing with high bytes,
iscntrl(c), 2-12 2-50
isdigit(c), 2-12 lower-case, 2-2, 3-2, 3-3
islower(c), 2-12 lseek function, 2-29
isprint(c), 2-12 LST:, 1-5
ispunct(c), 2-12
isspace(c), 2-12
isupper(c), 2-12

Index - 5

M 0
macro, 2-4, 2-13, 2-22, 2-35 0 character, 2-42
macro definitions, 3-2 0 operator, 2-34
maintenance costs, 3-1 -O file.68K, B-2
maintenance documentation, 3-8 object code, reducing size, 2-22
malloc function, 1-2, 2-8 octal,
mandatory coding conventions, 3-2 ASCII, 2-34, 2-42
margin, 3-8 constant, 3-2
masking, 3-5 open function, 2-10, 2-18, 2-31, 2-40
memory allocation, 2-15 open stream, 2-17, 2-41
memory layouts of C programs, 1-1 opena function, 2-31
minus sign, 2-34 openb function, 2-31
mktemp function, 2-30 opening files, 2-31
MLOCAL, 3-4 operations, 3-5
modular programs, 3-1 OR, 3-5
module, output, 1-6
 layout, 3-7 file, B-1
 size, 3-1 left-adjusted, 2-34
module-specific #define statements, 3-7 right-adjusted, 2-34
movem. 1 instruction, 1-4 overflow, detection and reporting, 2-6
multibyte binary variables, 3-2
multicharacter constants, 3-5

P
N padding, blank or zero, 2-34

parentheses, 3-2, 3-4
nesting level, 3-8 parser, B-1
newline, 2-41 password, 2-24
 character, 2-26, 2-37 PDP-11, 2-50
 incompatibility, 2-37 percent sign, %, 2-33
NO-OPS, 2-9 peripheral devices, 1-5
nonlocal GOTO, 2-43 perror function, 2-32, A-i
null statement, 3-8 pointer arithmetic, 3-5
null-terminated string, 2-34, 2-37 portability, 3-1 to 3-7
concatenating, 2-46 precision field, 2-34

Index - 6

precision string, 2-34 rewind function, 2-21
preprocessor, B-1 rindex function, 2-27
primary memory, 2-20 ROM, 3-6
printf function, 2-33, 3-2, 3-5 run-time start-up routine, B-2
privilege violation, 2-44
procedure definitions, 3-7 S
procedure header, 3-7
process ID, false, 2-25 s character, 2-42
punctuation characters, 2-12 s operator, 2-34
pushed-back characters, 2-52 -S option, B-2
putc function, 2-35 -S switch, B-4
putchar function, 2-35 sample C module, C-i
putl function, 2-35 sbrk function, 1-2, 2-7, 2-14
puts function, 2-37 scanf function, 2-41
putw function, 2-35 creen editing, 3-8

seed, 2-39
setjmp function, 2-43

 Q sign-extending characters, 3-2
signal function, 2-44

quick sort routine, 2-38 single-byte I/O, 1-5
single-density disk system, B-3
source file, B-1

 R space, 2-12
 allocation for array, 2-8

-R option, B-2 sprintf function, 2-33
rand function, 2-39 srand function, 2-39
random number generator, 2-39 sscanf function, 2-41
random numbers, retrieving, 2-39 stack frame, 1-4
read errors, 2-23 stack use, 1-2
read function, 2-22, 2-40 stack-popping code, 1-4
read pointer, 2-21 standard error file, 1-6
readability, improving, 3-8 standard type definitions, 3-3
realloc function, 2-8 start-up file, B-2
references, global, 3-7 static data, 2-24
REG, 3-4 static variables, 3-6
registers, scratch, 1-4 stderr, 1-6
regular files, 1-6 stdin, 1-6
reloc utility, B-3 <stdio.h> file, 1-6, 2-4, 2-22, 2-35
relocatable files, B-2 stdout, 1-6

Index - 7

storage class, 3-7 temporary file, B-1
 definitions, 3-3 terminal device, 2-51
strcat function, 2-46 terminating current program, 2-3
strcmp function, 2-47 text, 3-6
strcpy function, 2-48 tilde, 2-12
stream, trace trap, 2-42
 address, 2-16 trailing null, 2-37, 2-42
 buffer, 2-29 transferring data, 2-54
 file, 2-21, 2-26 TRAPV instruction, 2-42
 output file, 2-15 ttyname function, 2-51
string, type, 3-2

 comparison, 2-47 type definitions, 3-3
 length, 2-47 typedef, 3-3
 null-terminated, 2-24
 variables, 3-5
strlen function, 2-49 U
strncat function, 2-46
strncpy function, 2-48 u operator, 2-34
strncmp function, 2-47 -U option, B-2
stylistic rules in C programs, 3-1 UBYTE, 3-4
submit files, B-3 underline character, 1-4
subroutine calls, 1-4 ungetc function, 2-52
subtraction, 3-5 uninitialized data, 1-1, 3-6
suppressed assignments, 2-41 UNIX,
swab function, 2-50 compatibility, 2-9, 2-32, 2-37, 2-44
swapping binary data, 2-50 versions 1 through 6, 2-29
symbolic constants, 3-2 version 7, A-2
symbolic names, A-i with fopen, 2-19
system, with getpid, 2-25
 calls, 2-1 with getchar, 2-23
 error, 2-32 UNIX programs, with binary files,
 include files, B-1 2-31
 traps, 2-1 unlink function, 2-53
system-wide file, 3-2 unsigned characters, 2-47

unsigned int, 3-2
upper bound of program, setting, 2-7

T upper-case, 2-2, 3-2, 3-3
user control block, 1-5

-T switch, B-4 UWORD, 3-4 .
tab, 2-12, 2-41, 3-8
tell function, 2-29

Index - 8

V
variable, 3-7
variable aames,
 global, 3-3
 local, 3-3
 lower-case, 3-3
variable type, 3-7
VAX, 2-50
vectors, sorting, 2-38
VOID, 3-4
W
while, 3-8
white space characters, 2-12
WORD, 3-4
 16-bit, 2-35
 32-bit longword, 2-3
write function, 2-35, 2-54
write pointer, 2-21

X
X characters, 2-30, 2-35, 2-42
X operator, 2-34

Z
zero divide, 2-44
zero padding, 2-34

Index - 9

